Merge pull request #11060 from juanecito:2.4

* Thread-safe version of sparse function in cv::gpu::PyrLKOpticalFlow
class. The new function name is sparse_multi

* Thread-safe sparse function in cv::gpu::PyrLKOpticalFlow. Tests

* Thread-safe sparse function in cv::gpu::PyrLKOpticalFlow class.

Add intel_TBB conditional compilation
pull/11534/head
Juan María Gómez López 7 years ago committed by Alexander Alekhin
parent a32aec5ba6
commit 0239c195d8
  1. 12
      modules/gpu/include/opencv2/gpu/gpu.hpp
  2. 82
      modules/gpu/perf/perf_video.cpp
  3. 500
      modules/gpu/src/cuda/pyrlk.cu
  4. 149
      modules/gpu/src/pyrlk.cpp
  5. 132
      modules/gpu/test/test_optflow.cpp

@ -60,6 +60,10 @@
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
#if !defined(HAVE_TBB)
#define throw_notbb() CV_Error(CV_StsNotImplemented, "The library is compiled without TBB support")
#endif
namespace cv { namespace gpu {
//////////////////////////////// CudaMem ////////////////////////////////
@ -1824,6 +1828,14 @@ public:
void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
GpuMat& status, GpuMat* err = 0);
#if !defined(HAVE_TBB)
void sparse_multi(const GpuMat&, const GpuMat&, const GpuMat&, GpuMat&,
GpuMat&, Stream&, GpuMat*) {throw_notbb();}
#else
void sparse_multi(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
GpuMat& status, Stream& stream, GpuMat* err = 0);
#endif
void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0);
void releaseMemory();

@ -303,6 +303,88 @@ PERF_TEST_P(ImagePair_Gray_NPts_WinSz_Levels_Iters, Video_PyrLKOpticalFlowSparse
}
}
//////////////////////////////////////////////////////
// PyrLKOpticalFlowSparseMulti
#ifdef HAVE_TBB
DEF_PARAM_TEST(ImagePair_Gray_NPts_WinSz_Levels_Iters, pair_string, bool, int, int, int, int);
PERF_TEST_P(ImagePair_Gray_NPts_WinSz_Levels_Iters, Video_PyrLKOpticalFlowSparseMulti,
Combine(Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")),
Bool(),
Values(8000),
Values(21),
Values(1, 3),
Values(1, 30)))
{
declare.time(20.0);
const pair_string imagePair = GET_PARAM(0);
const bool useGray = GET_PARAM(1);
const int points = GET_PARAM(2);
const int winSize = GET_PARAM(3);
const int levels = GET_PARAM(4);
const int iters = GET_PARAM(5);
const cv::Mat frame0 = readImage(imagePair.first, useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame0.empty());
const cv::Mat frame1 = readImage(imagePair.second, useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame1.empty());
cv::Mat gray_frame;
if (useGray)
gray_frame = frame0;
else
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
cv::Mat pts;
cv::goodFeaturesToTrack(gray_frame, pts, points, 0.01, 0.0);
if (PERF_RUN_GPU())
{
const cv::gpu::GpuMat d_pts(pts.reshape(2, 1));
cv::gpu::PyrLKOpticalFlow d_pyrLK;
d_pyrLK.winSize = cv::Size(winSize, winSize);
d_pyrLK.maxLevel = levels - 1;
d_pyrLK.iters = iters;
const cv::gpu::GpuMat d_frame0(frame0);
