Merge pull request #11690 from peters:master

pull/11700/head
Alexander Alekhin 7 years ago
commit 03d3966d15
  1. 12
      3rdparty/libwebp/src/dec/frame_dec.c
  2. 2
      3rdparty/libwebp/src/dec/vp8_dec.c
  3. 6
      3rdparty/libwebp/src/dec/vp8i_dec.h
  4. 10
      3rdparty/libwebp/src/dec/vp8l_dec.c
  5. 6
      3rdparty/libwebp/src/demux/demux.c
  6. 29
      3rdparty/libwebp/src/dsp/alpha_processing.c
  7. 46
      3rdparty/libwebp/src/dsp/alpha_processing_mips_dsp_r2.c
  8. 68
      3rdparty/libwebp/src/dsp/argb.c
  9. 110
      3rdparty/libwebp/src/dsp/argb_mips_dsp_r2.c
  10. 70
      3rdparty/libwebp/src/dsp/argb_sse2.c
  11. 14
      3rdparty/libwebp/src/dsp/common_sse2.h
  12. 132
      3rdparty/libwebp/src/dsp/common_sse41.h
  13. 9
      3rdparty/libwebp/src/dsp/cost.c
  14. 9
      3rdparty/libwebp/src/dsp/dec.c
  15. 52
      3rdparty/libwebp/src/dsp/dsp.h
  16. 9
      3rdparty/libwebp/src/dsp/enc.c
  17. 9
      3rdparty/libwebp/src/dsp/filters.c
  18. 9
      3rdparty/libwebp/src/dsp/lossless.c
  19. 4
      3rdparty/libwebp/src/dsp/lossless.h
  20. 9
      3rdparty/libwebp/src/dsp/lossless_enc.c
  21. 27
      3rdparty/libwebp/src/dsp/lossless_enc_sse2.c
  22. 94
      3rdparty/libwebp/src/dsp/lossless_enc_sse41.c
  23. 19
      3rdparty/libwebp/src/dsp/lossless_sse2.c
  24. 7
      3rdparty/libwebp/src/dsp/rescaler.c
  25. 20
      3rdparty/libwebp/src/dsp/rescaler_sse2.c
  26. 9
      3rdparty/libwebp/src/dsp/ssim.c
  27. 30
      3rdparty/libwebp/src/dsp/upsampling.c
  28. 6
      3rdparty/libwebp/src/dsp/upsampling_msa.c
  29. 32
      3rdparty/libwebp/src/dsp/upsampling_sse2.c
  30. 239
      3rdparty/libwebp/src/dsp/upsampling_sse41.c
  31. 29
      3rdparty/libwebp/src/dsp/yuv.c
  32. 13
      3rdparty/libwebp/src/dsp/yuv.h
  33. 4
      3rdparty/libwebp/src/dsp/yuv_sse2.c
  34. 613
      3rdparty/libwebp/src/dsp/yuv_sse41.c
  35. 5
      3rdparty/libwebp/src/enc/alpha_enc.c
  36. 6
      3rdparty/libwebp/src/enc/analysis_enc.c
  37. 455
      3rdparty/libwebp/src/enc/delta_palettization_enc.c
  38. 25
      3rdparty/libwebp/src/enc/delta_palettization_enc.h
  39. 26
      3rdparty/libwebp/src/enc/frame_enc.c
  40. 9
      3rdparty/libwebp/src/enc/histogram_enc.c
  41. 5
      3rdparty/libwebp/src/enc/histogram_enc.h
  42. 8
      3rdparty/libwebp/src/enc/iterator_enc.c
  43. 2
      3rdparty/libwebp/src/enc/near_lossless_enc.c
  44. 148
      3rdparty/libwebp/src/enc/picture_csp_enc.c
  45. 15
      3rdparty/libwebp/src/enc/picture_psnr_enc.c
  46. 87
      3rdparty/libwebp/src/enc/quant_enc.c
  47. 16
      3rdparty/libwebp/src/enc/vp8i_enc.h
  48. 79
      3rdparty/libwebp/src/enc/vp8l_enc.c
  49. 9
      3rdparty/libwebp/src/enc/webp_enc.c
  50. 6
      3rdparty/libwebp/src/mux/muxi.h
  51. 7
      3rdparty/libwebp/src/utils/endian_inl_utils.h

@ -400,7 +400,9 @@ static void DitherRow(VP8Decoder* const dec) {
#define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB
// Finalize and transmit a complete row. Return false in case of user-abort.
static int FinishRow(VP8Decoder* const dec, VP8Io* const io) {
static int FinishRow(void* arg1, void* arg2) {
VP8Decoder* const dec = (VP8Decoder*)arg1;
VP8Io* const io = (VP8Io*)arg2;
int ok = 1;
const VP8ThreadContext* const ctx = &dec->thread_ctx_;
const int cache_id = ctx->id_;
@ -448,10 +450,9 @@ static int FinishRow(VP8Decoder* const dec, VP8Io* const io) {
if (y_end > io->crop_bottom) {
y_end = io->crop_bottom; // make sure we don't overflow on last row.
}
// If dec->alpha_data_ is not NULL, we have some alpha plane present.
io->a = NULL;
if (dec->alpha_data_ != NULL && y_start < y_end) {
// TODO(skal): testing presence of alpha with dec->alpha_data_ is not a
// good idea.
io->a = VP8DecompressAlphaRows(dec, io, y_start, y_end - y_start);
if (io->a == NULL) {
return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
@ -558,7 +559,6 @@ VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
if (io->bypass_filtering) {
dec->filter_type_ = 0;
}
// TODO(skal): filter type / strength / sharpness forcing
// Define the area where we can skip in-loop filtering, in case of cropping.
//
@ -569,8 +569,6 @@ VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
// Means: there's a dependency chain that goes all the way up to the
// top-left corner of the picture (MB #0). We must filter all the previous
// macroblocks.
// TODO(skal): add an 'approximate_decoding' option, that won't produce
// a 1:1 bit-exactness for complex filtering?
{
const int extra_pixels = kFilterExtraRows[dec->filter_type_];
if (dec->filter_type_ == 2) {
@ -651,7 +649,7 @@ static int InitThreadContext(VP8Decoder* const dec) {
}
worker->data1 = dec;
worker->data2 = (void*)&dec->thread_ctx_.io_;
worker->hook = (WebPWorkerHook)FinishRow;
worker->hook = FinishRow;
dec->num_caches_ =
(dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1;
} else {

@ -491,7 +491,7 @@ static int GetCoeffsAlt(VP8BitReader* const br,
return 16;
}
WEBP_TSAN_IGNORE_FUNCTION static void InitGetCoeffs(void) {
static WEBP_TSAN_IGNORE_FUNCTION void InitGetCoeffs(void) {
if (GetCoeffs == NULL) {
if (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kSlowSSSE3)) {
GetCoeffs = GetCoeffsAlt;

@ -30,9 +30,9 @@ extern "C" {
// Various defines and enums
// version numbers
#define DEC_MAJ_VERSION 0
#define DEC_MIN_VERSION 6
#define DEC_REV_VERSION 1
#define DEC_MAJ_VERSION 1
#define DEC_MIN_VERSION 0
#define DEC_REV_VERSION 0
// YUV-cache parameters. Cache is 32-bytes wide (= one cacheline).
// Constraints are: We need to store one 16x16 block of luma samples (y),

@ -1643,17 +1643,17 @@ int VP8LDecodeImage(VP8LDecoder* const dec) {
#if !defined(WEBP_REDUCE_SIZE)
if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) {
// need the alpha-multiply functions for premultiplied output or rescaling
WebPInitAlphaProcessing();
}
#else
if (io->use_scaling) {
dec->status_ = VP8_STATUS_INVALID_PARAM;
goto Err;
}
#endif
if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) {
// need the alpha-multiply functions for premultiplied output or rescaling
WebPInitAlphaProcessing();
}
if (!WebPIsRGBMode(dec->output_->colorspace)) {
WebPInitConvertARGBToYUV();
if (dec->output_->u.YUVA.a != NULL) WebPInitAlphaProcessing();

@ -23,9 +23,9 @@
#include "src/webp/demux.h"
#include "src/webp/format_constants.h"
#define DMUX_MAJ_VERSION 0
#define DMUX_MIN_VERSION 3
#define DMUX_REV_VERSION 3
#define DMUX_MAJ_VERSION 1
#define DMUX_MIN_VERSION 0
#define DMUX_REV_VERSION 0
typedef struct {
size_t start_; // start location of the data

@ -366,6 +366,16 @@ static WEBP_INLINE uint32_t MakeARGB32(int a, int r, int g, int b) {
return (((uint32_t)a << 24) | (r << 16) | (g << 8) | b);
}
#ifdef WORDS_BIGENDIAN
static void PackARGB_C(const uint8_t* a, const uint8_t* r, const uint8_t* g,
const uint8_t* b, int len, uint32_t* out) {
int i;
for (i = 0; i < len; ++i) {
out[i] = MakeARGB32(a[4 * i], r[4 * i], g[4 * i], b[4 * i]);
}
}
#endif
static void PackRGB_C(const uint8_t* r, const uint8_t* g, const uint8_t* b,
int len, int step, uint32_t* out) {
int i, offset = 0;
@ -381,6 +391,10 @@ int (*WebPDispatchAlpha)(const uint8_t*, int, int, int, uint8_t*, int);
void (*WebPDispatchAlphaToGreen)(const uint8_t*, int, int, int, uint32_t*, int);
int (*WebPExtractAlpha)(const uint8_t*, int, int, int, uint8_t*, int);
void (*WebPExtractGreen)(const uint32_t* argb, uint8_t* alpha, int size);
#ifdef WORDS_BIGENDIAN
void (*WebPPackARGB)(const uint8_t* a, const uint8_t* r, const uint8_t* g,
const uint8_t* b, int, uint32_t*);
#endif
void (*WebPPackRGB)(const uint8_t* r, const uint8_t* g, const uint8_t* b,
int len, int step, uint32_t* out);
@ -395,16 +409,14 @@ extern void WebPInitAlphaProcessingSSE2(void);
extern void WebPInitAlphaProcessingSSE41(void);
extern void WebPInitAlphaProcessingNEON(void);
static volatile VP8CPUInfo alpha_processing_last_cpuinfo_used =
(VP8CPUInfo)&alpha_processing_last_cpuinfo_used;
WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessing(void) {
if (alpha_processing_last_cpuinfo_used == VP8GetCPUInfo) return;
WEBP_DSP_INIT_FUNC(WebPInitAlphaProcessing) {
WebPMultARGBRow = WebPMultARGBRow_C;
WebPMultRow = WebPMultRow_C;
WebPApplyAlphaMultiply4444 = ApplyAlphaMultiply_16b_C;
#ifdef WORDS_BIGENDIAN
WebPPackARGB = PackARGB_C;
#endif
WebPPackRGB = PackRGB_C;
#if !WEBP_NEON_OMIT_C_CODE
WebPApplyAlphaMultiply = ApplyAlphaMultiply_C;
@ -451,9 +463,10 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessing(void) {
assert(WebPDispatchAlphaToGreen != NULL);
assert(WebPExtractAlpha != NULL);
assert(WebPExtractGreen != NULL);
#ifdef WORDS_BIGENDIAN
assert(WebPPackARGB != NULL);
#endif
assert(WebPPackRGB != NULL);
assert(WebPHasAlpha8b != NULL);
assert(WebPHasAlpha32b != NULL);
alpha_processing_last_cpuinfo_used = VP8GetCPUInfo;
}

@ -125,6 +125,49 @@ static void MultARGBRow_MIPSdspR2(uint32_t* const ptr, int width,
}
}
#ifdef WORDS_BIGENDIAN
static void PackARGB_MIPSdspR2(const uint8_t* a, const uint8_t* r,
const uint8_t* g, const uint8_t* b, int len,
uint32_t* out) {
int temp0, temp1, temp2, temp3, offset;
const int rest = len & 1;
const uint32_t* const loop_end = out + len - rest;
const int step = 4;
__asm__ volatile (
"xor %[offset], %[offset], %[offset] \n\t"
"beq %[loop_end], %[out], 0f \n\t"
"2: \n\t"
"lbux %[temp0], %[offset](%[a]) \n\t"
"lbux %[temp1], %[offset](%[r]) \n\t"
"lbux %[temp2], %[offset](%[g]) \n\t"
"lbux %[temp3], %[offset](%[b]) \n\t"
"ins %[temp1], %[temp0], 16, 16 \n\t"
"ins %[temp3], %[temp2], 16, 16 \n\t"
"addiu %[out], %[out], 4 \n\t"
"precr.qb.ph %[temp0], %[temp1], %[temp3] \n\t"
"sw %[temp0], -4(%[out]) \n\t"
"addu %[offset], %[offset], %[step] \n\t"
"bne %[loop_end], %[out], 2b \n\t"
"0: \n\t"
"beq %[rest], $zero, 1f \n\t"
"lbux %[temp0], %[offset](%[a]) \n\t"
"lbux %[temp1], %[offset](%[r]) \n\t"
"lbux %[temp2], %[offset](%[g]) \n\t"
"lbux %[temp3], %[offset](%[b]) \n\t"
"ins %[temp1], %[temp0], 16, 16 \n\t"
"ins %[temp3], %[temp2], 16, 16 \n\t"
"precr.qb.ph %[temp0], %[temp1], %[temp3] \n\t"
"sw %[temp0], 0(%[out]) \n\t"
"1: \n\t"
: [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2),
[temp3]"=&r"(temp3), [offset]"=&r"(offset), [out]"+&r"(out)
: [a]"r"(a), [r]"r"(r), [g]"r"(g), [b]"r"(b), [step]"r"(step),
[loop_end]"r"(loop_end), [rest]"r"(rest)
: "memory"
);
}
#endif // WORDS_BIGENDIAN
static void PackRGB_MIPSdspR2(const uint8_t* r, const uint8_t* g,
const uint8_t* b, int len, int step,
uint32_t* out) {
@ -172,6 +215,9 @@ extern void WebPInitAlphaProcessingMIPSdspR2(void);
WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingMIPSdspR2(void) {
WebPDispatchAlpha = DispatchAlpha_MIPSdspR2;
WebPMultARGBRow = MultARGBRow_MIPSdspR2;
#ifdef WORDS_BIGENDIAN
WebPPackARGB = PackARGB_MIPSdspR2;
#endif
WebPPackRGB = PackRGB_MIPSdspR2;
}

@ -1,68 +0,0 @@
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// ARGB making functions.
//
// Author: Djordje Pesut (djordje.pesut@imgtec.com)
#include "./dsp.h"
static WEBP_INLINE uint32_t MakeARGB32(int a, int r, int g, int b) {
return (((uint32_t)a << 24) | (r << 16) | (g << 8) | b);
}
static void PackARGB(const uint8_t* a, const uint8_t* r, const uint8_t* g,
const uint8_t* b, int len, uint32_t* out) {
int i;
for (i = 0; i < len; ++i) {
out[i] = MakeARGB32(a[4 * i], r[4 * i], g[4 * i], b[4 * i]);
}
}
static void PackRGB(const uint8_t* r, const uint8_t* g, const uint8_t* b,
int len, int step, uint32_t* out) {
int i, offset = 0;
for (i = 0; i < len; ++i) {
out[i] = MakeARGB32(0xff, r[offset], g[offset], b[offset]);
offset += step;
}
}
void (*VP8PackARGB)(const uint8_t*, const uint8_t*, const uint8_t*,
const uint8_t*, int, uint32_t*);
void (*VP8PackRGB)(const uint8_t*, const uint8_t*, const uint8_t*,
int, int, uint32_t*);
extern void VP8EncDspARGBInitMIPSdspR2(void);
extern void VP8EncDspARGBInitSSE2(void);
static volatile VP8CPUInfo argb_last_cpuinfo_used =
(VP8CPUInfo)&argb_last_cpuinfo_used;
WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspARGBInit(void) {
if (argb_last_cpuinfo_used == VP8GetCPUInfo) return;
VP8PackARGB = PackARGB;
VP8PackRGB = PackRGB;
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
if (VP8GetCPUInfo != NULL) {
#if defined(WEBP_USE_SSE2)
if (VP8GetCPUInfo(kSSE2)) {
VP8EncDspARGBInitSSE2();
}
#endif
#if defined(WEBP_USE_MIPS_DSP_R2)
if (VP8GetCPUInfo(kMIPSdspR2)) {
VP8EncDspARGBInitMIPSdspR2();
}
#endif
}
argb_last_cpuinfo_used = VP8GetCPUInfo;
}

@ -1,110 +0,0 @@
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// ARGB making functions (mips version).
//
// Author: Djordje Pesut (djordje.pesut@imgtec.com)
#include "./dsp.h"
#if defined(WEBP_USE_MIPS_DSP_R2)
static void PackARGB(const uint8_t* a, const uint8_t* r, const uint8_t* g,
const uint8_t* b, int len, uint32_t* out) {
int temp0, temp1, temp2, temp3, offset;
const int rest = len & 1;
const uint32_t* const loop_end = out + len - rest;
const int step = 4;
__asm__ volatile (
"xor %[offset], %[offset], %[offset] \n\t"
"beq %[loop_end], %[out], 0f \n\t"
"2: \n\t"
"lbux %[temp0], %[offset](%[a]) \n\t"
"lbux %[temp1], %[offset](%[r]) \n\t"
"lbux %[temp2], %[offset](%[g]) \n\t"
"lbux %[temp3], %[offset](%[b]) \n\t"
"ins %[temp1], %[temp0], 16, 16 \n\t"
"ins %[temp3], %[temp2], 16, 16 \n\t"
"addiu %[out], %[out], 4 \n\t"
"precr.qb.ph %[temp0], %[temp1], %[temp3] \n\t"
"sw %[temp0], -4(%[out]) \n\t"
"addu %[offset], %[offset], %[step] \n\t"
"bne %[loop_end], %[out], 2b \n\t"
"0: \n\t"
"beq %[rest], $zero, 1f \n\t"
"lbux %[temp0], %[offset](%[a]) \n\t"
"lbux %[temp1], %[offset](%[r]) \n\t"
"lbux %[temp2], %[offset](%[g]) \n\t"
"lbux %[temp3], %[offset](%[b]) \n\t"
"ins %[temp1], %[temp0], 16, 16 \n\t"
"ins %[temp3], %[temp2], 16, 16 \n\t"
"precr.qb.ph %[temp0], %[temp1], %[temp3] \n\t"
"sw %[temp0], 0(%[out]) \n\t"
"1: \n\t"
: [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2),
[temp3]"=&r"(temp3), [offset]"=&r"(offset), [out]"+&r"(out)
: [a]"r"(a), [r]"r"(r), [g]"r"(g), [b]"r"(b), [step]"r"(step),
[loop_end]"r"(loop_end), [rest]"r"(rest)
: "memory"
);
}
static void PackRGB(const uint8_t* r, const uint8_t* g, const uint8_t* b,
int len, int step, uint32_t* out) {
int temp0, temp1, temp2, offset;
const int rest = len & 1;
const int a = 0xff;
const uint32_t* const loop_end = out + len - rest;
__asm__ volatile (
"xor %[offset], %[offset], %[offset] \n\t"
"beq %[loop_end], %[out], 0f \n\t"
"2: \n\t"
"lbux %[temp0], %[offset](%[r]) \n\t"
"lbux %[temp1], %[offset](%[g]) \n\t"
"lbux %[temp2], %[offset](%[b]) \n\t"
"ins %[temp0], %[a], 16, 16 \n\t"
"ins %[temp2], %[temp1], 16, 16 \n\t"
"addiu %[out], %[out], 4 \n\t"
"precr.qb.ph %[temp0], %[temp0], %[temp2] \n\t"
"sw %[temp0], -4(%[out]) \n\t"
"addu %[offset], %[offset], %[step] \n\t"
"bne %[loop_end], %[out], 2b \n\t"
"0: \n\t"
"beq %[rest], $zero, 1f \n\t"
"lbux %[temp0], %[offset](%[r]) \n\t"
"lbux %[temp1], %[offset](%[g]) \n\t"
"lbux %[temp2], %[offset](%[b]) \n\t"
"ins %[temp0], %[a], 16, 16 \n\t"
"ins %[temp2], %[temp1], 16, 16 \n\t"
"precr.qb.ph %[temp0], %[temp0], %[temp2] \n\t"
"sw %[temp0], 0(%[out]) \n\t"
"1: \n\t"
: [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2),
[offset]"=&r"(offset), [out]"+&r"(out)
: [a]"r"(a), [r]"r"(r), [g]"r"(g), [b]"r"(b), [step]"r"(step),
[loop_end]"r"(loop_end), [rest]"r"(rest)
: "memory"
);
}
//------------------------------------------------------------------------------
// Entry point
extern void VP8EncDspARGBInitMIPSdspR2(void);
WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspARGBInitMIPSdspR2(void) {
VP8PackARGB = PackARGB;
VP8PackRGB = PackRGB;
}
#else // !WEBP_USE_MIPS_DSP_R2
WEBP_DSP_INIT_STUB(VP8EncDspARGBInitMIPSdspR2)
#endif // WEBP_USE_MIPS_DSP_R2