const cv::gpu::GpuMat d_frame1(frame1);
cv::gpu::GpuMat nextPts;
cv::gpu::GpuMat status;
cv::gpu::Stream stream;
TEST_CYCLE()
{
d_pyrLK.sparse_multi(d_frame0, d_frame1, d_pts, nextPts, status, stream);
stream.waitForCompletion();
}
GPU_SANITY_CHECK(nextPts);
GPU_SANITY_CHECK(status);
}
else
{
cv::Mat nextPts;
cv::Mat status;
TEST_CYCLE()
{
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, cv::noArray(),
cv::Size(winSize, winSize), levels - 1,
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, iters, 0.01));
}
CPU_SANITY_CHECK(nextPts);
CPU_SANITY_CHECK(status);
}
}
#endif // HAVE_TBB
//////////////////////////////////////////////////////
// PyrLKOpticalFlowDense

@ -49,6 +49,8 @@
#include "opencv2/gpu/device/vec_math.hpp"
#include "opencv2/gpu/device/reduce.hpp"
#include "opencv2/core/core.hpp"
using namespace cv::gpu;
using namespace cv::gpu::device;
@ -60,12 +62,54 @@ namespace pyrlk
__constant__ int c_halfWin_y;
__constant__ int c_iters;
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_If(false, cudaFilterModeLinear, cudaAddressModeClamp);
texture<float4, cudaTextureType2D, cudaReadModeElementType> tex_If4(false, cudaFilterModeLinear, cudaAddressModeClamp);
texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_Ib(false, cudaFilterModePoint, cudaAddressModeClamp);
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_Jf(false, cudaFilterModeLinear, cudaAddressModeClamp);
texture<float4, cudaTextureType2D, cudaReadModeElementType> tex_Jf4(false, cudaFilterModeLinear, cudaAddressModeClamp);
#define CUDA_CONSTANTS(index) \
__constant__ int c_winSize_x##index; \
__constant__ int c_winSize_y##index; \
__constant__ int c_halfWin_x##index; \
__constant__ int c_halfWin_y##index; \
__constant__ int c_iters##index;
CUDA_CONSTANTS(0)
CUDA_CONSTANTS(1)
CUDA_CONSTANTS(2)
CUDA_CONSTANTS(3)
CUDA_CONSTANTS(4)
template <int index> struct c_multi_winSize_x;
template <int index> struct c_multi_winSize_y;
template <int index> struct c_multi_halfWin_x;
template <int index> struct c_multi_halfWin_y;
template <int index> struct c_multi_iters;
#define CUDA_CONSTANTS_ACCESSOR(index) \
template <> struct c_multi_winSize_x<index> \
{ static __device__ __forceinline__ int get(void){ return c_winSize_x##index;} }; \
template <> struct c_multi_winSize_y<index> \
{ static __device__ __forceinline__ int get(void){ return c_winSize_y##index;} }; \
template <> struct c_multi_halfWin_x<index> \
{ static __device__ __forceinline__ int get(void){ return c_halfWin_x##index;} }; \
template <> struct c_multi_halfWin_y<index> \
{ static __device__ __forceinline__ int get(void){ return c_halfWin_y##index;} }; \
template <> struct c_multi_iters<index> \
{ static __device__ __forceinline__ int get(void){ return c_iters##index;} };
CUDA_CONSTANTS_ACCESSOR(0)
CUDA_CONSTANTS_ACCESSOR(1)
CUDA_CONSTANTS_ACCESSOR(2)
CUDA_CONSTANTS_ACCESSOR(3)
CUDA_CONSTANTS_ACCESSOR(4)
texture<float, cudaTextureType2D, cudaReadModeElementType>
tex_If(false, cudaFilterModeLinear, cudaAddressModeClamp);
texture<float4, cudaTextureType2D, cudaReadModeElementType>
tex_If4(false, cudaFilterModeLinear, cudaAddressModeClamp);
texture<uchar, cudaTextureType2D, cudaReadModeElementType>
tex_Ib(false, cudaFilterModePoint, cudaAddressModeClamp);
texture<float, cudaTextureType2D, cudaReadModeElementType>
tex_Jf(false, cudaFilterModeLinear, cudaAddressModeClamp);
texture<float4, cudaTextureType2D, cudaReadModeElementType>
tex_Jf4(false, cudaFilterModeLinear, cudaAddressModeClamp);
template <int cn> struct Tex_I;
template <> struct Tex_I<1>
@ -99,6 +143,57 @@ namespace pyrlk
}
};
//--------------------------------------------------------------------------
#define CUDA_DECL_TEX_MULTI(texname, type, filtermode) \
texture<type, cudaTextureType2D, cudaReadModeElementType> \
texname##_multi0(false, filtermode, cudaAddressModeClamp); \
texture<type, cudaTextureType2D, cudaReadModeElementType> \
texname##_multi1(false, filtermode, cudaAddressModeClamp); \
texture<type, cudaTextureType2D, cudaReadModeElementType> \
texname##_multi2(false, filtermode, cudaAddressModeClamp); \
texture<type, cudaTextureType2D, cudaReadModeElementType> \
texname##_multi3(false, filtermode, cudaAddressModeClamp); \
texture<type, cudaTextureType2D, cudaReadModeElementType> \
texname##_multi4(false, filtermode, cudaAddressModeClamp); \
CUDA_DECL_TEX_MULTI(tex_If1, float, cudaFilterModeLinear)
CUDA_DECL_TEX_MULTI(tex_If4, float4, cudaFilterModeLinear)
CUDA_DECL_TEX_MULTI(tex_Ib1, uchar, cudaFilterModePoint)
CUDA_DECL_TEX_MULTI(tex_Jf1, float, cudaFilterModeLinear)
CUDA_DECL_TEX_MULTI(tex_Jf4, float4, cudaFilterModeLinear)
template <int cn, int index> struct Tex_I_multi;
template <int cn, int index> struct Tex_J_multi;
template <int cn, int index> struct Tex_B_multi;
#define CUDA_DECL_TEX_MULTI_ACCESS(accessorname, texname, cn, returntype) \
template <> struct accessorname##_multi<cn, 0> \
{ static __device__ __forceinline__ returntype read(float x, float y) \
{ return tex2D(texname##cn##_multi0, x, y); } }; \
template <> struct accessorname##_multi<cn, 1> \
{ static __device__ __forceinline__ returntype read(float x, float y) \
{ return tex2D(texname##cn##_multi1, x, y); } }; \
template <> struct accessorname##_multi<cn, 2> \
{ static __device__ __forceinline__ returntype read(float x, float y) \
{ return tex2D(texname##cn##_multi2, x, y); } }; \
template <> struct accessorname##_multi<cn, 3> \
{ static __device__ __forceinline__ returntype read(float x, float y) \
{ return tex2D(texname##cn##_multi3, x, y); } }; \
template <> struct accessorname##_multi<cn, 4> \
{ static __device__ __forceinline__ returntype read(float x, float y) \
{ return tex2D(texname##cn##_multi4, x, y); } };
CUDA_DECL_TEX_MULTI_ACCESS(Tex_I, tex_If, 1, float)
CUDA_DECL_TEX_MULTI_ACCESS(Tex_I, tex_If, 4, float4)