@ -1,70 +0,0 @@
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// ARGB making functions (SSE2 version).
//
// Author: Skal (pascal.massimino@gmail.com)
#include "./dsp.h"
#if defined(WEBP_USE_SSE2)
#include <assert.h>
#include <emmintrin.h>
#include <string.h>
static WEBP_INLINE uint32_t MakeARGB32(int a, int r, int g, int b) {
return (((uint32_t)a << 24) | (r << 16) | (g << 8) | b);
}
static void PackARGB(const uint8_t* a, const uint8_t* r, const uint8_t* g,
const uint8_t* b, int len, uint32_t* out) {
if (g == r + 1) { // RGBA input order. Need to swap R and B.
int i = 0;
const int len_max = len & ~3; // max length processed in main loop
const __m128i red_blue_mask = _mm_set1_epi32(0x00ff00ffu);
assert(b == r + 2);
assert(a == r + 3);
for (; i < len_max; i += 4) {
const __m128i A = _mm_loadu_si128((const __m128i*)(r + 4 * i));
const __m128i B = _mm_and_si128(A, red_blue_mask); // R 0 B 0
const __m128i C = _mm_andnot_si128(red_blue_mask, A); // 0 G 0 A
const __m128i D = _mm_shufflelo_epi16(B, _MM_SHUFFLE(2, 3, 0, 1));
const __m128i E = _mm_shufflehi_epi16(D, _MM_SHUFFLE(2, 3, 0, 1));
const __m128i F = _mm_or_si128(E, C);
_mm_storeu_si128((__m128i*)(out + i), F);
}
for (; i < len; ++i) {
out[i] = MakeARGB32(a[4 * i], r[4 * i], g[4 * i], b[4 * i]);
}
} else {
assert(g == b + 1);
assert(r == b + 2);
assert(a == b + 3);
memcpy(out, b, len * 4);
}
}
//------------------------------------------------------------------------------
// Entry point
extern void VP8EncDspARGBInitSSE2(void);
WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspARGBInitSSE2(void) {
extern void (*VP8PackARGB)(const uint8_t*, const uint8_t*, const uint8_t*,
const uint8_t*, int, uint32_t*);
VP8PackARGB = PackARGB;
}
#else // !WEBP_USE_SSE2
WEBP_DSP_INIT_STUB(VP8EncDspARGBInitSSE2)
#endif // WEBP_USE_SSE2

@ -128,9 +128,9 @@ static WEBP_INLINE void VP8Transpose_2_4x4_16b(
// Pack the planar buffers
// rrrr... rrrr... gggg... gggg... bbbb... bbbb....
// triplet by triplet in the output buffer rgb as rgbrgbrgbrgb ...
static WEBP_INLINE void VP8PlanarTo24b(__m128i* const in0, __m128i* const in1,
__m128i* const in2, __m128i* const in3,
__m128i* const in4, __m128i* const in5) {
static WEBP_INLINE void VP8PlanarTo24b_SSE2(
__m128i* const in0, __m128i* const in1, __m128i* const in2,
__m128i* const in3, __m128i* const in4, __m128i* const in5) {
// The input is 6 registers of sixteen 8b but for the sake of explanation,
// let's take 6 registers of four 8b values.
// To pack, we will keep taking one every two 8b integer and move it
@ -159,10 +159,10 @@ static WEBP_INLINE void VP8PlanarTo24b(__m128i* const in0, __m128i* const in1,
// Convert four packed four-channel buffers like argbargbargbargb... into the
// split channels aaaaa ... rrrr ... gggg .... bbbbb ......
static WEBP_INLINE void VP8L32bToPlanar(__m128i* const in0,
__m128i* const in1,
__m128i* const in2,
__m128i* const in3) {
static WEBP_INLINE void VP8L32bToPlanar_SSE2(__m128i* const in0,
__m128i* const in1,
__m128i* const in2,
__m128i* const in3) {
// Column-wise transpose.
const __m128i A0 = _mm_unpacklo_epi8(*in0, *in1);
const __m128i A1 = _mm_unpackhi_epi8(*in0, *in1);

@ -0,0 +1,132 @@
// Copyright 2016 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// SSE4 code common to several files.
//
// Author: Vincent Rabaud (vrabaud@google.com)
#ifndef WEBP_DSP_COMMON_SSE41_H_
#define WEBP_DSP_COMMON_SSE41_H_
#ifdef __cplusplus
extern "C" {
#endif
#if defined(WEBP_USE_SSE41)
#include <smmintrin.h>
//------------------------------------------------------------------------------
// Channel mixing.
// Shuffles the input buffer as A0 0 0 A1 0 0 A2 ...
#define WEBP_SSE41_SHUFF(OUT, IN0, IN1) \
OUT##0 = _mm_shuffle_epi8(*IN0, shuff0); \
OUT##1 = _mm_shuffle_epi8(*IN0, shuff1); \
OUT##2 = _mm_shuffle_epi8(*IN0, shuff2); \
OUT##3 = _mm_shuffle_epi8(*IN1, shuff0); \
OUT##4 = _mm_shuffle_epi8(*IN1, shuff1); \
OUT##5 = _mm_shuffle_epi8(*IN1, shuff2);
// Pack the planar buffers
// rrrr... rrrr... gggg... gggg... bbbb... bbbb....
// triplet by triplet in the output buffer rgb as rgbrgbrgbrgb ...
static WEBP_INLINE void VP8PlanarTo24b_SSE41(
__m128i* const in0, __m128i* const in1, __m128i* const in2,
__m128i* const in3, __m128i* const in4, __m128i* const in5) {
__m128i R0, R1, R2, R3, R4, R5;
__m128i G0, G1, G2, G3, G4, G5;
__m128i B0, B1, B2, B3, B4, B5;
// Process R.
{
const __m128i shuff0 = _mm_set_epi8(
5, -1, -1, 4, -1, -1, 3, -1, -1, 2, -1, -1, 1, -1, -1, 0);
const __m128i shuff1 = _mm_set_epi8(
-1, 10, -1, -1, 9, -1, -1, 8, -1, -1, 7, -1, -1, 6, -1, -1);
const __m128i shuff2 = _mm_set_epi8(
-1, -1, 15, -1, -1, 14, -1, -1, 13, -1, -1, 12, -1, -1, 11, -1);
WEBP_SSE41_SHUFF(R, in0, in1)
}
// Process G.
{
// Same as before, just shifted to the left by one and including the right
// padding.
const __m128i shuff0 = _mm_set_epi8(
-1, -1, 4, -1, -1, 3, -1, -1, 2, -1, -1, 1, -1, -1, 0, -1);
const __m128i shuff1 = _mm_set_epi8(
10, -1, -1, 9, -1, -1, 8, -1, -1, 7, -1, -1, 6, -1, -1, 5);
const __m128i shuff2 = _mm_set_epi8(
-1, 15, -1, -1, 14, -1, -1, 13, -1, -1, 12, -1, -1, 11, -1, -1);
WEBP_SSE41_SHUFF(G, in2, in3)
}
// Process B.
{
const __m128i shuff0 = _mm_set_epi8(
-1, 4, -1, -1, 3, -1, -1, 2, -1, -1, 1, -1, -1, 0, -1, -1);
const __m128i shuff1 = _mm_set_epi8(
-1, -1, 9, -1, -1, 8, -1, -1, 7, -1, -1, 6, -1, -1, 5, -1);
const __m128i shuff2 = _mm_set_epi8(
15, -1, -1, 14, -1, -1, 13, -1, -1, 12, -1, -1, 11, -1, -1, 10);
WEBP_SSE41_SHUFF(B, in4, in5)
}
// OR the different channels.
{
const __m128i RG0 = _mm_or_si128(R0, G0);
const __m128i RG1 = _mm_or_si128(R1, G1);
const __m128i RG2 = _mm_or_si128(R2, G2);
const __m128i RG3 = _mm_or_si128(R3, G3);
const __m128i RG4 = _mm_or_si128(R4, G4);
const __m128i RG5 = _mm_or_si128(R5, G5);
*in0 = _mm_or_si128(RG0, B0);
*in1 = _mm_or_si128(RG1, B1);
*in2 = _mm_or_si128(RG2, B2);
*in3 = _mm_or_si128(RG3, B3);
*in4 = _mm_or_si128(RG4, B4);
*in5 = _mm_or_si128(RG5, B5);
}
}
#undef WEBP_SSE41_SHUFF
// Convert four packed four-channel buffers like argbargbargbargb... into the
// split channels aaaaa ... rrrr ... gggg .... bbbbb ......
static WEBP_INLINE void VP8L32bToPlanar_SSE41(__m128i* const in0,
__m128i* const in1,
__m128i* const in2,
__m128i* const in3) {
// aaaarrrrggggbbbb
const __m128i shuff0 =
_mm_set_epi8(15, 11, 7, 3, 14, 10, 6, 2, 13, 9, 5, 1, 12, 8, 4, 0);
const __m128i A0 = _mm_shuffle_epi8(*in0, shuff0);
const __m128i A1 = _mm_shuffle_epi8(*in1, shuff0);
const __m128i A2 = _mm_shuffle_epi8(*in2, shuff0);
const __m128i A3 = _mm_shuffle_epi8(*in3, shuff0);
// A0A1R0R1
// G0G1B0B1
// A2A3R2R3
// G0G1B0B1
const __m128i B0 = _mm_unpacklo_epi32(A0, A1);
const __m128i B1 = _mm_unpackhi_epi32(A0, A1);
const __m128i B2 = _mm_unpacklo_epi32(A2, A3);
const __m128i B3 = _mm_unpackhi_epi32(A2, A3);
*in3 = _mm_unpacklo_epi64(B0, B2);
*in2 = _mm_unpackhi_epi64(B0, B2);
*in1 = _mm_unpacklo_epi64(B1, B3);
*in0 = _mm_unpackhi_epi64(B1, B3);
}
#endif // WEBP_USE_SSE41
#ifdef __cplusplus
} // extern "C"
#endif
#endif // WEBP_DSP_COMMON_SSE41_H_

@ -378,12 +378,7 @@ extern void VP8EncDspCostInitMIPS32(void);
extern void VP8EncDspCostInitMIPSdspR2(void);
extern void VP8EncDspCostInitSSE2(void);
static volatile VP8CPUInfo cost_last_cpuinfo_used =
(VP8CPUInfo)&cost_last_cpuinfo_used;
WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspCostInit(void) {
if (cost_last_cpuinfo_used == VP8GetCPUInfo) return;
WEBP_DSP_INIT_FUNC(VP8EncDspCostInit) {
VP8GetResidualCost = GetResidualCost_C;
VP8SetResidualCoeffs = SetResidualCoeffs_C;
@ -405,8 +400,6 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspCostInit(void) {
}
#endif
}
cost_last_cpuinfo_used = VP8GetCPUInfo;
}
//------------------------------------------------------------------------------

@ -741,12 +741,7 @@ extern void VP8DspInitMIPS32(void);
extern void VP8DspInitMIPSdspR2(void);
extern void VP8DspInitMSA(void);
static volatile VP8CPUInfo dec_last_cpuinfo_used =
(VP8CPUInfo)&dec_last_cpuinfo_used;
WEBP_TSAN_IGNORE_FUNCTION void VP8DspInit(void) {
if (dec_last_cpuinfo_used == VP8GetCPUInfo) return;
WEBP_DSP_INIT_FUNC(VP8DspInit) {
VP8InitClipTables();
#if !WEBP_NEON_OMIT_C_CODE
@ -889,6 +884,4 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8DspInit(void) {
assert(VP8PredChroma8[5] != NULL);
assert(VP8PredChroma8[6] != NULL);
assert(VP8DitherCombine8x8 != NULL);
dec_last_cpuinfo_used = VP8GetCPUInfo;
}

@ -141,6 +141,42 @@ extern "C" {
#endif
#endif
#if defined(WEBP_USE_THREAD) && !defined(_WIN32)
#include <pthread.h> // NOLINT
#define WEBP_DSP_INIT(func) do { \
static volatile VP8CPUInfo func ## _last_cpuinfo_used = \
(VP8CPUInfo)&func ## _last_cpuinfo_used; \
static pthread_mutex_t func ## _lock = PTHREAD_MUTEX_INITIALIZER; \
if (pthread_mutex_lock(&func ## _lock)) break; \
if (func ## _last_cpuinfo_used != VP8GetCPUInfo) func(); \
func ## _last_cpuinfo_used = VP8GetCPUInfo; \
(void)pthread_mutex_unlock(&func ## _lock); \
} while (0)
#else // !(defined(WEBP_USE_THREAD) && !defined(_WIN32))
#define WEBP_DSP_INIT(func) do { \
static volatile VP8CPUInfo func ## _last_cpuinfo_used = \
(VP8CPUInfo)&func ## _last_cpuinfo_used; \
if (func ## _last_cpuinfo_used == VP8GetCPUInfo) break; \
func(); \
func ## _last_cpuinfo_used = VP8GetCPUInfo; \
} while (0)
#endif // defined(WEBP_USE_THREAD) && !defined(_WIN32)
// Defines an Init + helper function that control multiple initialization of
// function pointers / tables.
/* Usage:
WEBP_DSP_INIT_FUNC(InitFunc) {
...function body
}
*/
#define WEBP_DSP_INIT_FUNC(name) \
static WEBP_TSAN_IGNORE_FUNCTION void name ## _body(void); \
WEBP_TSAN_IGNORE_FUNCTION void name(void) { \
WEBP_DSP_INIT(name ## _body); \
} \
static WEBP_TSAN_IGNORE_FUNCTION void name ## _body(void)
#define WEBP_UBSAN_IGNORE_UNDEF
#define WEBP_UBSAN_IGNORE_UNSIGNED_OVERFLOW
#if defined(__clang__) && defined(__has_attribute)
@ -166,6 +202,13 @@ extern "C" {
#define WEBP_SWAP_16BIT_CSP 0
#endif
// some endian fix (e.g.: mips-gcc doesn't define __BIG_ENDIAN__)
#if !defined(WORDS_BIGENDIAN) && \
(defined(__BIG_ENDIAN__) || defined(_M_PPC) || \
(defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
#define WORDS_BIGENDIAN
#endif
typedef enum {
kSSE2,
kSSE3,
@ -189,7 +232,7 @@ WEBP_EXTERN VP8CPUInfo VP8GetCPUInfo;
// avoiding a compiler warning.
#define WEBP_DSP_INIT_STUB(func) \
extern void func(void); \
WEBP_TSAN_IGNORE_FUNCTION void func(void) {}
void func(void) {}
//------------------------------------------------------------------------------
// Encoding
@ -578,6 +621,13 @@ void WebPMultRow_C(uint8_t* const ptr, const uint8_t* const alpha,
int width, int inverse);
void WebPMultARGBRow_C(uint32_t* const ptr, int width, int inverse);
#ifdef WORDS_BIGENDIAN
// ARGB packing function: a/r/g/b input is rgba or bgra order.
extern void (*WebPPackARGB)(const uint8_t* a, const uint8_t* r,
const uint8_t* g, const uint8_t* b, int len,
uint32_t* out);
#endif
// RGB packing function. 'step' can be 3 or 4. r/g/b input is rgb or bgr order.
extern void (*WebPPackRGB)(const uint8_t* r, const uint8_t* g, const uint8_t* b,
int len, int step, uint32_t* out);

@ -740,12 +740,7 @@ extern void VP8EncDspInitMIPS32(void);
extern void VP8EncDspInitMIPSdspR2(void);
extern void VP8EncDspInitMSA(void);
static volatile VP8CPUInfo enc_last_cpuinfo_used =
(VP8CPUInfo)&enc_last_cpuinfo_used;
WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInit(void) {
if (enc_last_cpuinfo_used == VP8GetCPUInfo) return;
WEBP_DSP_INIT_FUNC(VP8EncDspInit) {
VP8DspInit(); // common inverse transforms
InitTables();
@ -838,6 +833,4 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInit(void) {
assert(VP8EncQuantizeBlockWHT != NULL);
assert(VP8Copy4x4 != NULL);
assert(VP8Copy16x8 != NULL);
enc_last_cpuinfo_used = VP8GetCPUInfo;
}

@ -238,12 +238,7 @@ extern void VP8FiltersInitMSA(void);
extern void VP8FiltersInitNEON(void);
extern void VP8FiltersInitSSE2(void);
static volatile VP8CPUInfo filters_last_cpuinfo_used =
(VP8CPUInfo)&filters_last_cpuinfo_used;
WEBP_TSAN_IGNORE_FUNCTION void VP8FiltersInit(void) {
if (filters_last_cpuinfo_used == VP8GetCPUInfo) return;
WEBP_DSP_INIT_FUNC(VP8FiltersInit) {
WebPUnfilters[WEBP_FILTER_NONE] = NULL;
#if !WEBP_NEON_OMIT_C_CODE
WebPUnfilters[WEBP_FILTER_HORIZONTAL] = HorizontalUnfilter_C;
@ -289,6 +284,4 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8FiltersInit(void) {
assert(WebPFilters[WEBP_FILTER_HORIZONTAL] != NULL);
assert(WebPFilters[WEBP_FILTER_VERTICAL] != NULL);
assert(WebPFilters[WEBP_FILTER_GRADIENT] != NULL);
filters_last_cpuinfo_used = VP8GetCPUInfo;
}

@ -577,9 +577,6 @@ extern void VP8LDspInitNEON(void);
extern void VP8LDspInitMIPSdspR2(void);
extern void VP8LDspInitMSA(void);
static volatile VP8CPUInfo lossless_last_cpuinfo_used =
(VP8CPUInfo)&lossless_last_cpuinfo_used;
#define COPY_PREDICTOR_ARRAY(IN, OUT) do { \
(OUT)[0] = IN##0_C; \
(OUT)[1] = IN##1_C; \
@ -599,9 +596,7 @@ static volatile VP8CPUInfo lossless_last_cpuinfo_used =
(OUT)[15] = IN##0_C; \
} while (0);
WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInit(void) {
if (lossless_last_cpuinfo_used == VP8GetCPUInfo) return;
WEBP_DSP_INIT_FUNC(VP8LDspInit) {
COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors)
COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors_C)
COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd)
@ -658,8 +653,6 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInit(void) {
assert(VP8LConvertBGRAToRGB565 != NULL);
assert(VP8LMapColor32b != NULL);
assert(VP8LMapColor8b != NULL);
lossless_last_cpuinfo_used = VP8GetCPUInfo;
}
#undef COPY_PREDICTOR_ARRAY

@ -25,10 +25,6 @@
extern "C" {
#endif
#ifdef WEBP_EXPERIMENTAL_FEATURES
#include "src/enc/delta_palettization_enc.h"
#endif // WEBP_EXPERIMENTAL_FEATURES
//------------------------------------------------------------------------------
// Decoding

@ -863,12 +863,7 @@ extern void VP8LEncDspInitMIPS32(void);
extern void VP8LEncDspInitMIPSdspR2(void);
extern void VP8LEncDspInitMSA(void);
static volatile VP8CPUInfo lossless_enc_last_cpuinfo_used =
(VP8CPUInfo)&lossless_enc_last_cpuinfo_used;
WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInit(void) {
if (lossless_enc_last_cpuinfo_used == VP8GetCPUInfo) return;
WEBP_DSP_INIT_FUNC(VP8LEncDspInit) {
VP8LDspInit();
#if !WEBP_NEON_OMIT_C_CODE
@ -1011,8 +1006,6 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInit(void) {
assert(VP8LPredictorsSub_C[13] != NULL);
assert(VP8LPredictorsSub_C[14] != NULL);
assert(VP8LPredictorsSub_C[15] != NULL);
lossless_enc_last_cpuinfo_used = VP8GetCPUInfo;
}
//------------------------------------------------------------------------------