CUDA_DECL_TEX_MULTI_ACCESS(Tex_B, tex_Ib, 1, uchar)
CUDA_DECL_TEX_MULTI_ACCESS(Tex_J, tex_Jf, 1, float)
CUDA_DECL_TEX_MULTI_ACCESS(Tex_J, tex_Jf, 4, float4)
//--------------------------------------------------------------------------
__device__ __forceinline__ void accum(float& dst, float val)
{
dst += val;
@ -309,6 +404,200 @@ namespace pyrlk
}
}
#if defined(HAVE_TBB)
template <int cn, int index, int PATCH_X, int PATCH_Y, bool calcErr>
__global__ void sparseKernel_multi(const float2* prevPts, float2* nextPts, uchar* status, float* err, const int level, const int rows, const int cols)
{
#if __CUDA_ARCH__ <= 110
const int BLOCK_SIZE = 128;
#else
const int BLOCK_SIZE = 256;
#endif
__shared__ float smem1[BLOCK_SIZE];
__shared__ float smem2[BLOCK_SIZE];
__shared__ float smem3[BLOCK_SIZE];
const unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
float2 prevPt = prevPts[blockIdx.x];
prevPt.x *= (1.0f / (1 << level));
prevPt.y *= (1.0f / (1 << level));
if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
{
if (tid == 0 && level == 0)
status[blockIdx.x] = 0;
return;
}
prevPt.x -= c_multi_halfWin_x<index>::get();
prevPt.y -= c_multi_halfWin_y<index>::get();
// extract the patch from the first image, compute covariation matrix of derivatives
float A11 = 0;
float A12 = 0;
float A22 = 0;
typedef typename TypeVec<float, cn>::vec_type work_type;
work_type I_patch [PATCH_Y][PATCH_X];
work_type dIdx_patch[PATCH_Y][PATCH_X];
work_type dIdy_patch[PATCH_Y][PATCH_X];
for (int yBase = threadIdx.y, i = 0; yBase < c_multi_winSize_y<index>::get(); yBase += blockDim.y, ++i)
{
for (int xBase = threadIdx.x, j = 0; xBase < c_multi_winSize_x<index>::get(); xBase += blockDim.x, ++j)
{
float x = prevPt.x + xBase + 0.5f;
float y = prevPt.y + yBase + 0.5f;
I_patch[i][j] = Tex_I_multi<cn,index>::read(x, y);
// Sharr Deriv
work_type dIdx = 3.0f * Tex_I_multi<cn,index>::read(x+1, y-1) + 10.0f * Tex_I_multi<cn,index>::read(x+1, y) + 3.0f * Tex_I_multi<cn,index>::read(x+1, y+1) -
(3.0f * Tex_I_multi<cn,index>::read(x-1, y-1) + 10.0f * Tex_I_multi<cn,index>::read(x-1, y) + 3.0f * Tex_I_multi<cn,index>::read(x-1, y+1));
work_type dIdy = 3.0f * Tex_I_multi<cn,index>::read(x-1, y+1) + 10.0f * Tex_I_multi<cn,index>::read(x, y+1) + 3.0f * Tex_I_multi<cn,index>::read(x+1, y+1) -
(3.0f * Tex_I_multi<cn,index>::read(x-1, y-1) + 10.0f * Tex_I_multi<cn,index>::read(x, y-1) + 3.0f * Tex_I_multi<cn,index>::read(x+1, y-1));
dIdx_patch[i][j] = dIdx;
dIdy_patch[i][j] = dIdy;
accum(A11, dIdx * dIdx);
accum(A12, dIdx * dIdy);
accum(A22, dIdy * dIdy);
}
}
reduce<BLOCK_SIZE>(smem_tuple(smem1, smem2, smem3), thrust::tie(A11, A12, A22), tid, thrust::make_tuple(plus<float>(), plus<float>(), plus<float>()));
#if __CUDA_ARCH__ >= 300
if (tid == 0)
{
smem1[0] = A11;
smem2[0] = A12;
smem3[0] = A22;
}
#endif
__syncthreads();
A11 = smem1[0];
A12 = smem2[0];
A22 = smem3[0];
float D = A11 * A22 - A12 * A12;