@ -46,16 +46,14 @@ static void SubtractGreenFromBlueAndRed_SSE2(uint32_t* argb_data,
//------------------------------------------------------------------------------
// Color Transform
#define MK_CST_16(HI, LO) \
_mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
static void TransformColor_SSE2(const VP8LMultipliers* const m,
uint32_t* argb_data, int num_pixels) {
const __m128i mults_rb = _mm_set_epi16(
CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_));
const __m128i mults_b2 = _mm_set_epi16(
CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0,
CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0);
const __m128i mults_rb = MK_CST_16(CST_5b(m->green_to_red_),
CST_5b(m->green_to_blue_));
const __m128i mults_b2 = MK_CST_16(CST_5b(m->red_to_blue_), 0);
const __m128i mask_ag = _mm_set1_epi32(0xff00ff00); // alpha-green masks
const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff); // red-blue masks
int i;
@ -85,12 +83,8 @@ static void CollectColorBlueTransforms_SSE2(const uint32_t* argb, int stride,
int tile_width, int tile_height,
int green_to_blue, int red_to_blue,
int histo[]) {
const __m128i mults_r = _mm_set_epi16(
CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0,
CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0);
const __m128i mults_g = _mm_set_epi16(
0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue),
0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue));
const __m128i mults_r = MK_CST_16(CST_5b(red_to_blue), 0);
const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_blue));
const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask
const __m128i mask_b = _mm_set1_epi32(0x0000ff); // blue mask
int y;
@ -135,9 +129,7 @@ static void CollectColorBlueTransforms_SSE2(const uint32_t* argb, int stride,
static void CollectColorRedTransforms_SSE2(const uint32_t* argb, int stride,
int tile_width, int tile_height,
int green_to_red, int histo[]) {
const __m128i mults_g = _mm_set_epi16(
0, CST_5b(green_to_red), 0, CST_5b(green_to_red),
0, CST_5b(green_to_red), 0, CST_5b(green_to_red));
const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_red));
const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask
const __m128i mask = _mm_set1_epi32(0xff);
@ -174,6 +166,7 @@ static void CollectColorRedTransforms_SSE2(const uint32_t* argb, int stride,
}
}
#undef SPAN
#undef MK_CST_16
//------------------------------------------------------------------------------

@ -18,6 +18,9 @@
#include <smmintrin.h>
#include "src/dsp/lossless.h"
// For sign-extended multiplying constants, pre-shifted by 5:
#define CST_5b(X) (((int16_t)((uint16_t)(X) << 8)) >> 5)
//------------------------------------------------------------------------------
// Subtract-Green Transform
@ -38,6 +41,95 @@ static void SubtractGreenFromBlueAndRed_SSE41(uint32_t* argb_data,
}
}
//------------------------------------------------------------------------------
// Color Transform
#define SPAN 8
static void CollectColorBlueTransforms_SSE41(const uint32_t* argb, int stride,
int tile_width, int tile_height,
int green_to_blue, int red_to_blue,
int histo[]) {
const __m128i mults_r = _mm_set1_epi16(CST_5b(red_to_blue));
const __m128i mults_g = _mm_set1_epi16(CST_5b(green_to_blue));
const __m128i mask_g = _mm_set1_epi16(0xff00); // green mask
const __m128i mask_gb = _mm_set1_epi32(0xffff); // green/blue mask
const __m128i mask_b = _mm_set1_epi16(0x00ff); // blue mask
const __m128i shuffler_lo = _mm_setr_epi8(-1, 2, -1, 6, -1, 10, -1, 14, -1,
-1, -1, -1, -1, -1, -1, -1);
const __m128i shuffler_hi = _mm_setr_epi8(-1, -1, -1, -1, -1, -1, -1, -1, -1,
2, -1, 6, -1, 10, -1, 14);
int y;
for (y = 0; y < tile_height; ++y) {
const uint32_t* const src = argb + y * stride;
int i, x;
for (x = 0; x + SPAN <= tile_width; x += SPAN) {
uint16_t values[SPAN];
const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]);
const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
const __m128i r0 = _mm_shuffle_epi8(in0, shuffler_lo);
const __m128i r1 = _mm_shuffle_epi8(in1, shuffler_hi);
const __m128i r = _mm_or_si128(r0, r1); // r 0
const __m128i gb0 = _mm_and_si128(in0, mask_gb);
const __m128i gb1 = _mm_and_si128(in1, mask_gb);
const __m128i gb = _mm_packus_epi32(gb0, gb1); // g b
const __m128i g = _mm_and_si128(gb, mask_g); // g 0
const __m128i A = _mm_mulhi_epi16(r, mults_r); // x dbr
const __m128i B = _mm_mulhi_epi16(g, mults_g); // x dbg
const __m128i C = _mm_sub_epi8(gb, B); // x b'
const __m128i D = _mm_sub_epi8(C, A); // x b''
const __m128i E = _mm_and_si128(D, mask_b); // 0 b''
_mm_storeu_si128((__m128i*)values, E);
for (i = 0; i < SPAN; ++i) ++histo[values[i]];
}
}
{
const int left_over = tile_width & (SPAN - 1);
if (left_over > 0) {
VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride,
left_over, tile_height,
green_to_blue, red_to_blue, histo);
}
}
}
static void CollectColorRedTransforms_SSE41(const uint32_t* argb, int stride,
int tile_width, int tile_height,
int green_to_red, int histo[]) {
const __m128i mults_g = _mm_set1_epi16(CST_5b(green_to_red));
const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask
const __m128i mask = _mm_set1_epi16(0xff);
int y;
for (y = 0; y < tile_height; ++y) {
const uint32_t* const src = argb + y * stride;
int i, x;
for (x = 0; x + SPAN <= tile_width; x += SPAN) {
uint16_t values[SPAN];
const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]);
const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
const __m128i g0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0
const __m128i g1 = _mm_and_si128(in1, mask_g);
const __m128i g = _mm_packus_epi32(g0, g1); // g 0
const __m128i A0 = _mm_srli_epi32(in0, 16); // 0 0 | x r
const __m128i A1 = _mm_srli_epi32(in1, 16);
const __m128i A = _mm_packus_epi32(A0, A1); // x r
const __m128i B = _mm_mulhi_epi16(g, mults_g); // x dr
const __m128i C = _mm_sub_epi8(A, B); // x r'
const __m128i D = _mm_and_si128(C, mask); // 0 r'
_mm_storeu_si128((__m128i*)values, D);
for (i = 0; i < SPAN; ++i) ++histo[values[i]];
}
}
{
const int left_over = tile_width & (SPAN - 1);
if (left_over > 0) {
VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride,
left_over, tile_height, green_to_red,
histo);
}
}
}
//------------------------------------------------------------------------------
// Entry point
@ -45,6 +137,8 @@ extern void VP8LEncDspInitSSE41(void);
WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE41(void) {
VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_SSE41;
VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_SSE41;
VP8LCollectColorRedTransforms = CollectColorRedTransforms_SSE41;
}
#else // !WEBP_USE_SSE41

@ -453,14 +453,11 @@ static void TransformColorInverse_SSE2(const VP8LMultipliers* const m,
int num_pixels, uint32_t* dst) {
// sign-extended multiplying constants, pre-shifted by 5.
#define CST(X) (((int16_t)(m->X << 8)) >> 5) // sign-extend
const __m128i mults_rb = _mm_set_epi16(
CST(green_to_red_), CST(green_to_blue_),
CST(green_to_red_), CST(green_to_blue_),
CST(green_to_red_), CST(green_to_blue_),
CST(green_to_red_), CST(green_to_blue_));
const __m128i mults_b2 = _mm_set_epi16(
CST(red_to_blue_), 0, CST(red_to_blue_), 0,
CST(red_to_blue_), 0, CST(red_to_blue_), 0);
#define MK_CST_16(HI, LO) \
_mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
const __m128i mults_rb = MK_CST_16(CST(green_to_red_), CST(green_to_blue_));
const __m128i mults_b2 = MK_CST_16(CST(red_to_blue_), 0);
#undef MK_CST_16
#undef CST
const __m128i mask_ag = _mm_set1_epi32(0xff00ff00); // alpha-green masks
int i;
@ -503,11 +500,11 @@ static void ConvertBGRAToRGB_SSE2(const uint32_t* src, int num_pixels,
__m128i in5 = _mm_loadu_si128(in + 5);
__m128i in6 = _mm_loadu_si128(in + 6);
__m128i in7 = _mm_loadu_si128(in + 7);
VP8L32bToPlanar(&in0, &in1, &in2, &in3);
VP8L32bToPlanar(&in4, &in5, &in6, &in7);
VP8L32bToPlanar_SSE2(&in0, &in1, &in2, &in3);
VP8L32bToPlanar_SSE2(&in4, &in5, &in6, &in7);
// At this points, in1/in5 contains red only, in2/in6 green only ...
// Pack the colors in 24b RGB.
VP8PlanarTo24b(&in1, &in5, &in2, &in6, &in3, &in7);
VP8PlanarTo24b_SSE2(&in1, &in5, &in2, &in6, &in3, &in7);
_mm_storeu_si128(out + 0, in1);
_mm_storeu_si128(out + 1, in5);
_mm_storeu_si128(out + 2, in2);

@ -204,11 +204,7 @@ extern void WebPRescalerDspInitMIPSdspR2(void);
extern void WebPRescalerDspInitMSA(void);
extern void WebPRescalerDspInitNEON(void);
static volatile VP8CPUInfo rescaler_last_cpuinfo_used =
(VP8CPUInfo)&rescaler_last_cpuinfo_used;
WEBP_TSAN_IGNORE_FUNCTION void WebPRescalerDspInit(void) {
if (rescaler_last_cpuinfo_used == VP8GetCPUInfo) return;
WEBP_DSP_INIT_FUNC(WebPRescalerDspInit) {
#if !defined(WEBP_REDUCE_SIZE)
#if !WEBP_NEON_OMIT_C_CODE
WebPRescalerExportRowExpand = WebPRescalerExportRowExpand_C;
@ -253,5 +249,4 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPRescalerDspInit(void) {
assert(WebPRescalerImportRowExpand != NULL);
assert(WebPRescalerImportRowShrink != NULL);
#endif // WEBP_REDUCE_SIZE
rescaler_last_cpuinfo_used = VP8GetCPUInfo;
}

@ -36,7 +36,7 @@ static void LoadTwoPixels_SSE2(const uint8_t* const src, __m128i* out) {
}
// input: 8 bytes ABCDEFGH -> output: A0B0C0D0E0F0G0H0
static void LoadHeightPixels_SSE2(const uint8_t* const src, __m128i* out) {
static void LoadEightPixels_SSE2(const uint8_t* const src, __m128i* out) {
const __m128i zero = _mm_setzero_si128();
const __m128i A = _mm_loadl_epi64((const __m128i*)(src)); // ABCDEFGH
*out = _mm_unpacklo_epi8(A, zero);
@ -50,13 +50,15 @@ static void RescalerImportRowExpand_SSE2(WebPRescaler* const wrk,
int accum = x_add;
__m128i cur_pixels;
// SSE2 implementation only works with 16b signed arithmetic at max.
if (wrk->src_width < 8 || accum >= (1 << 15)) {
WebPRescalerImportRowExpand_C(wrk, src);
return;
}
assert(!WebPRescalerInputDone(wrk));
assert(wrk->x_expand);
if (wrk->num_channels == 4) {
if (wrk->src_width < 2) {
WebPRescalerImportRowExpand_C(wrk, src);
return;
}
LoadTwoPixels_SSE2(src, &cur_pixels);
src += 4;
while (1) {
@ -75,11 +77,7 @@ static void RescalerImportRowExpand_SSE2(WebPRescaler* const wrk,
} else {
int left;
const uint8_t* const src_limit = src + wrk->src_width - 8;
if (wrk->src_width < 8) {
WebPRescalerImportRowExpand_C(wrk, src);
return;
}
LoadHeightPixels_SSE2(src, &cur_pixels);
LoadEightPixels_SSE2(src, &cur_pixels);
src += 7;
left = 7;
while (1) {
@ -94,7 +92,7 @@ static void RescalerImportRowExpand_SSE2(WebPRescaler* const wrk,
if (--left) {
cur_pixels = _mm_srli_si128(cur_pixels, 2);
} else if (src <= src_limit) {
LoadHeightPixels_SSE2(src, &cur_pixels);
LoadEightPixels_SSE2(src, &cur_pixels);
src += 7;
left = 7;
} else { // tail

@ -139,12 +139,7 @@ VP8AccumulateSSEFunc VP8AccumulateSSE;
extern void VP8SSIMDspInitSSE2(void);
static volatile VP8CPUInfo ssim_last_cpuinfo_used =
(VP8CPUInfo)&ssim_last_cpuinfo_used;
WEBP_TSAN_IGNORE_FUNCTION void VP8SSIMDspInit(void) {
if (ssim_last_cpuinfo_used == VP8GetCPUInfo) return;
WEBP_DSP_INIT_FUNC(VP8SSIMDspInit) {
#if !defined(WEBP_REDUCE_SIZE)
VP8SSIMGetClipped = SSIMGetClipped_C;
VP8SSIMGet = SSIMGet_C;
@ -161,6 +156,4 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8SSIMDspInit(void) {
}
#endif
}
ssim_last_cpuinfo_used = VP8GetCPUInfo;
}

@ -217,13 +217,9 @@ WebPYUV444Converter WebPYUV444Converters[MODE_LAST];
extern void WebPInitYUV444ConvertersMIPSdspR2(void);
extern void WebPInitYUV444ConvertersSSE2(void);
extern void WebPInitYUV444ConvertersSSE41(void);
static volatile VP8CPUInfo upsampling_last_cpuinfo_used1 =
(VP8CPUInfo)&upsampling_last_cpuinfo_used1;
WEBP_TSAN_IGNORE_FUNCTION void WebPInitYUV444Converters(void) {
if (upsampling_last_cpuinfo_used1 == VP8GetCPUInfo) return;
WEBP_DSP_INIT_FUNC(WebPInitYUV444Converters) {
WebPYUV444Converters[MODE_RGBA] = WebPYuv444ToRgba_C;
WebPYUV444Converters[MODE_BGRA] = WebPYuv444ToBgra_C;
WebPYUV444Converters[MODE_RGB] = WebPYuv444ToRgb_C;
@ -242,29 +238,29 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPInitYUV444Converters(void) {
WebPInitYUV444ConvertersSSE2();
}
#endif
#if defined(WEBP_USE_SSE41)
if (VP8GetCPUInfo(kSSE4_1)) {
WebPInitYUV444ConvertersSSE41();
}
#endif
#if defined(WEBP_USE_MIPS_DSP_R2)
if (VP8GetCPUInfo(kMIPSdspR2)) {
WebPInitYUV444ConvertersMIPSdspR2();
}
#endif
}
upsampling_last_cpuinfo_used1 = VP8GetCPUInfo;
}
//------------------------------------------------------------------------------
// Main calls
extern void WebPInitUpsamplersSSE2(void);
extern void WebPInitUpsamplersSSE41(void);
extern void WebPInitUpsamplersNEON(void);
extern void WebPInitUpsamplersMIPSdspR2(void);
extern void WebPInitUpsamplersMSA(void);
static volatile VP8CPUInfo upsampling_last_cpuinfo_used2 =
(VP8CPUInfo)&upsampling_last_cpuinfo_used2;
WEBP_TSAN_IGNORE_FUNCTION void WebPInitUpsamplers(void) {
if (upsampling_last_cpuinfo_used2 == VP8GetCPUInfo) return;
WEBP_DSP_INIT_FUNC(WebPInitUpsamplers) {
#ifdef FANCY_UPSAMPLING
#if !WEBP_NEON_OMIT_C_CODE
WebPUpsamplers[MODE_RGBA] = UpsampleRgbaLinePair_C;
@ -287,6 +283,11 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPInitUpsamplers(void) {
WebPInitUpsamplersSSE2();
}
#endif
#if defined(WEBP_USE_SSE41)
if (VP8GetCPUInfo(kSSE4_1)) {
WebPInitUpsamplersSSE41();
}
#endif
#if defined(WEBP_USE_MIPS_DSP_R2)
if (VP8GetCPUInfo(kMIPSdspR2)) {
WebPInitUpsamplersMIPSdspR2();
@ -310,6 +311,7 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPInitUpsamplers(void) {
assert(WebPUpsamplers[MODE_BGRA] != NULL);
assert(WebPUpsamplers[MODE_rgbA] != NULL);
assert(WebPUpsamplers[MODE_bgrA] != NULL);
#if !defined(WEBP_REDUCE_CSP) || !WEBP_NEON_OMIT_C_CODE
assert(WebPUpsamplers[MODE_RGB] != NULL);
assert(WebPUpsamplers[MODE_BGR] != NULL);
assert(WebPUpsamplers[MODE_ARGB] != NULL);
@ -317,9 +319,9 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPInitUpsamplers(void) {
assert(WebPUpsamplers[MODE_RGB_565] != NULL);
assert(WebPUpsamplers[MODE_Argb] != NULL);
assert(WebPUpsamplers[MODE_rgbA_4444] != NULL);
#endif
#endif // FANCY_UPSAMPLING
upsampling_last_cpuinfo_used2 = VP8GetCPUInfo;
}
//------------------------------------------------------------------------------

@ -264,6 +264,7 @@ static void YuvToBgr(int y, int u, int v, uint8_t* const bgr) {
bgr[2] = Clip8(r1 >> 6);
}
#if !defined(WEBP_REDUCE_CSP)
static void YuvToRgb565(int y, int u, int v, uint8_t* const rgb) {
const int y1 = MultHi(y, 19077);
const int r1 = y1 + MultHi(v, 26149) - 14234;
@ -306,6 +307,7 @@ static void YuvToArgb(uint8_t y, uint8_t u, uint8_t v, uint8_t* const argb) {
argb[0] = 0xff;
YuvToRgb(y, u, v, argb + 1);
}
#endif // WEBP_REDUCE_CSP
static void YuvToBgra(uint8_t y, uint8_t u, uint8_t v, uint8_t* const bgra) {
YuvToBgr(y, u, v, bgra);
@ -317,6 +319,7 @@ static void YuvToRgba(uint8_t y, uint8_t u, uint8_t v, uint8_t* const rgba) {
rgba[3] = 0xff;
}
#if !defined(WEBP_REDUCE_CSP)
static void YuvToRgbLine(const uint8_t* y, const uint8_t* u,
const uint8_t* v, uint8_t* dst, int length) {
v16u8 R, G, B;
@ -370,6 +373,7 @@ static void YuvToBgrLine(const uint8_t* y, const uint8_t* u,
memcpy(dst, temp, length * 3 * sizeof(*dst));
}
}
#endif // WEBP_REDUCE_CSP
static void YuvToRgbaLine(const uint8_t* y, const uint8_t* u,
const uint8_t* v, uint8_t* dst, int length) {
@ -427,6 +431,7 @@ static void YuvToBgraLine(const uint8_t* y, const uint8_t* u,
}
}
#if !defined(WEBP_REDUCE_CSP)
static void YuvToArgbLine(const uint8_t* y, const uint8_t* u,
const uint8_t* v, uint8_t* dst, int length) {
v16u8 R, G, B;
@ -526,6 +531,7 @@ static void YuvToRgb565Line(const uint8_t* y, const uint8_t* u,
memcpy(dst, temp, length * 2 * sizeof(*dst));
}
}
#endif // WEBP_REDUCE_CSP
#define UPSAMPLE_32PIXELS(a, b, c, d) do { \
v16u8 s = __msa_aver_u_b(a, d); \

@ -104,21 +104,6 @@ static void Upsample32Pixels_SSE2(const uint8_t r1[], const uint8_t r2[],
Upsample32Pixels_SSE2(r1, r2, out); \
}
#define CONVERT2RGB(FUNC, XSTEP, top_y, bottom_y, \
top_dst, bottom_dst, cur_x, num_pixels) { \
int n; \
for (n = 0; n < (num_pixels); ++n) { \
FUNC((top_y)[(cur_x) + n], r_u[n], r_v[n], \
(top_dst) + ((cur_x) + n) * (XSTEP)); \
} \
if ((bottom_y) != NULL) { \
for (n = 0; n < (num_pixels); ++n) { \
FUNC((bottom_y)[(cur_x) + n], r_u[64 + n], r_v[64 + n], \
(bottom_dst) + ((cur_x) + n) * (XSTEP)); \
} \
} \
}
#define CONVERT2RGB_32(FUNC, XSTEP, top_y, bottom_y, \
top_dst, bottom_dst, cur_x) do { \
FUNC##32_SSE2((top_y) + (cur_x), r_u, r_v, (top_dst) + (cur_x) * (XSTEP)); \
@ -135,7 +120,7 @@ static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \
uint8_t* top_dst, uint8_t* bottom_dst, int len) { \
int uv_pos, pos; \
/* 16byte-aligned array to cache reconstructed u and v */ \
uint8_t uv_buf[4 * 32 + 15]; \
uint8_t uv_buf[14 * 32 + 15] = { 0 }; \
uint8_t* const r_u = (uint8_t*)((uintptr_t)(uv_buf + 15) & ~15); \
uint8_t* const r_v = r_u + 32; \
\
@ -160,11 +145,22 @@ static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \
} \
if (len > 1) { \
const int left_over = ((len + 1) >> 1) - (pos >> 1); \
uint8_t* const tmp_top_dst = r_u + 4 * 32; \
uint8_t* const tmp_bottom_dst = tmp_top_dst + 4 * 32; \
uint8_t* const tmp_top = tmp_bottom_dst + 4 * 32; \
uint8_t* const tmp_bottom = (bottom_y == NULL) ? NULL : tmp_top + 32; \
assert(left_over > 0); \
UPSAMPLE_LAST_BLOCK(top_u + uv_pos, cur_u + uv_pos, left_over, r_u); \
UPSAMPLE_LAST_BLOCK(top_v + uv_pos, cur_v + uv_pos, left_over, r_v); \
CONVERT2RGB(FUNC, XSTEP, top_y, bottom_y, top_dst, bottom_dst, \
pos, len - pos); \
memcpy(tmp_top, top_y + pos, len - pos); \
if (bottom_y != NULL) memcpy(tmp_bottom, bottom_y + pos, len - pos); \
CONVERT2RGB_32(FUNC, XSTEP, tmp_top, tmp_bottom, tmp_top_dst, \
tmp_bottom_dst, 0); \
memcpy(top_dst + pos * (XSTEP), tmp_top_dst, (len - pos) * (XSTEP)); \
if (bottom_y != NULL) { \
memcpy(bottom_dst + pos * (XSTEP), tmp_bottom_dst, \
(len - pos) * (XSTEP)); \
} \
} \
}

@ -0,0 +1,239 @@
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// SSE41 version of YUV to RGB upsampling functions.
//
// Author: somnath@google.com (Somnath Banerjee)
#include "src/dsp/dsp.h"
#if defined(WEBP_USE_SSE41)
#include <assert.h>
#include <smmintrin.h>
#include <string.h>
#include "src/dsp/yuv.h"
#ifdef FANCY_UPSAMPLING
#if !defined(WEBP_REDUCE_CSP)
// We compute (9*a + 3*b + 3*c + d + 8) / 16 as follows
// u = (9*a + 3*b + 3*c + d + 8) / 16
// = (a + (a + 3*b + 3*c + d) / 8 + 1) / 2
// = (a + m + 1) / 2
// where m = (a + 3*b + 3*c + d) / 8
// = ((a + b + c + d) / 2 + b + c) / 4
//
// Let's say k = (a + b + c + d) / 4.
// We can compute k as
// k = (s + t + 1) / 2 - ((a^d) | (b^c) | (s^t)) & 1
// where s = (a + d + 1) / 2 and t = (b + c + 1) / 2
//
// Then m can be written as
// m = (k + t + 1) / 2 - (((b^c) & (s^t)) | (k^t)) & 1
// Computes out = (k + in + 1) / 2 - ((ij & (s^t)) | (k^in)) & 1
#define GET_M(ij, in, out) do { \
const __m128i tmp0 = _mm_avg_epu8(k, (in)); /* (k + in + 1) / 2 */ \
const __m128i tmp1 = _mm_and_si128((ij), st); /* (ij) & (s^t) */ \
const __m128i tmp2 = _mm_xor_si128(k, (in)); /* (k^in) */ \
const __m128i tmp3 = _mm_or_si128(tmp1, tmp2); /* ((ij) & (s^t)) | (k^in) */\
const __m128i tmp4 = _mm_and_si128(tmp3, one); /* & 1 -> lsb_correction */ \
(out) = _mm_sub_epi8(tmp0, tmp4); /* (k + in + 1) / 2 - lsb_correction */ \
} while (0)
// pack and store two alternating pixel rows
#define PACK_AND_STORE(a, b, da, db, out) do { \
const __m128i t_a = _mm_avg_epu8(a, da); /* (9a + 3b + 3c + d + 8) / 16 */ \
const __m128i t_b = _mm_avg_epu8(b, db); /* (3a + 9b + c + 3d + 8) / 16 */ \
const __m128i t_1 = _mm_unpacklo_epi8(t_a, t_b); \
const __m128i t_2 = _mm_unpackhi_epi8(t_a, t_b); \
_mm_store_si128(((__m128i*)(out)) + 0, t_1); \
_mm_store_si128(((__m128i*)(out)) + 1, t_2); \
} while (0)
// Loads 17 pixels each from rows r1 and r2 and generates 32 pixels.
#define UPSAMPLE_32PIXELS(r1, r2, out) { \
const __m128i one = _mm_set1_epi8(1); \
const __m128i a = _mm_loadu_si128((const __m128i*)&(r1)[0]); \
const __m128i b = _mm_loadu_si128((const __m128i*)&(r1)[1]); \
const __m128i c = _mm_loadu_si128((const __m128i*)&(r2)[0]); \
const __m128i d = _mm_loadu_si128((const __m128i*)&(r2)[1]); \
\
const __m128i s = _mm_avg_epu8(a, d); /* s = (a + d + 1) / 2 */ \
const __m128i t = _mm_avg_epu8(b, c); /* t = (b + c + 1) / 2 */ \
const __m128i st = _mm_xor_si128(s, t); /* st = s^t */ \
\
const __m128i ad = _mm_xor_si128(a, d); /* ad = a^d */ \
const __m128i bc = _mm_xor_si128(b, c); /* bc = b^c */ \
\
const __m128i t1 = _mm_or_si128(ad, bc); /* (a^d) | (b^c) */ \
const __m128i t2 = _mm_or_si128(t1, st); /* (a^d) | (b^c) | (s^t) */ \
const __m128i t3 = _mm_and_si128(t2, one); /* (a^d) | (b^c) | (s^t) & 1 */ \
const __m128i t4 = _mm_avg_epu8(s, t); \
const __m128i k = _mm_sub_epi8(t4, t3); /* k = (a + b + c + d) / 4 */ \
__m128i diag1, diag2; \
\
GET_M(bc, t, diag1); /* diag1 = (a + 3b + 3c + d) / 8 */ \
GET_M(ad, s, diag2); /* diag2 = (3a + b + c + 3d) / 8 */ \
\
/* pack the alternate pixels */ \
PACK_AND_STORE(a, b, diag1, diag2, (out) + 0); /* store top */ \
PACK_AND_STORE(c, d, diag2, diag1, (out) + 2 * 32); /* store bottom */ \
}
// Turn the macro into a function for reducing code-size when non-critical
static void Upsample32Pixels_SSE41(const uint8_t r1[], const uint8_t r2[],
uint8_t* const out) {
UPSAMPLE_32PIXELS(r1, r2, out);
}
#define UPSAMPLE_LAST_BLOCK(tb, bb, num_pixels, out) { \
uint8_t r1[17], r2[17]; \
memcpy(r1, (tb), (num_pixels)); \
memcpy(r2, (bb), (num_pixels)); \
/* replicate last byte */ \
memset(r1 + (num_pixels), r1[(num_pixels) - 1], 17 - (num_pixels)); \
memset(r2 + (num_pixels), r2[(num_pixels) - 1], 17 - (num_pixels)); \
/* using the shared function instead of the macro saves ~3k code size */ \
Upsample32Pixels_SSE41(r1, r2, out); \
}
#define CONVERT2RGB_32(FUNC, XSTEP, top_y, bottom_y, \
top_dst, bottom_dst, cur_x) do { \
FUNC##32_SSE41((top_y) + (cur_x), r_u, r_v, (top_dst) + (cur_x) * (XSTEP)); \
if ((bottom_y) != NULL) { \
FUNC##32_SSE41((bottom_y) + (cur_x), r_u + 64, r_v + 64, \
(bottom_dst) + (cur_x) * (XSTEP)); \
} \
} while (0)
#define SSE4_UPSAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \
static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \
const uint8_t* top_u, const uint8_t* top_v, \
const uint8_t* cur_u, const uint8_t* cur_v, \
uint8_t* top_dst, uint8_t* bottom_dst, int len) { \
int uv_pos, pos; \
/* 16byte-aligned array to cache reconstructed u and v */ \
uint8_t uv_buf[14 * 32 + 15] = { 0 }; \
uint8_t* const r_u = (uint8_t*)((uintptr_t)(uv_buf + 15) & ~15); \
uint8_t* const r_v = r_u + 32; \
\
assert(top_y != NULL); \
{ /* Treat the first pixel in regular way */ \
const int u_diag = ((top_u[0] + cur_u[0]) >> 1) + 1; \
const int v_diag = ((top_v[0] + cur_v[0]) >> 1) + 1; \
const int u0_t = (top_u[0] + u_diag) >> 1; \
const int v0_t = (top_v[0] + v_diag) >> 1; \
FUNC(top_y[0], u0_t, v0_t, top_dst); \
if (bottom_y != NULL) { \
const int u0_b = (cur_u[0] + u_diag) >> 1; \
const int v0_b = (cur_v[0] + v_diag) >> 1; \
FUNC(bottom_y[0], u0_b, v0_b, bottom_dst); \
} \
} \
/* For UPSAMPLE_32PIXELS, 17 u/v values must be read-able for each block */ \
for (pos = 1, uv_pos = 0; pos + 32 + 1 <= len; pos += 32, uv_pos += 16) { \
UPSAMPLE_32PIXELS(top_u + uv_pos, cur_u + uv_pos, r_u); \
UPSAMPLE_32PIXELS(top_v + uv_pos, cur_v + uv_pos, r_v); \
CONVERT2RGB_32(FUNC, XSTEP, top_y, bottom_y, top_dst, bottom_dst, pos); \
} \
if (len > 1) { \
const int left_over = ((len + 1) >> 1) - (pos >> 1); \
uint8_t* const tmp_top_dst = r_u + 4 * 32; \
uint8_t* const tmp_bottom_dst = tmp_top_dst + 4 * 32; \
uint8_t* const tmp_top = tmp_bottom_dst + 4 * 32; \
uint8_t* const tmp_bottom = (bottom_y == NULL) ? NULL : tmp_top + 32; \
assert(left_over > 0); \
UPSAMPLE_LAST_BLOCK(top_u + uv_pos, cur_u + uv_pos, left_over, r_u); \
UPSAMPLE_LAST_BLOCK(top_v + uv_pos, cur_v + uv_pos, left_over, r_v); \
memcpy(tmp_top, top_y + pos, len - pos); \
if (bottom_y != NULL) memcpy(tmp_bottom, bottom_y + pos, len - pos); \
CONVERT2RGB_32(FUNC, XSTEP, tmp_top, tmp_bottom, tmp_top_dst, \
tmp_bottom_dst, 0); \
memcpy(top_dst + pos * (XSTEP), tmp_top_dst, (len - pos) * (XSTEP)); \
if (bottom_y != NULL) { \
memcpy(bottom_dst + pos * (XSTEP), tmp_bottom_dst, \
(len - pos) * (XSTEP)); \
} \
} \
}
// SSE4 variants of the fancy upsampler.
SSE4_UPSAMPLE_FUNC(UpsampleRgbLinePair_SSE41, VP8YuvToRgb, 3)
SSE4_UPSAMPLE_FUNC(UpsampleBgrLinePair_SSE41, VP8YuvToBgr, 3)
#undef GET_M
#undef PACK_AND_STORE
#undef UPSAMPLE_32PIXELS
#undef UPSAMPLE_LAST_BLOCK
#undef CONVERT2RGB
#undef CONVERT2RGB_32
#undef SSE4_UPSAMPLE_FUNC
#endif // WEBP_REDUCE_CSP
//------------------------------------------------------------------------------
// Entry point
extern WebPUpsampleLinePairFunc WebPUpsamplers[/* MODE_LAST */];
extern void WebPInitUpsamplersSSE41(void);
WEBP_TSAN_IGNORE_FUNCTION void WebPInitUpsamplersSSE41(void) {
#if !defined(WEBP_REDUCE_CSP)
WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePair_SSE41;
WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePair_SSE41;
#endif // WEBP_REDUCE_CSP
}
#endif // FANCY_UPSAMPLING
//------------------------------------------------------------------------------
extern WebPYUV444Converter WebPYUV444Converters[/* MODE_LAST */];
extern void WebPInitYUV444ConvertersSSE41(void);
#define YUV444_FUNC(FUNC_NAME, CALL, CALL_C, XSTEP) \
extern void CALL_C(const uint8_t* y, const uint8_t* u, const uint8_t* v, \
uint8_t* dst, int len); \
static void FUNC_NAME(const uint8_t* y, const uint8_t* u, const uint8_t* v, \
uint8_t* dst, int len) { \
int i; \
const int max_len = len & ~31; \
for (i = 0; i < max_len; i += 32) { \
CALL(y + i, u + i, v + i, dst + i * (XSTEP)); \
} \
if (i < len) { /* C-fallback */ \
CALL_C(y + i, u + i, v + i, dst + i * (XSTEP), len - i); \
} \
}
#if !defined(WEBP_REDUCE_CSP)
YUV444_FUNC(Yuv444ToRgb_SSE41, VP8YuvToRgb32_SSE41, WebPYuv444ToRgb_C, 3);
YUV444_FUNC(Yuv444ToBgr_SSE41, VP8YuvToBgr32_SSE41, WebPYuv444ToBgr_C, 3);
#endif // WEBP_REDUCE_CSP
WEBP_TSAN_IGNORE_FUNCTION void WebPInitYUV444ConvertersSSE41(void) {
#if !defined(WEBP_REDUCE_CSP)
WebPYUV444Converters[MODE_RGB] = Yuv444ToRgb_SSE41;
WebPYUV444Converters[MODE_BGR] = Yuv444ToBgr_SSE41;
#endif // WEBP_REDUCE_CSP
}
#else
WEBP_DSP_INIT_STUB(WebPInitYUV444ConvertersSSE41)
#endif // WEBP_USE_SSE41
#if !(defined(FANCY_UPSAMPLING) && defined(WEBP_USE_SSE41))
WEBP_DSP_INIT_STUB(WebPInitUpsamplersSSE41)
#endif

@ -71,15 +71,11 @@ void WebPSamplerProcessPlane(const uint8_t* y, int y_stride,
WebPSamplerRowFunc WebPSamplers[MODE_LAST];
extern void WebPInitSamplersSSE2(void);
extern void WebPInitSamplersSSE41(void);
extern void WebPInitSamplersMIPS32(void);
extern void WebPInitSamplersMIPSdspR2(void);
static volatile VP8CPUInfo yuv_last_cpuinfo_used =
(VP8CPUInfo)&yuv_last_cpuinfo_used;
WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplers(void) {
if (yuv_last_cpuinfo_used == VP8GetCPUInfo) return;
WEBP_DSP_INIT_FUNC(WebPInitSamplers) {
WebPSamplers[MODE_RGB] = YuvToRgbRow;
WebPSamplers[MODE_RGBA] = YuvToRgbaRow;
WebPSamplers[MODE_BGR] = YuvToBgrRow;
@ -99,6 +95,11 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplers(void) {
WebPInitSamplersSSE2();
}
#endif // WEBP_USE_SSE2
#if defined(WEBP_USE_SSE41)
if (VP8GetCPUInfo(kSSE4_1)) {
WebPInitSamplersSSE41();
}
#endif // WEBP_USE_SSE41
#if defined(WEBP_USE_MIPS32)
if (VP8GetCPUInfo(kMIPS32)) {
WebPInitSamplersMIPS32();
@ -110,7 +111,6 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplers(void) {
}
#endif // WEBP_USE_MIPS_DSP_R2
}
yuv_last_cpuinfo_used = VP8GetCPUInfo;
}
//-----------------------------------------------------------------------------
@ -254,17 +254,13 @@ void (*WebPSharpYUVUpdateRGB)(const int16_t* ref, const int16_t* src,
void (*WebPSharpYUVFilterRow)(const int16_t* A, const int16_t* B, int len,
const uint16_t* best_y, uint16_t* out);
static volatile VP8CPUInfo rgba_to_yuv_last_cpuinfo_used =
(VP8CPUInfo)&rgba_to_yuv_last_cpuinfo_used;
extern void WebPInitConvertARGBToYUVSSE2(void);
extern void WebPInitConvertARGBToYUVSSE41(void);
extern void WebPInitConvertARGBToYUVNEON(void);
extern void WebPInitSharpYUVSSE2(void);
extern void WebPInitSharpYUVNEON(void);
WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUV(void) {
if (rgba_to_yuv_last_cpuinfo_used == VP8GetCPUInfo) return;
WEBP_DSP_INIT_FUNC(WebPInitConvertARGBToYUV) {
WebPConvertARGBToY = ConvertARGBToY_C;
WebPConvertARGBToUV = WebPConvertARGBToUV_C;
@ -286,6 +282,11 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUV(void) {
WebPInitSharpYUVSSE2();
}
#endif // WEBP_USE_SSE2
#if defined(WEBP_USE_SSE41)
if (VP8GetCPUInfo(kSSE4_1)) {
WebPInitConvertARGBToYUVSSE41();
}
#endif // WEBP_USE_SSE41
}
#if defined(WEBP_USE_NEON)
@ -304,6 +305,4 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUV(void) {
assert(WebPSharpYUVUpdateY != NULL);
assert(WebPSharpYUVUpdateRGB != NULL);
assert(WebPSharpYUVFilterRow != NULL);
rgba_to_yuv_last_cpuinfo_used = VP8GetCPUInfo;
}

@ -166,6 +166,19 @@ void VP8YuvToRgb56532_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
#endif // WEBP_USE_SSE2
//-----------------------------------------------------------------------------
// SSE41 extra functions (mostly for upsampling_sse41.c)
#if defined(WEBP_USE_SSE41)
// Process 32 pixels and store the result (16b, 24b or 32b per pixel) in *dst.
void VP8YuvToRgb32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v,
uint8_t* dst);
void VP8YuvToBgr32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v,
uint8_t* dst);
#endif // WEBP_USE_SSE41
//------------------------------------------------------------------------------
// RGB -> YUV conversion

@ -180,7 +180,7 @@ static WEBP_INLINE void PlanarTo24b_SSE2(__m128i* const in0, __m128i* const in1,
// Repeat the same permutations twice more:
// r0r4g0g4 | b0b4r1r5 | g1g5b1b5 | r2r6g2g6 | b2b6r3r7 | g3g7b3b7
// r0g0b0r1 | g1b1r2g2 | b2r3g3b3 | r4g4b4r5 | g5b5r6g6 | b6r7g7b7
VP8PlanarTo24b(in0, in1, in2, in3, in4, in5);
VP8PlanarTo24b_SSE2(in0, in1, in2, in3, in4, in5);
_mm_storeu_si128((__m128i*)(rgb + 0), *in0);
_mm_storeu_si128((__m128i*)(rgb + 16), *in1);
@ -492,7 +492,7 @@ static WEBP_INLINE void RGB32PackedToPlanar_SSE2(const uint32_t* const argb,
__m128i a1 = LOAD_16(argb + 4);
__m128i a2 = LOAD_16(argb + 8);
__m128i a3 = LOAD_16(argb + 12);
VP8L32bToPlanar(&a0, &a1, &a2, &a3);
VP8L32bToPlanar_SSE2(&a0, &a1, &a2, &a3);
rgb[0] = _mm_unpacklo_epi8(a1, zero);
rgb[1] = _mm_unpackhi_epi8(a1, zero);
rgb[2] = _mm_unpacklo_epi8(a2, zero);