if (abs_(D) < numeric_limits<float>::epsilon())
{
if (tid == 0 && level == 0)
status[blockIdx.x] = 0;
return;
}
D = 1.f / D;
A11 *= D;
A12 *= D;
A22 *= D;
float2 nextPt = nextPts[blockIdx.x];
nextPt.x *= 2.f;
nextPt.y *= 2.f;
nextPt.x -= c_multi_halfWin_x<index>::get();
nextPt.y -= c_multi_halfWin_y<index>::get();
for (int k = 0; k < c_multi_iters<index>::get(); ++k)
{
if (nextPt.x < -c_multi_halfWin_x<index>::get() || nextPt.x >= cols || nextPt.y < -c_multi_halfWin_y<index>::get() || nextPt.y >= rows)
{
if (tid == 0 && level == 0)
status[blockIdx.x] = 0;
return;
}
float b1 = 0;
float b2 = 0;
for (int y = threadIdx.y, i = 0; y < c_multi_winSize_y<index>::get(); y += blockDim.y, ++i)
{
for (int x = threadIdx.x, j = 0; x < c_multi_winSize_x<index>::get(); x += blockDim.x, ++j)
{
work_type I_val = I_patch[i][j];
work_type J_val = Tex_J_multi<cn,index>::read(nextPt.x + x + 0.5f, nextPt.y + y + 0.5f);
work_type diff = (J_val - I_val) * 32.0f;
accum(b1, diff * dIdx_patch[i][j]);
accum(b2, diff * dIdy_patch[i][j]);
}
}
reduce<BLOCK_SIZE>(smem_tuple(smem1, smem2), thrust::tie(b1, b2), tid, thrust::make_tuple(plus<float>(), plus<float>()));
#if __CUDA_ARCH__ >= 300
if (tid == 0)
{
smem1[0] = b1;
smem2[0] = b2;
}
#endif
__syncthreads();
b1 = smem1[0];
b2 = smem2[0];
float2 delta;
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
nextPt.x += delta.x;
nextPt.y += delta.y;
if (::fabs(delta.x) < 0.01f && ::fabs(delta.y) < 0.01f)
break;
}
float errval = 0;
if (calcErr)
{
for (int y = threadIdx.y, i = 0; y < c_multi_winSize_y<index>::get(); y += blockDim.y, ++i)
{
for (int x = threadIdx.x, j = 0; x < c_multi_winSize_x<index>::get(); x += blockDim.x, ++j)
{
work_type I_val = I_patch[i][j];
work_type J_val = Tex_J_multi<cn,index>::read(nextPt.x + x + 0.5f, nextPt.y + y + 0.5f);
work_type diff = J_val - I_val;
accum(errval, abs_(diff));
}
}
reduce<BLOCK_SIZE>(smem1, errval, tid, plus<float>());
}
if (tid == 0)
{
nextPt.x += c_multi_halfWin_x<index>::get();
nextPt.y += c_multi_halfWin_y<index>::get();
nextPts[blockIdx.x] = nextPt;
if (calcErr)
err[blockIdx.x] = static_cast<float>(errval) / (cn * c_multi_winSize_x<index>::get() * c_multi_winSize_y<index>::get());
}
}
#endif // defined(HAVE_TBB)
template <int cn, int PATCH_X, int PATCH_Y>
void sparse_caller(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, cudaStream_t stream)
@ -326,6 +615,26 @@ namespace pyrlk
cudaSafeCall( cudaDeviceSynchronize() );
}
#if defined(HAVE_TBB)
template <int cn, int index, int PATCH_X, int PATCH_Y>
void sparse_caller_multi(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, cudaStream_t stream)
{
dim3 grid(ptcount);
if (level == 0 && err)
sparseKernel_multi<cn, index, PATCH_X, PATCH_Y, true><<<grid, block>>>(prevPts, nextPts, status, err, level, rows, cols);
else
sparseKernel_multi<cn, index, PATCH_X, PATCH_Y, false><<<grid, block>>>(prevPts, nextPts, status, err, level, rows, cols);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