@ -0,0 +1,613 @@
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// YUV->RGB conversion functions
//
// Author: Skal (pascal.massimino@gmail.com)
#include "src/dsp/yuv.h"
#if defined(WEBP_USE_SSE41)
#include "src/dsp/common_sse41.h"
#include <stdlib.h>
#include <smmintrin.h>
//-----------------------------------------------------------------------------
// Convert spans of 32 pixels to various RGB formats for the fancy upsampler.
// These constants are 14b fixed-point version of ITU-R BT.601 constants.
// R = (19077 * y + 26149 * v - 14234) >> 6
// G = (19077 * y - 6419 * u - 13320 * v + 8708) >> 6
// B = (19077 * y + 33050 * u - 17685) >> 6
static void ConvertYUV444ToRGB_SSE41(const __m128i* const Y0,
const __m128i* const U0,
const __m128i* const V0,
__m128i* const R,
__m128i* const G,
__m128i* const B) {
const __m128i k19077 = _mm_set1_epi16(19077);
const __m128i k26149 = _mm_set1_epi16(26149);
const __m128i k14234 = _mm_set1_epi16(14234);
// 33050 doesn't fit in a signed short: only use this with unsigned arithmetic
const __m128i k33050 = _mm_set1_epi16((short)33050);
const __m128i k17685 = _mm_set1_epi16(17685);
const __m128i k6419 = _mm_set1_epi16(6419);
const __m128i k13320 = _mm_set1_epi16(13320);
const __m128i k8708 = _mm_set1_epi16(8708);
const __m128i Y1 = _mm_mulhi_epu16(*Y0, k19077);
const __m128i R0 = _mm_mulhi_epu16(*V0, k26149);
const __m128i R1 = _mm_sub_epi16(Y1, k14234);
const __m128i R2 = _mm_add_epi16(R1, R0);
const __m128i G0 = _mm_mulhi_epu16(*U0, k6419);
const __m128i G1 = _mm_mulhi_epu16(*V0, k13320);
const __m128i G2 = _mm_add_epi16(Y1, k8708);
const __m128i G3 = _mm_add_epi16(G0, G1);
const __m128i G4 = _mm_sub_epi16(G2, G3);
// be careful with the saturated *unsigned* arithmetic here!
const __m128i B0 = _mm_mulhi_epu16(*U0, k33050);
const __m128i B1 = _mm_adds_epu16(B0, Y1);
const __m128i B2 = _mm_subs_epu16(B1, k17685);
// use logical shift for B2, which can be larger than 32767
*R = _mm_srai_epi16(R2, 6); // range: [-14234, 30815]
*G = _mm_srai_epi16(G4, 6); // range: [-10953, 27710]
*B = _mm_srli_epi16(B2, 6); // range: [0, 34238]
}
// Load the bytes into the *upper* part of 16b words. That's "<< 8", basically.
static WEBP_INLINE __m128i Load_HI_16_SSE41(const uint8_t* src) {
const __m128i zero = _mm_setzero_si128();
return _mm_unpacklo_epi8(zero, _mm_loadl_epi64((const __m128i*)src));
}
// Load and replicate the U/V samples
static WEBP_INLINE __m128i Load_UV_HI_8_SSE41(const uint8_t* src) {
const __m128i zero = _mm_setzero_si128();
const __m128i tmp0 = _mm_cvtsi32_si128(*(const uint32_t*)src);
const __m128i tmp1 = _mm_unpacklo_epi8(zero, tmp0);
return _mm_unpacklo_epi16(tmp1, tmp1); // replicate samples
}
// Convert 32 samples of YUV444 to R/G/B
static void YUV444ToRGB_SSE41(const uint8_t* const y,
const uint8_t* const u,
const uint8_t* const v,
__m128i* const R, __m128i* const G,
__m128i* const B) {
const __m128i Y0 = Load_HI_16_SSE41(y), U0 = Load_HI_16_SSE41(u),
V0 = Load_HI_16_SSE41(v);
ConvertYUV444ToRGB_SSE41(&Y0, &U0, &V0, R, G, B);
}
// Convert 32 samples of YUV420 to R/G/B
static void YUV420ToRGB_SSE41(const uint8_t* const y,
const uint8_t* const u,
const uint8_t* const v,
__m128i* const R, __m128i* const G,
__m128i* const B) {
const __m128i Y0 = Load_HI_16_SSE41(y), U0 = Load_UV_HI_8_SSE41(u),
V0 = Load_UV_HI_8_SSE41(v);
ConvertYUV444ToRGB_SSE41(&Y0, &U0, &V0, R, G, B);
}
// Pack the planar buffers
// rrrr... rrrr... gggg... gggg... bbbb... bbbb....
// triplet by triplet in the output buffer rgb as rgbrgbrgbrgb ...
static WEBP_INLINE void PlanarTo24b_SSE41(
__m128i* const in0, __m128i* const in1, __m128i* const in2,
__m128i* const in3, __m128i* const in4, __m128i* const in5,
uint8_t* const rgb) {
// The input is 6 registers of sixteen 8b but for the sake of explanation,
// let's take 6 registers of four 8b values.
// To pack, we will keep taking one every two 8b integer and move it
// around as follows:
// Input:
// r0r1r2r3 | r4r5r6r7 | g0g1g2g3 | g4g5g6g7 | b0b1b2b3 | b4b5b6b7
// Split the 6 registers in two sets of 3 registers: the first set as the even
// 8b bytes, the second the odd ones:
// r0r2r4r6 | g0g2g4g6 | b0b2b4b6 | r1r3r5r7 | g1g3g5g7 | b1b3b5b7
// Repeat the same permutations twice more:
// r0r4g0g4 | b0b4r1r5 | g1g5b1b5 | r2r6g2g6 | b2b6r3r7 | g3g7b3b7
// r0g0b0r1 | g1b1r2g2 | b2r3g3b3 | r4g4b4r5 | g5b5r6g6 | b6r7g7b7
VP8PlanarTo24b_SSE41(in0, in1, in2, in3, in4, in5);
_mm_storeu_si128((__m128i*)(rgb + 0), *in0);
_mm_storeu_si128((__m128i*)(rgb + 16), *in1);
_mm_storeu_si128((__m128i*)(rgb + 32), *in2);
_mm_storeu_si128((__m128i*)(rgb + 48), *in3);
_mm_storeu_si128((__m128i*)(rgb + 64), *in4);
_mm_storeu_si128((__m128i*)(rgb + 80), *in5);
}
void VP8YuvToRgb32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v,
uint8_t* dst) {
__m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3;
__m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5;
YUV444ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0);
YUV444ToRGB_SSE41(y + 8, u + 8, v + 8, &R1, &G1, &B1);
YUV444ToRGB_SSE41(y + 16, u + 16, v + 16, &R2, &G2, &B2);
YUV444ToRGB_SSE41(y + 24, u + 24, v + 24, &R3, &G3, &B3);
// Cast to 8b and store as RRRRGGGGBBBB.
rgb0 = _mm_packus_epi16(R0, R1);
rgb1 = _mm_packus_epi16(R2, R3);
rgb2 = _mm_packus_epi16(G0, G1);
rgb3 = _mm_packus_epi16(G2, G3);
rgb4 = _mm_packus_epi16(B0, B1);
rgb5 = _mm_packus_epi16(B2, B3);
// Pack as RGBRGBRGBRGB.
PlanarTo24b_SSE41(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst);
}
void VP8YuvToBgr32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v,
uint8_t* dst) {
__m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3;
__m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5;
YUV444ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0);
YUV444ToRGB_SSE41(y + 8, u + 8, v + 8, &R1, &G1, &B1);
YUV444ToRGB_SSE41(y + 16, u + 16, v + 16, &R2, &G2, &B2);
YUV444ToRGB_SSE41(y + 24, u + 24, v + 24, &R3, &G3, &B3);
// Cast to 8b and store as BBBBGGGGRRRR.
bgr0 = _mm_packus_epi16(B0, B1);
bgr1 = _mm_packus_epi16(B2, B3);
bgr2 = _mm_packus_epi16(G0, G1);
bgr3 = _mm_packus_epi16(G2, G3);
bgr4 = _mm_packus_epi16(R0, R1);
bgr5= _mm_packus_epi16(R2, R3);
// Pack as BGRBGRBGRBGR.
PlanarTo24b_SSE41(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst);
}
//-----------------------------------------------------------------------------
// Arbitrary-length row conversion functions
static void YuvToRgbRow_SSE41(const uint8_t* y,
const uint8_t* u, const uint8_t* v,
uint8_t* dst, int len) {
int n;
for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) {
__m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3;
__m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5;
YUV420ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0);
YUV420ToRGB_SSE41(y + 8, u + 4, v + 4, &R1, &G1, &B1);
YUV420ToRGB_SSE41(y + 16, u + 8, v + 8, &R2, &G2, &B2);
YUV420ToRGB_SSE41(y + 24, u + 12, v + 12, &R3, &G3, &B3);
// Cast to 8b and store as RRRRGGGGBBBB.
rgb0 = _mm_packus_epi16(R0, R1);
rgb1 = _mm_packus_epi16(R2, R3);
rgb2 = _mm_packus_epi16(G0, G1);
rgb3 = _mm_packus_epi16(G2, G3);
rgb4 = _mm_packus_epi16(B0, B1);
rgb5 = _mm_packus_epi16(B2, B3);
// Pack as RGBRGBRGBRGB.
PlanarTo24b_SSE41(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst);
y += 32;
u += 16;
v += 16;
}
for (; n < len; ++n) { // Finish off
VP8YuvToRgb(y[0], u[0], v[0], dst);
dst += 3;
y += 1;
u += (n & 1);
v += (n & 1);
}
}
static void YuvToBgrRow_SSE41(const uint8_t* y,
const uint8_t* u, const uint8_t* v,
uint8_t* dst, int len) {
int n;
for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) {
__m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3;
__m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5;
YUV420ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0);
YUV420ToRGB_SSE41(y + 8, u + 4, v + 4, &R1, &G1, &B1);
YUV420ToRGB_SSE41(y + 16, u + 8, v + 8, &R2, &G2, &B2);
YUV420ToRGB_SSE41(y + 24, u + 12, v + 12, &R3, &G3, &B3);
// Cast to 8b and store as BBBBGGGGRRRR.
bgr0 = _mm_packus_epi16(B0, B1);
bgr1 = _mm_packus_epi16(B2, B3);
bgr2 = _mm_packus_epi16(G0, G1);
bgr3 = _mm_packus_epi16(G2, G3);
bgr4 = _mm_packus_epi16(R0, R1);
bgr5 = _mm_packus_epi16(R2, R3);
// Pack as BGRBGRBGRBGR.
PlanarTo24b_SSE41(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst);
y += 32;
u += 16;
v += 16;
}
for (; n < len; ++n) { // Finish off
VP8YuvToBgr(y[0], u[0], v[0], dst);
dst += 3;
y += 1;
u += (n & 1);
v += (n & 1);
}
}
//------------------------------------------------------------------------------
// Entry point
extern void WebPInitSamplersSSE41(void);
WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplersSSE41(void) {
WebPSamplers[MODE_RGB] = YuvToRgbRow_SSE41;
WebPSamplers[MODE_BGR] = YuvToBgrRow_SSE41;
}
//------------------------------------------------------------------------------
// RGB24/32 -> YUV converters
// Load eight 16b-words from *src.
#define LOAD_16(src) _mm_loadu_si128((const __m128i*)(src))
// Store either 16b-words into *dst
#define STORE_16(V, dst) _mm_storeu_si128((__m128i*)(dst), (V))
#define WEBP_SSE41_SHUFF(OUT) do { \
const __m128i tmp0 = _mm_shuffle_epi8(A0, shuff0); \
const __m128i tmp1 = _mm_shuffle_epi8(A1, shuff1); \
const __m128i tmp2 = _mm_shuffle_epi8(A2, shuff2); \
const __m128i tmp3 = _mm_shuffle_epi8(A3, shuff0); \
const __m128i tmp4 = _mm_shuffle_epi8(A4, shuff1); \
const __m128i tmp5 = _mm_shuffle_epi8(A5, shuff2); \
\
/* OR everything to get one channel */ \
const __m128i tmp6 = _mm_or_si128(tmp0, tmp1); \
const __m128i tmp7 = _mm_or_si128(tmp3, tmp4); \
out[OUT + 0] = _mm_or_si128(tmp6, tmp2); \
out[OUT + 1] = _mm_or_si128(tmp7, tmp5); \
} while (0);
// Unpack the 8b input rgbrgbrgbrgb ... as contiguous registers:
// rrrr... rrrr... gggg... gggg... bbbb... bbbb....
// Similar to PlanarTo24bHelper(), but in reverse order.
static WEBP_INLINE void RGB24PackedToPlanar_SSE41(
const uint8_t* const rgb, __m128i* const out /*out[6]*/) {
const __m128i A0 = _mm_loadu_si128((const __m128i*)(rgb + 0));
const __m128i A1 = _mm_loadu_si128((const __m128i*)(rgb + 16));
const __m128i A2 = _mm_loadu_si128((const __m128i*)(rgb + 32));
const __m128i A3 = _mm_loadu_si128((const __m128i*)(rgb + 48));
const __m128i A4 = _mm_loadu_si128((const __m128i*)(rgb + 64));
const __m128i A5 = _mm_loadu_si128((const __m128i*)(rgb + 80));
// Compute RR.
{
const __m128i shuff0 = _mm_set_epi8(
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 15, 12, 9, 6, 3, 0);
const __m128i shuff1 = _mm_set_epi8(
-1, -1, -1, -1, -1, 14, 11, 8, 5, 2, -1, -1, -1, -1, -1, -1);
const __m128i shuff2 = _mm_set_epi8(
13, 10, 7, 4, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1);
WEBP_SSE41_SHUFF(0)
}
// Compute GG.
{
const __m128i shuff0 = _mm_set_epi8(
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 13, 10, 7, 4, 1);
const __m128i shuff1 = _mm_set_epi8(
-1, -1, -1, -1, -1, 15, 12, 9, 6, 3, 0, -1, -1, -1, -1, -1);
const __m128i shuff2 = _mm_set_epi8(
14, 11, 8, 5, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1);
WEBP_SSE41_SHUFF(2)
}
// Compute BB.
{
const __m128i shuff0 = _mm_set_epi8(
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 14, 11, 8, 5, 2);
const __m128i shuff1 = _mm_set_epi8(
-1, -1, -1, -1, -1, -1, 13, 10, 7, 4, 1, -1, -1, -1, -1, -1);
const __m128i shuff2 = _mm_set_epi8(
15, 12, 9, 6, 3, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1);
WEBP_SSE41_SHUFF(4)
}
}
#undef WEBP_SSE41_SHUFF
// Convert 8 packed ARGB to r[], g[], b[]
static WEBP_INLINE void RGB32PackedToPlanar_SSE41(
const uint32_t* const argb, __m128i* const rgb /*in[6]*/) {
const __m128i zero = _mm_setzero_si128();
__m128i a0 = LOAD_16(argb + 0);
__m128i a1 = LOAD_16(argb + 4);
__m128i a2 = LOAD_16(argb + 8);
__m128i a3 = LOAD_16(argb + 12);
VP8L32bToPlanar_SSE41(&a0, &a1, &a2, &a3);
rgb[0] = _mm_unpacklo_epi8(a1, zero);
rgb[1] = _mm_unpackhi_epi8(a1, zero);
rgb[2] = _mm_unpacklo_epi8(a2, zero);
rgb[3] = _mm_unpackhi_epi8(a2, zero);
rgb[4] = _mm_unpacklo_epi8(a3, zero);
rgb[5] = _mm_unpackhi_epi8(a3, zero);
}
// This macro computes (RG * MULT_RG + GB * MULT_GB + ROUNDER) >> DESCALE_FIX
// It's a macro and not a function because we need to use immediate values with
// srai_epi32, e.g.
#define TRANSFORM(RG_LO, RG_HI, GB_LO, GB_HI, MULT_RG, MULT_GB, \
ROUNDER, DESCALE_FIX, OUT) do { \
const __m128i V0_lo = _mm_madd_epi16(RG_LO, MULT_RG); \
const __m128i V0_hi = _mm_madd_epi16(RG_HI, MULT_RG); \
const __m128i V1_lo = _mm_madd_epi16(GB_LO, MULT_GB); \
const __m128i V1_hi = _mm_madd_epi16(GB_HI, MULT_GB); \
const __m128i V2_lo = _mm_add_epi32(V0_lo, V1_lo); \
const __m128i V2_hi = _mm_add_epi32(V0_hi, V1_hi); \
const __m128i V3_lo = _mm_add_epi32(V2_lo, ROUNDER); \
const __m128i V3_hi = _mm_add_epi32(V2_hi, ROUNDER); \
const __m128i V5_lo = _mm_srai_epi32(V3_lo, DESCALE_FIX); \
const __m128i V5_hi = _mm_srai_epi32(V3_hi, DESCALE_FIX); \
(OUT) = _mm_packs_epi32(V5_lo, V5_hi); \
} while (0)
#define MK_CST_16(A, B) _mm_set_epi16((B), (A), (B), (A), (B), (A), (B), (A))
static WEBP_INLINE void ConvertRGBToY_SSE41(const __m128i* const R,
const __m128i* const G,
const __m128i* const B,
__m128i* const Y) {
const __m128i kRG_y = MK_CST_16(16839, 33059 - 16384);
const __m128i kGB_y = MK_CST_16(16384, 6420);
const __m128i kHALF_Y = _mm_set1_epi32((16 << YUV_FIX) + YUV_HALF);
const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G);
const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G);
const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B);
const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B);
TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_y, kGB_y, kHALF_Y, YUV_FIX, *Y);
}
static WEBP_INLINE void ConvertRGBToUV_SSE41(const __m128i* const R,
const __m128i* const G,
const __m128i* const B,
__m128i* const U,
__m128i* const V) {
const __m128i kRG_u = MK_CST_16(-9719, -19081);
const __m128i kGB_u = MK_CST_16(0, 28800);
const __m128i kRG_v = MK_CST_16(28800, 0);
const __m128i kGB_v = MK_CST_16(-24116, -4684);
const __m128i kHALF_UV = _mm_set1_epi32(((128 << YUV_FIX) + YUV_HALF) << 2);
const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G);
const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G);
const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B);
const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B);
TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_u, kGB_u,
kHALF_UV, YUV_FIX + 2, *U);
TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_v, kGB_v,
kHALF_UV, YUV_FIX + 2, *V);
}
#undef MK_CST_16
#undef TRANSFORM
static void ConvertRGB24ToY_SSE41(const uint8_t* rgb, uint8_t* y, int width) {
const int max_width = width & ~31;
int i;
for (i = 0; i < max_width; rgb += 3 * 16 * 2) {
__m128i rgb_plane[6];
int j;
RGB24PackedToPlanar_SSE41(rgb, rgb_plane);
for (j = 0; j < 2; ++j, i += 16) {
const __m128i zero = _mm_setzero_si128();
__m128i r, g, b, Y0, Y1;
// Convert to 16-bit Y.
r = _mm_unpacklo_epi8(rgb_plane[0 + j], zero);
g = _mm_unpacklo_epi8(rgb_plane[2 + j], zero);
b = _mm_unpacklo_epi8(rgb_plane[4 + j], zero);
ConvertRGBToY_SSE41(&r, &g, &b, &Y0);
// Convert to 16-bit Y.
r = _mm_unpackhi_epi8(rgb_plane[0 + j], zero);
g = _mm_unpackhi_epi8(rgb_plane[2 + j], zero);
b = _mm_unpackhi_epi8(rgb_plane[4 + j], zero);
ConvertRGBToY_SSE41(&r, &g, &b, &Y1);
// Cast to 8-bit and store.
STORE_16(_mm_packus_epi16(Y0, Y1), y + i);
}
}
for (; i < width; ++i, rgb += 3) { // left-over
y[i] = VP8RGBToY(rgb[0], rgb[1], rgb[2], YUV_HALF);
}
}
static void ConvertBGR24ToY_SSE41(const uint8_t* bgr, uint8_t* y, int width) {
const int max_width = width & ~31;
int i;
for (i = 0; i < max_width; bgr += 3 * 16 * 2) {
__m128i bgr_plane[6];
int j;
RGB24PackedToPlanar_SSE41(bgr, bgr_plane);
for (j = 0; j < 2; ++j, i += 16) {
const __m128i zero = _mm_setzero_si128();
__m128i r, g, b, Y0, Y1;
// Convert to 16-bit Y.
b = _mm_unpacklo_epi8(bgr_plane[0 + j], zero);
g = _mm_unpacklo_epi8(bgr_plane[2 + j], zero);
r = _mm_unpacklo_epi8(bgr_plane[4 + j], zero);
ConvertRGBToY_SSE41(&r, &g, &b, &Y0);
// Convert to 16-bit Y.
b = _mm_unpackhi_epi8(bgr_plane[0 + j], zero);
g = _mm_unpackhi_epi8(bgr_plane[2 + j], zero);
r = _mm_unpackhi_epi8(bgr_plane[4 + j], zero);
ConvertRGBToY_SSE41(&r, &g, &b, &Y1);
// Cast to 8-bit and store.
STORE_16(_mm_packus_epi16(Y0, Y1), y + i);
}
}
for (; i < width; ++i, bgr += 3) { // left-over
y[i] = VP8RGBToY(bgr[2], bgr[1], bgr[0], YUV_HALF);
}
}
static void ConvertARGBToY_SSE41(const uint32_t* argb, uint8_t* y, int width) {
const int max_width = width & ~15;
int i;
for (i = 0; i < max_width; i += 16) {
__m128i Y0, Y1, rgb[6];
RGB32PackedToPlanar_SSE41(&argb[i], rgb);
ConvertRGBToY_SSE41(&rgb[0], &rgb[2], &rgb[4], &Y0);
ConvertRGBToY_SSE41(&rgb[1], &rgb[3], &rgb[5], &Y1);
STORE_16(_mm_packus_epi16(Y0, Y1), y + i);
}
for (; i < width; ++i) { // left-over
const uint32_t p = argb[i];
y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff,
YUV_HALF);
}
}
// Horizontal add (doubled) of two 16b values, result is 16b.
// in: A | B | C | D | ... -> out: 2*(A+B) | 2*(C+D) | ...
static void HorizontalAddPack_SSE41(const __m128i* const A,
const __m128i* const B,
__m128i* const out) {
const __m128i k2 = _mm_set1_epi16(2);
const __m128i C = _mm_madd_epi16(*A, k2);
const __m128i D = _mm_madd_epi16(*B, k2);
*out = _mm_packs_epi32(C, D);
}
static void ConvertARGBToUV_SSE41(const uint32_t* argb,
uint8_t* u, uint8_t* v,
int src_width, int do_store) {
const int max_width = src_width & ~31;
int i;
for (i = 0; i < max_width; i += 32, u += 16, v += 16) {
__m128i rgb[6], U0, V0, U1, V1;
RGB32PackedToPlanar_SSE41(&argb[i], rgb);
HorizontalAddPack_SSE41(&rgb[0], &rgb[1], &rgb[0]);
HorizontalAddPack_SSE41(&rgb[2], &rgb[3], &rgb[2]);
HorizontalAddPack_SSE41(&rgb[4], &rgb[5], &rgb[4]);
ConvertRGBToUV_SSE41(&rgb[0], &rgb[2], &rgb[4], &U0, &V0);
RGB32PackedToPlanar_SSE41(&argb[i + 16], rgb);
HorizontalAddPack_SSE41(&rgb[0], &rgb[1], &rgb[0]);
HorizontalAddPack_SSE41(&rgb[2], &rgb[3], &rgb[2]);
HorizontalAddPack_SSE41(&rgb[4], &rgb[5], &rgb[4]);
ConvertRGBToUV_SSE41(&rgb[0], &rgb[2], &rgb[4], &U1, &V1);
U0 = _mm_packus_epi16(U0, U1);
V0 = _mm_packus_epi16(V0, V1);
if (!do_store) {
const __m128i prev_u = LOAD_16(u);
const __m128i prev_v = LOAD_16(v);
U0 = _mm_avg_epu8(U0, prev_u);
V0 = _mm_avg_epu8(V0, prev_v);
}
STORE_16(U0, u);
STORE_16(V0, v);
}
if (i < src_width) { // left-over
WebPConvertARGBToUV_C(argb + i, u, v, src_width - i, do_store);
}
}
// Convert 16 packed ARGB 16b-values to r[], g[], b[]
static WEBP_INLINE void RGBA32PackedToPlanar_16b_SSE41(
const uint16_t* const rgbx,
__m128i* const r, __m128i* const g, __m128i* const b) {
const __m128i in0 = LOAD_16(rgbx + 0); // r0 | g0 | b0 |x| r1 | g1 | b1 |x
const __m128i in1 = LOAD_16(rgbx + 8); // r2 | g2 | b2 |x| r3 | g3 | b3 |x
const __m128i in2 = LOAD_16(rgbx + 16); // r4 | ...
const __m128i in3 = LOAD_16(rgbx + 24); // r6 | ...
// aarrggbb as 16-bit.
const __m128i shuff0 =
_mm_set_epi8(-1, -1, -1, -1, 13, 12, 5, 4, 11, 10, 3, 2, 9, 8, 1, 0);
const __m128i shuff1 =
_mm_set_epi8(13, 12, 5, 4, -1, -1, -1, -1, 11, 10, 3, 2, 9, 8, 1, 0);
const __m128i A0 = _mm_shuffle_epi8(in0, shuff0);
const __m128i A1 = _mm_shuffle_epi8(in1, shuff1);
const __m128i A2 = _mm_shuffle_epi8(in2, shuff0);
const __m128i A3 = _mm_shuffle_epi8(in3, shuff1);
// R0R1G0G1
// B0B1****
// R2R3G2G3
// B2B3****
// (OR is used to free port 5 for the unpack)
const __m128i B0 = _mm_unpacklo_epi32(A0, A1);
const __m128i B1 = _mm_or_si128(A0, A1);
const __m128i B2 = _mm_unpacklo_epi32(A2, A3);
const __m128i B3 = _mm_or_si128(A2, A3);
// Gather the channels.
*r = _mm_unpacklo_epi64(B0, B2);
*g = _mm_unpackhi_epi64(B0, B2);
*b = _mm_unpackhi_epi64(B1, B3);
}
static void ConvertRGBA32ToUV_SSE41(const uint16_t* rgb,
uint8_t* u, uint8_t* v, int width) {
const int max_width = width & ~15;
const uint16_t* const last_rgb = rgb + 4 * max_width;
while (rgb < last_rgb) {
__m128i r, g, b, U0, V0, U1, V1;
RGBA32PackedToPlanar_16b_SSE41(rgb + 0, &r, &g, &b);
ConvertRGBToUV_SSE41(&r, &g, &b, &U0, &V0);
RGBA32PackedToPlanar_16b_SSE41(rgb + 32, &r, &g, &b);
ConvertRGBToUV_SSE41(&r, &g, &b, &U1, &V1);
STORE_16(_mm_packus_epi16(U0, U1), u);
STORE_16(_mm_packus_epi16(V0, V1), v);
u += 16;
v += 16;
rgb += 2 * 32;
}
if (max_width < width) { // left-over
WebPConvertRGBA32ToUV_C(rgb, u, v, width - max_width);
}
}
//------------------------------------------------------------------------------
extern void WebPInitConvertARGBToYUVSSE41(void);
WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUVSSE41(void) {
WebPConvertARGBToY = ConvertARGBToY_SSE41;
WebPConvertARGBToUV = ConvertARGBToUV_SSE41;
WebPConvertRGB24ToY = ConvertRGB24ToY_SSE41;
WebPConvertBGR24ToY = ConvertBGR24ToY_SSE41;
WebPConvertRGBA32ToUV = ConvertRGBA32ToUV_SSE41;
}
//------------------------------------------------------------------------------
#else // !WEBP_USE_SSE41
WEBP_DSP_INIT_STUB(WebPInitSamplersSSE41)
WEBP_DSP_INIT_STUB(WebPInitConvertARGBToYUVSSE41)
#endif // WEBP_USE_SSE41

@ -361,7 +361,8 @@ static int EncodeAlpha(VP8Encoder* const enc,
//------------------------------------------------------------------------------
// Main calls
static int CompressAlphaJob(VP8Encoder* const enc, void* dummy) {
static int CompressAlphaJob(void* arg1, void* dummy) {
VP8Encoder* const enc = (VP8Encoder*)arg1;
const WebPConfig* config = enc->config_;
uint8_t* alpha_data = NULL;
size_t alpha_size = 0;
@ -394,7 +395,7 @@ void VP8EncInitAlpha(VP8Encoder* const enc) {
WebPGetWorkerInterface()->Init(worker);
worker->data1 = enc;
worker->data2 = NULL;
worker->hook = (WebPWorkerHook)CompressAlphaJob;
worker->hook = CompressAlphaJob;
}
}

@ -434,7 +434,9 @@ typedef struct {
} SegmentJob;
// main work call
static int DoSegmentsJob(SegmentJob* const job, VP8EncIterator* const it) {
static int DoSegmentsJob(void* arg1, void* arg2) {
SegmentJob* const job = (SegmentJob*)arg1;
VP8EncIterator* const it = (VP8EncIterator*)arg2;
int ok = 1;
if (!VP8IteratorIsDone(it)) {
uint8_t tmp[32 + WEBP_ALIGN_CST];
@ -462,7 +464,7 @@ static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
WebPGetWorkerInterface()->Init(&job->worker);
job->worker.data1 = job;
job->worker.data2 = &job->it;
job->worker.hook = (WebPWorkerHook)DoSegmentsJob;
job->worker.hook = DoSegmentsJob;
VP8IteratorInit(enc, &job->it);
VP8IteratorSetRow(&job->it, start_row);
VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);

@ -1,455 +0,0 @@
// Copyright 2015 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Author: Mislav Bradac (mislavm@google.com)
//
#include "src/enc/delta_palettization_enc.h"
#ifdef WEBP_EXPERIMENTAL_FEATURES
#include "src/webp/types.h"
#include "src/dsp/lossless.h"
#define MK_COL(r, g, b) (((r) << 16) + ((g) << 8) + (b))
// Format allows palette up to 256 entries, but more palette entries produce
// bigger entropy. In the future it will probably be useful to add more entries
// that are far from the origin of the palette or choose remaining entries
// dynamically.
#define DELTA_PALETTE_SIZE 226
// Palette used for delta_palettization. Entries are roughly sorted by distance
// of their signed equivalents from the origin.
static const uint32_t kDeltaPalette[DELTA_PALETTE_SIZE] = {
MK_COL(0u, 0u, 0u),
MK_COL(255u, 255u, 255u),
MK_COL(1u, 1u, 1u),
MK_COL(254u, 254u, 254u),
MK_COL(2u, 2u, 2u),
MK_COL(4u, 4u, 4u),
MK_COL(252u, 252u, 252u),
MK_COL(250u, 0u, 0u),
MK_COL(0u, 250u, 0u),
MK_COL(0u, 0u, 250u),
MK_COL(6u, 0u, 0u),
MK_COL(0u, 6u, 0u),
MK_COL(0u, 0u, 6u),
MK_COL(0u, 0u, 248u),
MK_COL(0u, 0u, 8u),
MK_COL(0u, 248u, 0u),
MK_COL(0u, 248u, 248u),
MK_COL(0u, 248u, 8u),
MK_COL(0u, 8u, 0u),
MK_COL(0u, 8u, 248u),
MK_COL(0u, 8u, 8u),
MK_COL(8u, 8u, 8u),
MK_COL(248u, 0u, 0u),
MK_COL(248u, 0u, 248u),
MK_COL(248u, 0u, 8u),
MK_COL(248u, 248u, 0u),
MK_COL(248u, 8u, 0u),
MK_COL(8u, 0u, 0u),
MK_COL(8u, 0u, 248u),
MK_COL(8u, 0u, 8u),
MK_COL(8u, 248u, 0u),
MK_COL(8u, 8u, 0u),
MK_COL(23u, 23u, 23u),
MK_COL(13u, 13u, 13u),
MK_COL(232u, 232u, 232u),
MK_COL(244u, 244u, 244u),
MK_COL(245u, 245u, 250u),
MK_COL(50u, 50u, 50u),
MK_COL(204u, 204u, 204u),
MK_COL(236u, 236u, 236u),
MK_COL(16u, 16u, 16u),
MK_COL(240u, 16u, 16u),
MK_COL(16u, 240u, 16u),
MK_COL(240u, 240u, 16u),
MK_COL(16u, 16u, 240u),
MK_COL(240u, 16u, 240u),
MK_COL(16u, 240u, 240u),
MK_COL(240u, 240u, 240u),
MK_COL(0u, 0u, 232u),
MK_COL(0u, 232u, 0u),
MK_COL(232u, 0u, 0u),
MK_COL(0u, 0u, 24u),
MK_COL(0u, 24u, 0u),
MK_COL(24u, 0u, 0u),
MK_COL(32u, 32u, 32u),
MK_COL(224u, 32u, 32u),
MK_COL(32u, 224u, 32u),
MK_COL(224u, 224u, 32u),
MK_COL(32u, 32u, 224u),
MK_COL(224u, 32u, 224u),
MK_COL(32u, 224u, 224u),
MK_COL(224u, 224u, 224u),
MK_COL(0u, 0u, 176u),
MK_COL(0u, 0u, 80u),
MK_COL(0u, 176u, 0u),
MK_COL(0u, 176u, 176u),
MK_COL(0u, 176u, 80u),
MK_COL(0u, 80u, 0u),
MK_COL(0u, 80u, 176u),
MK_COL(0u, 80u, 80u),
MK_COL(176u, 0u, 0u),
MK_COL(176u, 0u, 176u),
MK_COL(176u, 0u, 80u),
MK_COL(176u, 176u, 0u),
MK_COL(176u, 80u, 0u),
MK_COL(80u, 0u, 0u),
MK_COL(80u, 0u, 176u),
MK_COL(80u, 0u, 80u),
MK_COL(80u, 176u, 0u),
MK_COL(80u, 80u, 0u),
MK_COL(0u, 0u, 152u),
MK_COL(0u, 0u, 104u),
MK_COL(0u, 152u, 0u),
MK_COL(0u, 152u, 152u),
MK_COL(0u, 152u, 104u),
MK_COL(0u, 104u, 0u),
MK_COL(0u, 104u, 152u),
MK_COL(0u, 104u, 104u),
MK_COL(152u, 0u, 0u),
MK_COL(152u, 0u, 152u),
MK_COL(152u, 0u, 104u),
MK_COL(152u, 152u, 0u),
MK_COL(152u, 104u, 0u),
MK_COL(104u, 0u, 0u),
MK_COL(104u, 0u, 152u),
MK_COL(104u, 0u, 104u),
MK_COL(104u, 152u, 0u),
MK_COL(104u, 104u, 0u),
MK_COL(216u, 216u, 216u),
MK_COL(216u, 216u, 40u),
MK_COL(216u, 216u, 176u),
MK_COL(216u, 216u, 80u),
MK_COL(216u, 40u, 216u),
MK_COL(216u, 40u, 40u),
MK_COL(216u, 40u, 176u),
MK_COL(216u, 40u, 80u),
MK_COL(216u, 176u, 216u),
MK_COL(216u, 176u, 40u),
MK_COL(216u, 176u, 176u),
MK_COL(216u, 176u, 80u),
MK_COL(216u, 80u, 216u),
MK_COL(216u, 80u, 40u),
MK_COL(216u, 80u, 176u),
MK_COL(216u, 80u, 80u),
MK_COL(40u, 216u, 216u),
MK_COL(40u, 216u, 40u),
MK_COL(40u, 216u, 176u),
MK_COL(40u, 216u, 80u),
MK_COL(40u, 40u, 216u),
MK_COL(40u, 40u, 40u),
MK_COL(40u, 40u, 176u),
MK_COL(40u, 40u, 80u),
MK_COL(40u, 176u, 216u),
MK_COL(40u, 176u, 40u),
MK_COL(40u, 176u, 176u),
MK_COL(40u, 176u, 80u),
MK_COL(40u, 80u, 216u),
MK_COL(40u, 80u, 40u),
MK_COL(40u, 80u, 176u),
MK_COL(40u, 80u, 80u),
MK_COL(80u, 216u, 216u),
MK_COL(80u, 216u, 40u),
MK_COL(80u, 216u, 176u),
MK_COL(80u, 216u, 80u),
MK_COL(80u, 40u, 216u),
MK_COL(80u, 40u, 40u),
MK_COL(80u, 40u, 176u),
MK_COL(80u, 40u, 80u),
MK_COL(80u, 176u, 216u),
MK_COL(80u, 176u, 40u),
MK_COL(80u, 176u, 176u),
MK_COL(80u, 176u, 80u),
MK_COL(80u, 80u, 216u),
MK_COL(80u, 80u, 40u),
MK_COL(80u, 80u, 176u),
MK_COL(80u, 80u, 80u),
MK_COL(0u, 0u, 192u),
MK_COL(0u, 0u, 64u),
MK_COL(0u, 0u, 128u),
MK_COL(0u, 192u, 0u),
MK_COL(0u, 192u, 192u),
MK_COL(0u, 192u, 64u),
MK_COL(0u, 192u, 128u),
MK_COL(0u, 64u, 0u),
MK_COL(0u, 64u, 192u),
MK_COL(0u, 64u, 64u),
MK_COL(0u, 64u, 128u),
MK_COL(0u, 128u, 0u),
MK_COL(0u, 128u, 192u),
MK_COL(0u, 128u, 64u),
MK_COL(0u, 128u, 128u),
MK_COL(176u, 216u, 216u),
MK_COL(176u, 216u, 40u),
MK_COL(176u, 216u, 176u),
MK_COL(176u, 216u, 80u),
MK_COL(176u, 40u, 216u),
MK_COL(176u, 40u, 40u),
MK_COL(176u, 40u, 176u),
MK_COL(176u, 40u, 80u),
MK_COL(176u, 176u, 216u),
MK_COL(176u, 176u, 40u),
MK_COL(176u, 176u, 176u),
MK_COL(176u, 176u, 80u),
MK_COL(176u, 80u, 216u),
MK_COL(176u, 80u, 40u),
MK_COL(176u, 80u, 176u),
MK_COL(176u, 80u, 80u),
MK_COL(192u, 0u, 0u),
MK_COL(192u, 0u, 192u),
MK_COL(192u, 0u, 64u),
MK_COL(192u, 0u, 128u),
MK_COL(192u, 192u, 0u),
MK_COL(192u, 192u, 192u),
MK_COL(192u, 192u, 64u),
MK_COL(192u, 192u, 128u),
MK_COL(192u, 64u, 0u),
MK_COL(192u, 64u, 192u),
MK_COL(192u, 64u, 64u),
MK_COL(192u, 64u, 128u),
MK_COL(192u, 128u, 0u),
MK_COL(192u, 128u, 192u),
MK_COL(192u, 128u, 64u),
MK_COL(192u, 128u, 128u),
MK_COL(64u, 0u, 0u),
MK_COL(64u, 0u, 192u),
MK_COL(64u, 0u, 64u),
MK_COL(64u, 0u, 128u),
MK_COL(64u, 192u, 0u),
MK_COL(64u, 192u, 192u),
MK_COL(64u, 192u, 64u),
MK_COL(64u, 192u, 128u),
MK_COL(64u, 64u, 0u),
MK_COL(64u, 64u, 192u),
MK_COL(64u, 64u, 64u),
MK_COL(64u, 64u, 128u),
MK_COL(64u, 128u, 0u),
MK_COL(64u, 128u, 192u),
MK_COL(64u, 128u, 64u),
MK_COL(64u, 128u, 128u),
MK_COL(128u, 0u, 0u),
MK_COL(128u, 0u, 192u),
MK_COL(128u, 0u, 64u),
MK_COL(128u, 0u, 128u),
MK_COL(128u, 192u, 0u),
MK_COL(128u, 192u, 192u),
MK_COL(128u, 192u, 64u),
MK_COL(128u, 192u, 128u),
MK_COL(128u, 64u, 0u),
MK_COL(128u, 64u, 192u),
MK_COL(128u, 64u, 64u),
MK_COL(128u, 64u, 128u),
MK_COL(128u, 128u, 0u),
MK_COL(128u, 128u, 192u),
MK_COL(128u, 128u, 64u),
MK_COL(128u, 128u, 128u),
};
#undef MK_COL
//------------------------------------------------------------------------------
// TODO(skal): move the functions to dsp/lossless.c when the correct
// granularity is found. For now, we'll just copy-paste some useful bits
// here instead.
// In-place sum of each component with mod 256.
static WEBP_INLINE void AddPixelsEq(uint32_t* a, uint32_t b) {
const uint32_t alpha_and_green = (*a & 0xff00ff00u) + (b & 0xff00ff00u);
const uint32_t red_and_blue = (*a & 0x00ff00ffu) + (b & 0x00ff00ffu);
*a = (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu);
}
static WEBP_INLINE uint32_t Clip255(uint32_t a) {
if (a < 256) {
return a;
}
// return 0, when a is a negative integer.
// return 255, when a is positive.
return ~a >> 24;
}
// Delta palettization functions.
static WEBP_INLINE int Square(int x) {
return x * x;
}
static WEBP_INLINE uint32_t Intensity(uint32_t a) {
return
30 * ((a >> 16) & 0xff) +
59 * ((a >> 8) & 0xff) +
11 * ((a >> 0) & 0xff);
}
static uint32_t CalcDist(uint32_t predicted_value, uint32_t actual_value,
uint32_t palette_entry) {
int i;
uint32_t distance = 0;
AddPixelsEq(&predicted_value, palette_entry);
for (i = 0; i < 32; i += 8) {
const int32_t av = (actual_value >> i) & 0xff;
const int32_t pv = (predicted_value >> i) & 0xff;
distance += Square(pv - av);
}
// We sum square of intensity difference with factor 10, but because Intensity
// returns 100 times real intensity we need to multiply differences of colors
// by 1000.
distance *= 1000u;
distance += Square(Intensity(predicted_value)
- Intensity(actual_value));
return distance;
}
static uint32_t Predict(int x, int y, uint32_t* image) {
const uint32_t t = (y == 0) ? ARGB_BLACK : image[x];
const uint32_t l = (x == 0) ? ARGB_BLACK : image[x - 1];
const uint32_t p =
(((((t >> 24) & 0xff) + ((l >> 24) & 0xff)) / 2) << 24) +
(((((t >> 16) & 0xff) + ((l >> 16) & 0xff)) / 2) << 16) +
(((((t >> 8) & 0xff) + ((l >> 8) & 0xff)) / 2) << 8) +
(((((t >> 0) & 0xff) + ((l >> 0) & 0xff)) / 2) << 0);
if (x == 0 && y == 0) return ARGB_BLACK;
if (x == 0) return t;
if (y == 0) return l;
return p;
}
static WEBP_INLINE int AddSubtractComponentFullWithCoefficient(
int a, int b, int c) {
return Clip255(a + ((b - c) >> 2));
}
static WEBP_INLINE uint32_t ClampedAddSubtractFullWithCoefficient(
uint32_t c0, uint32_t c1, uint32_t c2) {
const int a = AddSubtractComponentFullWithCoefficient(
c0 >> 24, c1 >> 24, c2 >> 24);
const int r = AddSubtractComponentFullWithCoefficient((c0 >> 16) & 0xff,
(c1 >> 16) & 0xff,
(c2 >> 16) & 0xff);
const int g = AddSubtractComponentFullWithCoefficient((c0 >> 8) & 0xff,
(c1 >> 8) & 0xff,
(c2 >> 8) & 0xff);
const int b = AddSubtractComponentFullWithCoefficient(
c0 & 0xff, c1 & 0xff, c2 & 0xff);
return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
}
//------------------------------------------------------------------------------
// Find palette entry with minimum error from difference of actual pixel value
// and predicted pixel value. Propagate error of pixel to its top and left pixel
// in src array. Write predicted_value + palette_entry to new_image. Return
// index of best palette entry.
static int FindBestPaletteEntry(uint32_t src, uint32_t predicted_value,
const uint32_t palette[], int palette_size) {
int i;
int idx = 0;
uint32_t best_distance = CalcDist(predicted_value, src, palette[0]);
for (i = 1; i < palette_size; ++i) {
const uint32_t distance = CalcDist(predicted_value, src, palette[i]);
if (distance < best_distance) {
best_distance = distance;
idx = i;
}
}
return idx;
}
static void ApplyBestPaletteEntry(int x, int y,
uint32_t new_value, uint32_t palette_value,
uint32_t* src, int src_stride,
uint32_t* new_image) {
AddPixelsEq(&new_value, palette_value);
if (x > 0) {
src[x - 1] = ClampedAddSubtractFullWithCoefficient(src[x - 1],
new_value, src[x]);
}
if (y > 0) {
src[x - src_stride] =
ClampedAddSubtractFullWithCoefficient(src[x - src_stride],
new_value, src[x]);
}
new_image[x] = new_value;
}
//------------------------------------------------------------------------------
// Main entry point
static WebPEncodingError ApplyDeltaPalette(uint32_t* src, uint32_t* dst,
uint32_t src_stride,
uint32_t dst_stride,
const uint32_t* palette,
int palette_size,
int width, int height,
int num_passes) {
int x, y;
WebPEncodingError err = VP8_ENC_OK;
uint32_t* new_image = (uint32_t*)WebPSafeMalloc(width, sizeof(*new_image));
uint8_t* const tmp_row = (uint8_t*)WebPSafeMalloc(width, sizeof(*tmp_row));
if (new_image == NULL || tmp_row == NULL) {
err = VP8_ENC_ERROR_OUT_OF_MEMORY;
goto Error;
}
while (num_passes--) {
uint32_t* cur_src = src;
uint32_t* cur_dst = dst;
for (y = 0; y < height; ++y) {
for (x = 0; x < width; ++x) {
const uint32_t predicted_value = Predict(x, y, new_image);
tmp_row[x] = FindBestPaletteEntry(cur_src[x], predicted_value,
palette, palette_size);
ApplyBestPaletteEntry(x, y, predicted_value, palette[tmp_row[x]],
cur_src, src_stride, new_image);
}
for (x = 0; x < width; ++x) {
cur_dst[x] = palette[tmp_row[x]];
}
cur_src += src_stride;
cur_dst += dst_stride;
}
}
Error:
WebPSafeFree(new_image);
WebPSafeFree(tmp_row);
return err;
}
// replaces enc->argb_ by a palettizable approximation of it,
// and generates optimal enc->palette_[]
WebPEncodingError WebPSearchOptimalDeltaPalette(VP8LEncoder* const enc) {
const WebPPicture* const pic = enc->pic_;
uint32_t* src = pic->argb;
uint32_t* dst = enc->argb_;
const int width = pic->width;
const int height = pic->height;
WebPEncodingError err = VP8_ENC_OK;
memcpy(enc->palette_, kDeltaPalette, sizeof(kDeltaPalette));
enc->palette_[DELTA_PALETTE_SIZE - 1] = src[0] - 0xff000000u;
enc->palette_size_ = DELTA_PALETTE_SIZE;
err = ApplyDeltaPalette(src, dst, pic->argb_stride, enc->current_width_,
enc->palette_, enc->palette_size_,
width, height, 2);
if (err != VP8_ENC_OK) goto Error;
Error:
return err;
}
#else // !WEBP_EXPERIMENTAL_FEATURES
WebPEncodingError WebPSearchOptimalDeltaPalette(VP8LEncoder* const enc) {
(void)enc;
return VP8_ENC_ERROR_INVALID_CONFIGURATION;
}
#endif // WEBP_EXPERIMENTAL_FEATURES