#endif // defined(HAVE_TBB)
template <bool calcErr>
__global__ void denseKernel(PtrStepf u, PtrStepf v, const PtrStepf prevU, const PtrStepf prevV, PtrStepf err, const int rows, const int cols)
{
@ -484,6 +793,30 @@ namespace pyrlk
cudaSafeCall( cudaMemcpyToSymbol(c_iters, &iters, sizeof(int)) );
}
#if defined(HAVE_TBB)
void loadConstants_multi(int2 winSize, int iters, int index, cudaStream_t stream = 0)
{
int2 halfWin;
#define COPY_TO_SYMBOL_CALL(index) \
cudaSafeCall( cudaMemcpyToSymbolAsync(c_winSize_x##index, &winSize.x, sizeof(int), 0, cudaMemcpyHostToDevice, stream) ); \
cudaSafeCall( cudaMemcpyToSymbolAsync(c_winSize_y##index, &winSize.y, sizeof(int), 0, cudaMemcpyHostToDevice, stream) ); \
halfWin = make_int2((winSize.x - 1) / 2, (winSize.y - 1) / 2); \
cudaSafeCall( cudaMemcpyToSymbolAsync(c_halfWin_x##index, &halfWin.x, sizeof(int), 0, cudaMemcpyHostToDevice, stream) ); \
cudaSafeCall( cudaMemcpyToSymbolAsync(c_halfWin_y##index, &halfWin.y, sizeof(int), 0, cudaMemcpyHostToDevice, stream) ); \
cudaSafeCall( cudaMemcpyToSymbolAsync(c_iters##index, &iters, sizeof(int), 0, cudaMemcpyHostToDevice, stream) );
switch(index)
{
case 0: COPY_TO_SYMBOL_CALL(0) break;
case 1: COPY_TO_SYMBOL_CALL(1) break;
case 2: COPY_TO_SYMBOL_CALL(2) break;
case 3: COPY_TO_SYMBOL_CALL(3) break;
case 4: COPY_TO_SYMBOL_CALL(4) break;
default: CV_Error(CV_StsBadArg, "invalid execution line index"); break;
}
}
#endif // defined(HAVE_TBB)
void sparse1(PtrStepSzf I, PtrStepSzf J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream)
{
@ -528,6 +861,161 @@ namespace pyrlk
level, block, stream);
}
#if defined(HAVE_TBB)
void sparse1_multi(PtrStepSzf I, PtrStepSzf J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream, int index)
{
typedef void (*func_t)(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, cudaStream_t stream);
static const func_t funcs[5][5][5] =
{
{ // index 0
{sparse_caller_multi<1, 0, 1, 1>, sparse_caller_multi<1, 0, 2, 1>, sparse_caller_multi<1, 0, 3, 1>, sparse_caller_multi<1, 0, 4, 1>, sparse_caller_multi<1, 0, 5, 1>},
{sparse_caller_multi<1, 0, 1, 2>, sparse_caller_multi<1, 0, 2, 2>, sparse_caller_multi<1, 0, 3, 2>, sparse_caller_multi<1, 0, 4, 2>, sparse_caller_multi<1, 0, 5, 2>},
{sparse_caller_multi<1, 0, 1, 3>, sparse_caller_multi<1, 0, 2, 3>, sparse_caller_multi<1, 0, 3, 3>, sparse_caller_multi<1, 0, 4, 3>, sparse_caller_multi<1, 0, 5, 3>},
{sparse_caller_multi<1, 0, 1, 4>, sparse_caller_multi<1, 0, 2, 4>, sparse_caller_multi<1, 0, 3, 4>, sparse_caller_multi<1, 0, 4, 4>, sparse_caller_multi<1, 0, 5, 4>},
{sparse_caller_multi<1, 0, 1, 5>, sparse_caller_multi<1, 0, 2, 5>, sparse_caller_multi<1, 0, 3, 5>, sparse_caller_multi<1, 0, 4, 5>, sparse_caller_multi<1, 0, 5, 5>}
},
{ // index 1
{sparse_caller_multi<1, 1, 1, 1>, sparse_caller_multi<1, 1, 2, 1>, sparse_caller_multi<1, 1, 3, 1>, sparse_caller_multi<1, 1, 4, 1>, sparse_caller_multi<1, 1, 5, 1>},