@ -1,25 +0,0 @@
// Copyright 2015 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Author: Mislav Bradac (mislavm@google.com)
//
#ifndef WEBP_ENC_DELTA_PALETTIZATION_ENC_H_
#define WEBP_ENC_DELTA_PALETTIZATION_ENC_H_
#include "src/webp/encode.h"
#include "src/enc/vp8li_enc.h"
// Replaces enc->argb_[] input by a palettizable approximation of it,
// and generates optimal enc->palette_[].
// This function can revert enc->use_palette_ / enc->use_predict_ flag
// if delta-palettization is not producing expected saving.
WebPEncodingError WebPSearchOptimalDeltaPalette(VP8LEncoder* const enc);
#endif // WEBP_ENC_DELTA_PALETTIZATION_ENC_H_

@ -198,7 +198,7 @@ static void SetSegmentProbas(VP8Encoder* const enc) {
for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
const VP8MBInfo* const mb = &enc->mb_info_[n];
p[mb->segment_]++;
++p[mb->segment_];
}
#if !defined(WEBP_DISABLE_STATS)
if (enc->pic_->stats != NULL) {
@ -520,6 +520,14 @@ static void StoreSideInfo(const VP8EncIterator* const it) {
#endif
}
static void ResetSideInfo(const VP8EncIterator* const it) {
VP8Encoder* const enc = it->enc_;
WebPPicture* const pic = enc->pic_;
if (pic->stats != NULL) {
memset(enc->block_count_, 0, sizeof(enc->block_count_));
}
ResetSSE(enc);
}
#else // defined(WEBP_DISABLE_STATS)
static void ResetSSE(VP8Encoder* const enc) {
(void)enc;
@ -528,10 +536,16 @@ static void StoreSideInfo(const VP8EncIterator* const it) {
VP8Encoder* const enc = it->enc_;
WebPPicture* const pic = enc->pic_;
if (pic->extra_info != NULL) {
memset(pic->extra_info, 0,
enc->mb_w_ * enc->mb_h_ * sizeof(*pic->extra_info));
if (it->x_ == 0 && it->y_ == 0) { // only do it once, at start
memset(pic->extra_info, 0,
enc->mb_w_ * enc->mb_h_ * sizeof(*pic->extra_info));
}
}
}
static void ResetSideInfo(const VP8EncIterator* const it) {
(void)it;
}
#endif // !defined(WEBP_DISABLE_STATS)
static double GetPSNR(uint64_t mse, uint64_t size) {
@ -570,7 +584,7 @@ static uint64_t OneStatPass(VP8Encoder* const enc, VP8RDLevel rd_opt,
VP8IteratorImport(&it, NULL);
if (VP8Decimate(&it, &info, rd_opt)) {
// Just record the number of skips and act like skip_proba is not used.
enc->proba_.nb_skip_++;
++enc->proba_.nb_skip_;
}
RecordResiduals(&it, &info);
size += info.R + info.H;
@ -841,6 +855,9 @@ int VP8EncTokenLoop(VP8Encoder* const enc) {
if (enc->max_i4_header_bits_ > 0 && size_p0 > PARTITION0_SIZE_LIMIT) {
++num_pass_left;
enc->max_i4_header_bits_ >>= 1; // strengthen header bit limitation...
if (is_last_pass) {
ResetSideInfo(&it);
}
continue; // ...and start over
}
if (is_last_pass) {
@ -871,4 +888,3 @@ int VP8EncTokenLoop(VP8Encoder* const enc) {
#endif // DISABLE_TOKEN_BUFFER
//------------------------------------------------------------------------------

@ -200,14 +200,9 @@ static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) {
}
}
double VP8LBitsEntropy(const uint32_t* const array, int n,
uint32_t* const trivial_symbol) {
double VP8LBitsEntropy(const uint32_t* const array, int n) {
VP8LBitEntropy entropy;
VP8LBitsEntropyUnrefined(array, n, &entropy);
if (trivial_symbol != NULL) {
*trivial_symbol =
(entropy.nonzeros == 1) ? entropy.nonzero_code : VP8L_NON_TRIVIAL_SYM;
}
return BitsEntropyRefine(&entropy);
}
@ -1031,7 +1026,7 @@ int VP8LGetHistoImageSymbols(int xsize, int ysize,
}
}
// TODO(vikasa): Optimize HistogramRemap for low-effort compression mode also.
// TODO(vrabaud): Optimize HistogramRemap for low-effort compression mode.
// Find the optimal map from original histograms to the final ones.
HistogramRemap(orig_histo, image_histo, histogram_symbols);

@ -109,10 +109,7 @@ int VP8LGetHistoImageSymbols(int xsize, int ysize,
uint16_t* const histogram_symbols);
// Returns the entropy for the symbols in the input array.
// Also sets trivial_symbol to the code value, if the array has only one code
// value. Otherwise, set it to VP8L_NON_TRIVIAL_SYM.
double VP8LBitsEntropy(const uint32_t* const array, int n,
uint32_t* const trivial_symbol);
double VP8LBitsEntropy(const uint32_t* const array, int n);
// Estimate how many bits the combined entropy of literals and distance
// approximately maps to.

@ -26,6 +26,9 @@ static void InitLeft(VP8EncIterator* const it) {
memset(it->u_left_, 129, 8);
memset(it->v_left_, 129, 8);
it->left_nz_[8] = 0;
if (it->top_derr_ != NULL) {
memset(&it->left_derr_, 0, sizeof(it->left_derr_));
}
}
static void InitTop(VP8EncIterator* const it) {
@ -33,6 +36,9 @@ static void InitTop(VP8EncIterator* const it) {
const size_t top_size = enc->mb_w_ * 16;
memset(enc->y_top_, 127, 2 * top_size);
memset(enc->nz_, 0, enc->mb_w_ * sizeof(*enc->nz_));
if (enc->top_derr_ != NULL) {
memset(enc->top_derr_, 0, enc->mb_w_ * sizeof(*enc->top_derr_));
}
}
void VP8IteratorSetRow(VP8EncIterator* const it, int y) {
@ -76,6 +82,7 @@ void VP8IteratorInit(VP8Encoder* const enc, VP8EncIterator* const it) {
it->y_left_ = (uint8_t*)WEBP_ALIGN(it->yuv_left_mem_ + 1);
it->u_left_ = it->y_left_ + 16 + 16;
it->v_left_ = it->u_left_ + 16;
it->top_derr_ = enc->top_derr_;
VP8IteratorReset(it);
}
@ -450,4 +457,3 @@ int VP8IteratorRotateI4(VP8EncIterator* const it,
}
//------------------------------------------------------------------------------

@ -146,6 +146,6 @@ int VP8ApplyNearLossless(const WebPPicture* const picture, int quality,
// Define a stub to suppress compiler warnings.
extern void VP8LNearLosslessStub(void);
WEBP_TSAN_IGNORE_FUNCTION void VP8LNearLosslessStub(void) {}
void VP8LNearLosslessStub(void) {}
#endif // (WEBP_NEAR_LOSSLESS == 1)

@ -28,11 +28,11 @@
// If defined, use table to compute x / alpha.
#define USE_INVERSE_ALPHA_TABLE
static const union {
uint32_t argb;
uint8_t bytes[4];
} test_endian = { 0xff000000u };
#define ALPHA_IS_LAST (test_endian.bytes[3] == 0xff)
#ifdef WORDS_BIGENDIAN
#define ALPHA_OFFSET 0 // uint32_t 0xff000000 is 0xff,00,00,00 in memory
#else
#define ALPHA_OFFSET 3 // uint32_t 0xff000000 is 0x00,00,00,ff in memory
#endif
//------------------------------------------------------------------------------
// Detection of non-trivial transparency
@ -61,7 +61,7 @@ int WebPPictureHasTransparency(const WebPPicture* picture) {
return CheckNonOpaque(picture->a, picture->width, picture->height,
1, picture->a_stride);
} else {
const int alpha_offset = ALPHA_IS_LAST ? 3 : 0;
const int alpha_offset = ALPHA_OFFSET;
return CheckNonOpaque((const uint8_t*)picture->argb + alpha_offset,
picture->width, picture->height,
4, picture->argb_stride * sizeof(*picture->argb));
@ -126,7 +126,7 @@ static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) {
#else
static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTables(void) {}
static void InitGammaTables(void) {}
static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return v; }
static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) {
return (int)(base_value << shift);
@ -170,29 +170,33 @@ typedef uint16_t fixed_y_t; // unsigned type with extra SFIX precision for W
#if defined(USE_GAMMA_COMPRESSION)
// float variant of gamma-correction
// We use tables of different size and precision for the Rec709 / BT2020
// transfer function.
#define kGammaF (1./0.45)
static float kGammaToLinearTabF[MAX_Y_T + 1]; // size scales with Y_FIX
static float kLinearToGammaTabF[kGammaTabSize + 2];
static volatile int kGammaTablesFOk = 0;
static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTablesF(void) {
if (!kGammaTablesFOk) {
static uint32_t kLinearToGammaTabS[kGammaTabSize + 2];
#define GAMMA_TO_LINEAR_BITS 14
static uint32_t kGammaToLinearTabS[MAX_Y_T + 1]; // size scales with Y_FIX
static volatile int kGammaTablesSOk = 0;
static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTablesS(void) {
assert(2 * GAMMA_TO_LINEAR_BITS < 32); // we use uint32_t intermediate values
if (!kGammaTablesSOk) {
int v;
const double norm = 1. / MAX_Y_T;
const double scale = 1. / kGammaTabSize;
const double a = 0.09929682680944;
const double thresh = 0.018053968510807;
const double final_scale = 1 << GAMMA_TO_LINEAR_BITS;
for (v = 0; v <= MAX_Y_T; ++v) {
const double g = norm * v;
double value;
if (g <= thresh * 4.5) {
kGammaToLinearTabF[v] = (float)(g / 4.5);
value = g / 4.5;
} else {
const double a_rec = 1. / (1. + a);
kGammaToLinearTabF[v] = (float)pow(a_rec * (g + a), kGammaF);
value = pow(a_rec * (g + a), kGammaF);
}
kGammaToLinearTabS[v] = (uint32_t)(value * final_scale + .5);
}
for (v = 0; v <= kGammaTabSize; ++v) {
const double g = scale * v;
@ -202,37 +206,44 @@ static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTablesF(void) {
} else {
value = (1. + a) * pow(g, 1. / kGammaF) - a;
}
kLinearToGammaTabF[v] = (float)(MAX_Y_T * value);
// we already incorporate the 1/2 rounding constant here
kLinearToGammaTabS[v] =
(uint32_t)(MAX_Y_T * value) + (1 << GAMMA_TO_LINEAR_BITS >> 1);
}
// to prevent small rounding errors to cause read-overflow:
kLinearToGammaTabF[kGammaTabSize + 1] = kLinearToGammaTabF[kGammaTabSize];
kGammaTablesFOk = 1;
kLinearToGammaTabS[kGammaTabSize + 1] = kLinearToGammaTabS[kGammaTabSize];
kGammaTablesSOk = 1;
}
}
static WEBP_INLINE float GammaToLinearF(int v) {
return kGammaToLinearTabF[v];
// return value has a fixed-point precision of GAMMA_TO_LINEAR_BITS
static WEBP_INLINE uint32_t GammaToLinearS(int v) {
return kGammaToLinearTabS[v];
}
static WEBP_INLINE int LinearToGammaF(float value) {
const float v = value * kGammaTabSize;
const int tab_pos = (int)v;
const float x = v - (float)tab_pos; // fractional part
const float v0 = kLinearToGammaTabF[tab_pos + 0];
const float v1 = kLinearToGammaTabF[tab_pos + 1];
const float y = v1 * x + v0 * (1.f - x); // interpolate
return (int)(y + .5);
static WEBP_INLINE uint32_t LinearToGammaS(uint32_t value) {
// 'value' is in GAMMA_TO_LINEAR_BITS fractional precision
const uint32_t v = value * kGammaTabSize;
const uint32_t tab_pos = v >> GAMMA_TO_LINEAR_BITS;
// fractional part, in GAMMA_TO_LINEAR_BITS fixed-point precision
const uint32_t x = v - (tab_pos << GAMMA_TO_LINEAR_BITS); // fractional part
// v0 / v1 are in GAMMA_TO_LINEAR_BITS fixed-point precision (range [0..1])
const uint32_t v0 = kLinearToGammaTabS[tab_pos + 0];
const uint32_t v1 = kLinearToGammaTabS[tab_pos + 1];
// Final interpolation. Note that rounding is already included.
const uint32_t v2 = (v1 - v0) * x; // note: v1 >= v0.
const uint32_t result = v0 + (v2 >> GAMMA_TO_LINEAR_BITS);
return result;
}
#else
static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTablesF(void) {}
static WEBP_INLINE float GammaToLinearF(int v) {
const float norm = 1.f / MAX_Y_T;
return norm * v;
static void InitGammaTablesS(void) {}
static WEBP_INLINE uint32_t GammaToLinearS(int v) {
return (v << GAMMA_TO_LINEAR_BITS) / MAX_Y_T;
}
static WEBP_INLINE int LinearToGammaF(float value) {
return (int)(MAX_Y_T * value + .5);
static WEBP_INLINE uint32_t LinearToGammaS(uint32_t value) {
return (MAX_Y_T * value) >> GAMMA_TO_LINEAR_BITS;
}
#endif // USE_GAMMA_COMPRESSION
@ -254,26 +265,22 @@ static int RGBToGray(int r, int g, int b) {
return (luma >> YUV_FIX);
}
static float RGBToGrayF(float r, float g, float b) {
return (float)(0.2126 * r + 0.7152 * g + 0.0722 * b);
}
static int ScaleDown(int a, int b, int c, int d) {
const float A = GammaToLinearF(a);
const float B = GammaToLinearF(b);
const float C = GammaToLinearF(c);
const float D = GammaToLinearF(d);
return LinearToGammaF(0.25f * (A + B + C + D));
static uint32_t ScaleDown(int a, int b, int c, int d) {
const uint32_t A = GammaToLinearS(a);
const uint32_t B = GammaToLinearS(b);
const uint32_t C = GammaToLinearS(c);
const uint32_t D = GammaToLinearS(d);
return LinearToGammaS((A + B + C + D + 2) >> 2);
}
static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int w) {
int i;
for (i = 0; i < w; ++i) {
const float R = GammaToLinearF(src[0 * w + i]);
const float G = GammaToLinearF(src[1 * w + i]);
const float B = GammaToLinearF(src[2 * w + i]);
const float Y = RGBToGrayF(R, G, B);
dst[i] = (fixed_y_t)LinearToGammaF(Y);
const uint32_t R = GammaToLinearS(src[0 * w + i]);
const uint32_t G = GammaToLinearS(src[1 * w + i]);
const uint32_t B = GammaToLinearS(src[2 * w + i]);
const uint32_t Y = RGBToGray(R, G, B);
dst[i] = (fixed_y_t)LinearToGammaS(Y);
}
}
@ -863,7 +870,7 @@ static int ImportYUVAFromRGBA(const uint8_t* r_ptr,
}
if (use_iterative_conversion) {
InitGammaTablesF();
InitGammaTablesS();
if (!PreprocessARGB(r_ptr, g_ptr, b_ptr, step, rgb_stride, picture)) {
return 0;
}
@ -990,10 +997,10 @@ static int PictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace,
return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION);
} else {
const uint8_t* const argb = (const uint8_t*)picture->argb;
const uint8_t* const r = ALPHA_IS_LAST ? argb + 2 : argb + 1;
const uint8_t* const g = ALPHA_IS_LAST ? argb + 1 : argb + 2;
const uint8_t* const b = ALPHA_IS_LAST ? argb + 0 : argb + 3;
const uint8_t* const a = ALPHA_IS_LAST ? argb + 3 : argb + 0;
const uint8_t* const a = argb + (0 ^ ALPHA_OFFSET);
const uint8_t* const r = argb + (1 ^ ALPHA_OFFSET);
const uint8_t* const g = argb + (2 ^ ALPHA_OFFSET);
const uint8_t* const b = argb + (3 ^ ALPHA_OFFSET);
picture->colorspace = WEBP_YUV420;
return ImportYUVAFromRGBA(r, g, b, a, 4, 4 * picture->argb_stride,
@ -1044,7 +1051,8 @@ int WebPPictureYUVAToARGB(WebPPicture* picture) {
const int argb_stride = 4 * picture->argb_stride;
uint8_t* dst = (uint8_t*)picture->argb;
const uint8_t *cur_u = picture->u, *cur_v = picture->v, *cur_y = picture->y;
WebPUpsampleLinePairFunc upsample = WebPGetLinePairConverter(ALPHA_IS_LAST);
WebPUpsampleLinePairFunc upsample =
WebPGetLinePairConverter(ALPHA_OFFSET > 0);
// First row, with replicated top samples.
upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width);
@ -1087,6 +1095,7 @@ static int Import(WebPPicture* const picture,
const uint8_t* rgb, int rgb_stride,
int step, int swap_rb, int import_alpha) {
int y;
// swap_rb -> b,g,r,a , !swap_rb -> r,g,b,a
const uint8_t* r_ptr = rgb + (swap_rb ? 2 : 0);
const uint8_t* g_ptr = rgb + 1;
const uint8_t* b_ptr = rgb + (swap_rb ? 0 : 2);
@ -1104,19 +1113,32 @@ static int Import(WebPPicture* const picture,
WebPInitAlphaProcessing();
if (import_alpha) {
// dst[] byte order is {a,r,g,b} for big-endian, {b,g,r,a} for little endian
uint32_t* dst = picture->argb;
const int do_copy =
(!swap_rb && !ALPHA_IS_LAST) || (swap_rb && ALPHA_IS_LAST);
const int do_copy = (ALPHA_OFFSET == 3) && swap_rb;
assert(step == 4);
for (y = 0; y < height; ++y) {
if (do_copy) {
if (do_copy) {
for (y = 0; y < height; ++y) {
memcpy(dst, rgb, width * 4);
} else {
rgb += rgb_stride;
dst += picture->argb_stride;
}
} else {
for (y = 0; y < height; ++y) {
#ifdef WORDS_BIGENDIAN
// BGRA or RGBA input order.
const uint8_t* a_ptr = rgb + 3;
WebPPackARGB(a_ptr, r_ptr, g_ptr, b_ptr, width, dst);
r_ptr += rgb_stride;
g_ptr += rgb_stride;
b_ptr += rgb_stride;
#else
// RGBA input order. Need to swap R and B.
VP8LConvertBGRAToRGBA((const uint32_t*)rgb, width, (uint8_t*)dst);
#endif
rgb += rgb_stride;
dst += picture->argb_stride;
}
rgb += rgb_stride;
dst += picture->argb_stride;
}
} else {
uint32_t* dst = picture->argb;