{sparse_caller_multi<1, 1, 1, 2>, sparse_caller_multi<1, 1, 2, 2>, sparse_caller_multi<1, 1, 3, 2>, sparse_caller_multi<1, 1, 4, 2>, sparse_caller_multi<1, 1, 5, 2>},
{sparse_caller_multi<1, 1, 1, 3>, sparse_caller_multi<1, 1, 2, 3>, sparse_caller_multi<1, 1, 3, 3>, sparse_caller_multi<1, 1, 4, 3>, sparse_caller_multi<1, 1, 5, 3>},
{sparse_caller_multi<1, 1, 1, 4>, sparse_caller_multi<1, 1, 2, 4>, sparse_caller_multi<1, 1, 3, 4>, sparse_caller_multi<1, 1, 4, 4>, sparse_caller_multi<1, 1, 5, 4>},
{sparse_caller_multi<1, 1, 1, 5>, sparse_caller_multi<1, 1, 2, 5>, sparse_caller_multi<1, 1, 3, 5>, sparse_caller_multi<1, 1, 4, 5>, sparse_caller_multi<1, 1, 5, 5>}
},
{ // index 2
{sparse_caller_multi<1, 2, 1, 1>, sparse_caller_multi<1, 2, 2, 1>, sparse_caller_multi<1, 2, 3, 1>, sparse_caller_multi<1, 2, 4, 1>, sparse_caller_multi<1, 2, 5, 1>},
{sparse_caller_multi<1, 2, 1, 2>, sparse_caller_multi<1, 2, 2, 2>, sparse_caller_multi<1, 2, 3, 2>, sparse_caller_multi<1, 2, 4, 2>, sparse_caller_multi<1, 2, 5, 2>},
{sparse_caller_multi<1, 2, 1, 3>, sparse_caller_multi<1, 2, 2, 3>, sparse_caller_multi<1, 2, 3, 3>, sparse_caller_multi<1, 2, 4, 3>, sparse_caller_multi<1, 2, 5, 3>},
{sparse_caller_multi<1, 2, 1, 4>, sparse_caller_multi<1, 2, 2, 4>, sparse_caller_multi<1, 2, 3, 4>, sparse_caller_multi<1, 2, 4, 4>, sparse_caller_multi<1, 2, 5, 4>},
{sparse_caller_multi<1, 2, 1, 5>, sparse_caller_multi<1, 2, 2, 5>, sparse_caller_multi<1, 2, 3, 5>, sparse_caller_multi<1, 2, 4, 5>, sparse_caller_multi<1, 2, 5, 5>}
},
{ // index 3
{sparse_caller_multi<1, 3, 1, 1>, sparse_caller_multi<1, 3, 2, 1>, sparse_caller_multi<1, 3, 3, 1>, sparse_caller_multi<1, 3, 4, 1>, sparse_caller_multi<1, 3, 5, 1>},
{sparse_caller_multi<1, 3, 1, 2>, sparse_caller_multi<1, 3, 2, 2>, sparse_caller_multi<1, 3, 3, 2>, sparse_caller_multi<1, 3, 4, 2>, sparse_caller_multi<1, 3, 5, 2>},
{sparse_caller_multi<1, 3, 1, 3>, sparse_caller_multi<1, 3, 2, 3>, sparse_caller_multi<1, 3, 3, 3>, sparse_caller_multi<1, 3, 4, 3>, sparse_caller_multi<1, 3, 5, 3>},
{sparse_caller_multi<1, 3, 1, 4>, sparse_caller_multi<1, 3, 2, 4>, sparse_caller_multi<1, 3, 3, 4>, sparse_caller_multi<1, 3, 4, 4>, sparse_caller_multi<1, 3, 5, 4>},
{sparse_caller_multi<1, 3, 1, 5>, sparse_caller_multi<1, 3, 2, 5>, sparse_caller_multi<1, 3, 3, 5>, sparse_caller_multi<1, 3, 4, 5>, sparse_caller_multi<1, 3, 5, 5>}
},
{ // index 4
{sparse_caller_multi<1, 4, 1, 1>, sparse_caller_multi<1, 4, 2, 1>, sparse_caller_multi<1, 4, 3, 1>, sparse_caller_multi<1, 4, 4, 1>, sparse_caller_multi<1, 4, 5, 1>},
{sparse_caller_multi<1, 4, 1, 2>, sparse_caller_multi<1, 4, 2, 2>, sparse_caller_multi<1, 4, 3, 2>, sparse_caller_multi<1, 4, 4, 2>, sparse_caller_multi<1, 4, 5, 2>},
{sparse_caller_multi<1, 4, 1, 3>, sparse_caller_multi<1, 4, 2, 3>, sparse_caller_multi<1, 4, 3, 3>, sparse_caller_multi<1, 4, 4, 3>, sparse_caller_multi<1, 4, 5, 3>},