@ -18,6 +18,7 @@
#include <math.h>
#include <stdlib.h>
#include "src/dsp/dsp.h"
#include "src/enc/vp8i_enc.h"
#include "src/utils/utils.h"
@ -169,6 +170,12 @@ int WebPPlaneDistortion(const uint8_t* src, size_t src_stride,
return 1;
}
#ifdef WORDS_BIGENDIAN
#define BLUE_OFFSET 3 // uint32_t 0x000000ff is 0x00,00,00,ff in memory
#else
#define BLUE_OFFSET 0 // uint32_t 0x000000ff is 0xff,00,00,00 in memory
#endif
int WebPPictureDistortion(const WebPPicture* src, const WebPPicture* ref,
int type, float results[5]) {
int w, h, c;
@ -195,8 +202,10 @@ int WebPPictureDistortion(const WebPPicture* src, const WebPPicture* ref,
float distortion;
const size_t stride0 = 4 * (size_t)p0.argb_stride;
const size_t stride1 = 4 * (size_t)p1.argb_stride;
if (!WebPPlaneDistortion((const uint8_t*)p0.argb + c, stride0,
(const uint8_t*)p1.argb + c, stride1,
// results are reported as BGRA
const int offset = c ^ BLUE_OFFSET;
if (!WebPPlaneDistortion((const uint8_t*)p0.argb + offset, stride0,
(const uint8_t*)p1.argb + offset, stride1,
w, h, 4, type, &distortion, results + c)) {
goto Error;
}
@ -214,6 +223,8 @@ int WebPPictureDistortion(const WebPPicture* src, const WebPPicture* ref,
return ok;
}
#undef BLUE_OFFSET
#else // defined(WEBP_DISABLE_STATS)
int WebPPlaneDistortion(const uint8_t* src, size_t src_stride,
const uint8_t* ref, size_t ref_stride,

@ -826,6 +826,85 @@ static int ReconstructIntra4(VP8EncIterator* const it,
return nz;
}
//------------------------------------------------------------------------------
// DC-error diffusion
// Diffusion weights. We under-correct a bit (15/16th of the error is actually
// diffused) to avoid 'rainbow' chessboard pattern of blocks at q~=0.
#define C1 7 // fraction of error sent to the 4x4 block below
#define C2 8 // fraction of error sent to the 4x4 block on the right
#define DSHIFT 4
#define DSCALE 1 // storage descaling, needed to make the error fit int8_t
// Quantize as usual, but also compute and return the quantization error.
// Error is already divided by DSHIFT.
static int QuantizeSingle(int16_t* const v, const VP8Matrix* const mtx) {
int V = *v;
const int sign = (V < 0);
if (sign) V = -V;
if (V > (int)mtx->zthresh_[0]) {
const int qV = QUANTDIV(V, mtx->iq_[0], mtx->bias_[0]) * mtx->q_[0];
const int err = (V - qV);
*v = sign ? -qV : qV;
return (sign ? -err : err) >> DSCALE;
}
*v = 0;
return (sign ? -V : V) >> DSCALE;
}
static void CorrectDCValues(const VP8EncIterator* const it,
const VP8Matrix* const mtx,
int16_t tmp[][16], VP8ModeScore* const rd) {
// | top[0] | top[1]
// --------+--------+---------
// left[0] | tmp[0] tmp[1] <-> err0 err1
// left[1] | tmp[2] tmp[3] err2 err3
//
// Final errors {err1,err2,err3} are preserved and later restored
// as top[]/left[] on the next block.
int ch;
for (ch = 0; ch <= 1; ++ch) {
const int8_t* const top = it->top_derr_[it->x_][ch];
const int8_t* const left = it->left_derr_[ch];
int16_t (* const c)[16] = &tmp[ch * 4];
int err0, err1, err2, err3;
c[0][0] += (C1 * top[0] + C2 * left[0]) >> (DSHIFT - DSCALE);
err0 = QuantizeSingle(&c[0][0], mtx);
c[1][0] += (C1 * top[1] + C2 * err0) >> (DSHIFT - DSCALE);
err1 = QuantizeSingle(&c[1][0], mtx);
c[2][0] += (C1 * err0 + C2 * left[1]) >> (DSHIFT - DSCALE);
err2 = QuantizeSingle(&c[2][0], mtx);
c[3][0] += (C1 * err1 + C2 * err2) >> (DSHIFT - DSCALE);
err3 = QuantizeSingle(&c[3][0], mtx);
// error 'err' is bounded by mtx->q_[0] which is 132 at max. Hence
// err >> DSCALE will fit in an int8_t type if DSCALE>=1.
assert(abs(err1) <= 127 && abs(err2) <= 127 && abs(err3) <= 127);
rd->derr[ch][0] = (int8_t)err1;
rd->derr[ch][1] = (int8_t)err2;
rd->derr[ch][2] = (int8_t)err3;
}
}
static void StoreDiffusionErrors(VP8EncIterator* const it,
const VP8ModeScore* const rd) {
int ch;
for (ch = 0; ch <= 1; ++ch) {
int8_t* const top = it->top_derr_[it->x_][ch];
int8_t* const left = it->left_derr_[ch];
left[0] = rd->derr[ch][0]; // restore err1
left[1] = 3 * rd->derr[ch][2] >> 2; // ... 3/4th of err3
top[0] = rd->derr[ch][1]; // ... err2
top[1] = rd->derr[ch][2] - left[1]; // ... 1/4th of err3.
}
}
#undef C1
#undef C2
#undef DSHIFT
#undef DSCALE
//------------------------------------------------------------------------------
static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd,
uint8_t* const yuv_out, int mode) {
const VP8Encoder* const enc = it->enc_;
@ -839,6 +918,8 @@ static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd,
for (n = 0; n < 8; n += 2) {
VP8FTransform2(src + VP8ScanUV[n], ref + VP8ScanUV[n], tmp[n]);
}
if (it->top_derr_ != NULL) CorrectDCValues(it, &dqm->uv_, tmp, rd);
if (DO_TRELLIS_UV && it->do_trellis_) {
int ch, x, y;
for (ch = 0, n = 0; ch <= 2; ch += 2) {
@ -1101,6 +1182,9 @@ static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) {
CopyScore(&rd_best, &rd_uv);
rd->mode_uv = mode;
memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels));
if (it->top_derr_ != NULL) {
memcpy(rd->derr, rd_uv.derr, sizeof(rd_uv.derr));
}
SwapPtr(&dst, &tmp_dst);
}
}
@ -1109,6 +1193,9 @@ static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) {
if (dst != dst0) { // copy 16x8 block if needed
VP8Copy16x8(dst, dst0);
}
if (it->top_derr_ != NULL) { // store diffusion errors for next block
StoreDiffusionErrors(it, rd);
}
}
//------------------------------------------------------------------------------

@ -30,9 +30,9 @@ extern "C" {
// Various defines and enums
// version numbers
#define ENC_MAJ_VERSION 0
#define ENC_MIN_VERSION 6
#define ENC_REV_VERSION 1
#define ENC_MAJ_VERSION 1
#define ENC_MIN_VERSION 0
#define ENC_REV_VERSION 0
enum { MAX_LF_LEVELS = 64, // Maximum loop filter level
MAX_VARIABLE_LEVEL = 67, // last (inclusive) level with variable cost
@ -120,6 +120,9 @@ static WEBP_INLINE int QUANTDIV(uint32_t n, uint32_t iQ, uint32_t B) {
// Uncomment the following to remove token-buffer code:
// #define DISABLE_TOKEN_BUFFER
// quality below which error-diffusion is enabled
#define ERROR_DIFFUSION_QUALITY 98
//------------------------------------------------------------------------------
// Headers
@ -201,6 +204,8 @@ typedef struct {
score_t i4_penalty_; // penalty for using Intra4
} VP8SegmentInfo;
typedef int8_t DError[2 /* u/v */][2 /* top or left */];
// Handy transient struct to accumulate score and info during RD-optimization
// and mode evaluation.
typedef struct {
@ -213,6 +218,7 @@ typedef struct {
uint8_t modes_i4[16]; // mode numbers for intra4 predictions
int mode_uv; // mode number of chroma prediction
uint32_t nz; // non-zero blocks
int8_t derr[2][3]; // DC diffusion errors for U/V for blocks #1/2/3
} VP8ModeScore;
// Iterator structure to iterate through macroblocks, pointing to the
@ -242,6 +248,9 @@ typedef struct {
int count_down0_; // starting counter value (for progress)
int percent0_; // saved initial progress percent
DError left_derr_; // left error diffusion (u/v)
DError *top_derr_; // top diffusion error - NULL if disabled
uint8_t* y_left_; // left luma samples (addressable from index -1 to 15).
uint8_t* u_left_; // left u samples (addressable from index -1 to 7)
uint8_t* v_left_; // left v samples (addressable from index -1 to 7)
@ -401,6 +410,7 @@ struct VP8Encoder {
uint8_t* uv_top_; // top u/v samples.
// U and V are packed into 16 bytes (8 U + 8 V)
LFStats* lf_stats_; // autofilter stats (if NULL, autofilter is off)
DError* top_derr_; // diffusion error (NULL if disabled)
};
//------------------------------------------------------------------------------

@ -26,8 +26,6 @@
#include "src/utils/utils.h"
#include "src/webp/format_constants.h"
#include "src/enc/delta_palettization_enc.h"
// Maximum number of histogram images (sub-blocks).
#define MAX_HUFF_IMAGE_SIZE 2600
@ -259,7 +257,7 @@ static int AnalyzeEntropy(const uint32_t* argb,
++histo[kHistoAlphaPred * 256];
for (j = 0; j < kHistoTotal; ++j) {
entropy_comp[j] = VP8LBitsEntropy(&histo[j * 256], 256, NULL);
entropy_comp[j] = VP8LBitsEntropy(&histo[j * 256], 256);
}
entropy[kDirect] = entropy_comp[kHistoAlpha] +
entropy_comp[kHistoRed] +
@ -384,8 +382,7 @@ static int EncoderAnalyze(VP8LEncoder* const enc,
AnalyzeAndCreatePalette(pic, low_effort,
enc->palette_, &enc->palette_size_);
// TODO(jyrki): replace the decision to be based on an actual estimate
// of entropy, or even spatial variance of entropy.
// Empirical bit sizes.
enc->histo_bits_ = GetHistoBits(method, use_palette,
pic->width, pic->height);
enc->transform_bits_ = GetTransformBits(method, enc->histo_bits_);
@ -756,7 +753,6 @@ static WebPEncodingError StoreImageToBitMask(
// Don't write the distance with the extra bits code since
// the distance can be up to 18 bits of extra bits, and the prefix
// 15 bits, totaling to 33, and our PutBits only supports up to 32 bits.
// TODO(jyrki): optimize this further.
VP8LPrefixEncode(distance, &code, &n_bits, &bits);
WriteHuffmanCode(bw, codes + 4, code);
VP8LPutBits(bw, bits, n_bits);
@ -1464,49 +1460,6 @@ static WebPEncodingError EncodePalette(VP8LBitWriter* const bw, int low_effort,
20 /* quality */, low_effort);
}
#ifdef WEBP_EXPERIMENTAL_FEATURES
static WebPEncodingError EncodeDeltaPalettePredictorImage(
VP8LBitWriter* const bw, VP8LEncoder* const enc, int quality,
int low_effort) {
const WebPPicture* const pic = enc->pic_;
const int width = pic->width;
const int height = pic->height;
const int pred_bits = 5;
const int transform_width = VP8LSubSampleSize(width, pred_bits);
const int transform_height = VP8LSubSampleSize(height, pred_bits);
const int pred = 7; // default is Predictor7 (Top/Left Average)
const int tiles_per_row = VP8LSubSampleSize(width, pred_bits);
const int tiles_per_col = VP8LSubSampleSize(height, pred_bits);
uint32_t* predictors;
int tile_x, tile_y;
WebPEncodingError err = VP8_ENC_OK;
predictors = (uint32_t*)WebPSafeMalloc(tiles_per_col * tiles_per_row,
sizeof(*predictors));
if (predictors == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY;
for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
predictors[tile_y * tiles_per_row + tile_x] = 0xff000000u | (pred << 8);
}
}
VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2);
VP8LPutBits(bw, pred_bits - 2, 3);
err = EncodeImageNoHuffman(
bw, predictors, &enc->hash_chain_,
(VP8LBackwardRefs*)&enc->refs_[0], // cast const away
(VP8LBackwardRefs*)&enc->refs_[1],
transform_width, transform_height, quality, low_effort);
WebPSafeFree(predictors);
return err;
}
#endif // WEBP_EXPERIMENTAL_FEATURES
// -----------------------------------------------------------------------------
// VP8LEncoder
@ -1568,7 +1521,7 @@ static int EncodeStreamHook(void* input, void* data2) {
WebPEncodingError err = VP8_ENC_OK;
const int quality = (int)config->quality;
const int low_effort = (config->method == 0);
#if (WEBP_NEAR_LOSSLESS == 1) || defined(WEBP_EXPERIMENTAL_FEATURES)
#if (WEBP_NEAR_LOSSLESS == 1)
const int width = picture->width;
#endif
const int height = picture->height;
@ -1627,29 +1580,6 @@ static int EncodeStreamHook(void* input, void* data2) {
enc->argb_content_ = kEncoderNone;
#endif
#ifdef WEBP_EXPERIMENTAL_FEATURES
if (config->use_delta_palette) {
enc->use_predict_ = 1;
enc->use_cross_color_ = 0;
enc->use_subtract_green_ = 0;
enc->use_palette_ = 1;
if (enc->argb_content_ != kEncoderNearLossless &&
enc->argb_content_ != kEncoderPalette) {
err = MakeInputImageCopy(enc);
if (err != VP8_ENC_OK) goto Error;
}
err = WebPSearchOptimalDeltaPalette(enc);
if (err != VP8_ENC_OK) goto Error;
if (enc->use_palette_) {
err = AllocateTransformBuffer(enc, width, height);
if (err != VP8_ENC_OK) goto Error;
err = EncodeDeltaPalettePredictorImage(bw, enc, quality, low_effort);
if (err != VP8_ENC_OK) goto Error;
use_delta_palette = 1;
}
}
#endif // WEBP_EXPERIMENTAL_FEATURES
// Encode palette
if (enc->use_palette_) {
err = EncodePalette(bw, low_effort, enc);
@ -1822,7 +1752,7 @@ WebPEncodingError VP8LEncodeStream(const WebPConfig* const config,
worker_interface->Init(worker);
worker->data1 = param;
worker->data2 = NULL;
worker->hook = (WebPWorkerHook)EncodeStreamHook;
worker->hook = EncodeStreamHook;
}
}
@ -1944,7 +1874,6 @@ int VP8LEncodeImage(const WebPConfig* const config,
err = VP8LEncodeStream(config, picture, &bw, 1 /*use_cache*/);
if (err != VP8_ENC_OK) goto Error;
// TODO(skal): have a fine-grained progress report in VP8LEncodeStream().
if (!WebPReportProgress(picture, 90, &percent)) goto UserAbort;
// Finish the RIFF chunk.

@ -159,12 +159,16 @@ static VP8Encoder* InitVP8Encoder(const WebPConfig* const config,
+ WEBP_ALIGN_CST; // align all
const size_t lf_stats_size =
config->autofilter ? sizeof(*enc->lf_stats_) + WEBP_ALIGN_CST : 0;
const size_t top_derr_size =
(config->quality <= ERROR_DIFFUSION_QUALITY || config->pass > 1) ?
mb_w * sizeof(*enc->top_derr_) : 0;
uint8_t* mem;
const uint64_t size = (uint64_t)sizeof(*enc) // main struct
+ WEBP_ALIGN_CST // cache alignment
+ info_size // modes info
+ preds_size // prediction modes
+ samples_size // top/left samples
+ top_derr_size // top diffusion error
+ nz_size // coeff context bits
+ lf_stats_size; // autofilter stats
@ -175,11 +179,12 @@ static VP8Encoder* InitVP8Encoder(const WebPConfig* const config,
" info: %ld\n"
" preds: %ld\n"
" top samples: %ld\n"
" top diffusion: %ld\n"
" non-zero: %ld\n"
" lf-stats: %ld\n"
" total: %ld\n",
sizeof(*enc) + WEBP_ALIGN_CST, info_size,
preds_size, samples_size, nz_size, lf_stats_size, size);
preds_size, samples_size, top_derr_size, nz_size, lf_stats_size, size);
printf("Transient object sizes:\n"
" VP8EncIterator: %ld\n"
" VP8ModeScore: %ld\n"
@ -219,6 +224,8 @@ static VP8Encoder* InitVP8Encoder(const WebPConfig* const config,
enc->y_top_ = mem;
enc->uv_top_ = enc->y_top_ + top_stride;
mem += 2 * top_stride;
enc->top_derr_ = top_derr_size ? (DError*)mem : NULL;
mem += top_derr_size;
assert(mem <= (uint8_t*)enc + size);
enc->config_ = config;

@ -26,9 +26,9 @@ extern "C" {
//------------------------------------------------------------------------------
// Defines and constants.
#define MUX_MAJ_VERSION 0
#define MUX_MIN_VERSION 4
#define MUX_REV_VERSION 1
#define MUX_MAJ_VERSION 1
#define MUX_MIN_VERSION 0
#define MUX_REV_VERSION 0
// Chunk object.
typedef struct WebPChunk WebPChunk;

@ -19,13 +19,6 @@
#include "src/dsp/dsp.h"
#include "src/webp/types.h"
// some endian fix (e.g.: mips-gcc doesn't define __BIG_ENDIAN__)
#if !defined(WORDS_BIGENDIAN) && \
(defined(__BIG_ENDIAN__) || defined(_M_PPC) || \
(defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
#define WORDS_BIGENDIAN
#endif
#if defined(WORDS_BIGENDIAN)
#define HToLE32 BSwap32
#define HToLE16 BSwap16

Loading…
Cancel
Save