{sparse_caller_multi<1, 4, 1, 4>, sparse_caller_multi<1, 4, 2, 4>, sparse_caller_multi<1, 4, 3, 4>, sparse_caller_multi<1, 4, 4, 4>, sparse_caller_multi<1, 4, 5, 4>},
{sparse_caller_multi<1, 4, 1, 5>, sparse_caller_multi<1, 4, 2, 5>, sparse_caller_multi<1, 4, 3, 5>, sparse_caller_multi<1, 4, 4, 5>, sparse_caller_multi<1, 4, 5, 5>}
}
};
switch(index)
{
case 0:
bindTexture(&tex_If1_multi0, I);
bindTexture(&tex_Jf1_multi0, J);
break;
case 1:
bindTexture(&tex_If1_multi1, I);
bindTexture(&tex_Jf1_multi1, J);
break;
case 2:
bindTexture(&tex_If1_multi2, I);
bindTexture(&tex_Jf1_multi2, J);
break;
case 3:
bindTexture(&tex_If1_multi3, I);
bindTexture(&tex_Jf1_multi3, J);
break;
case 4:
bindTexture(&tex_If1_multi4, I);
bindTexture(&tex_Jf1_multi4, J);
break;
default:
CV_Error(CV_StsBadArg, "invalid execution line index");
break;
}
funcs[index][patch.y - 1][patch.x - 1](I.rows, I.cols, prevPts, nextPts, status, err, ptcount,
level, block, stream);
}
void sparse4_multi(PtrStepSz<float4> I, PtrStepSz<float4> J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream, int index)
{
typedef void (*func_t)(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, cudaStream_t stream);
static const func_t funcs[5][5][5] =
{
{ // index 0
{sparse_caller_multi<4, 0, 1, 1>, sparse_caller_multi<4, 0, 2, 1>, sparse_caller_multi<4, 0, 3, 1>, sparse_caller_multi<4, 0, 4, 1>, sparse_caller_multi<4, 0, 5, 1>},
{sparse_caller_multi<4, 0, 1, 2>, sparse_caller_multi<4, 0, 2, 2>, sparse_caller_multi<4, 0, 3, 2>, sparse_caller_multi<4, 0, 4, 2>, sparse_caller_multi<4, 0, 5, 2>},
{sparse_caller_multi<4, 0, 1, 3>, sparse_caller_multi<4, 0, 2, 3>, sparse_caller_multi<4, 0, 3, 3>, sparse_caller_multi<4, 0, 4, 3>, sparse_caller_multi<4, 0, 5, 3>},
{sparse_caller_multi<4, 0, 1, 4>, sparse_caller_multi<4, 0, 2, 4>, sparse_caller_multi<4, 0, 3, 4>, sparse_caller_multi<4, 0, 4, 4>, sparse_caller_multi<4, 0, 5, 4>},
{sparse_caller_multi<4, 0, 1, 5>, sparse_caller_multi<4, 0, 2, 5>, sparse_caller_multi<4, 0, 3, 5>, sparse_caller_multi<4, 0, 4, 5>, sparse_caller_multi<4, 0, 5, 5>}
},
{ // index 1
{sparse_caller_multi<4, 1, 1, 1>, sparse_caller_multi<4, 1, 2, 1>, sparse_caller_multi<4, 1, 3, 1>, sparse_caller_multi<4, 1, 4, 1>, sparse_caller_multi<4, 1, 5, 1>},
{sparse_caller_multi<4, 1, 1, 2>, sparse_caller_multi<4, 1, 2, 2>, sparse_caller_multi<4, 1, 3, 2>, sparse_caller_multi<4, 1, 4, 2>, sparse_caller_multi<4, 1, 5, 2>},
{sparse_caller_multi<4, 1, 1, 3>, sparse_caller_multi<4, 1, 2, 3>, sparse_caller_multi<4, 1, 3, 3>, sparse_caller_multi<4, 1, 4, 3>, sparse_caller_multi<4, 1, 5, 3>},
{sparse_caller_multi<4, 1, 1, 4>, sparse_caller_multi<4, 1, 2, 4>, sparse_caller_multi<4, 1, 3, 4>, sparse_caller_multi<4, 1, 4, 4>, sparse_caller_multi<4, 1, 5, 4>},
{sparse_caller_multi<4, 1, 1, 5>, sparse_caller_multi<4, 1, 2, 5>, sparse_caller_multi<4, 1, 3, 5>, sparse_caller_multi<4, 1, 4, 5>, sparse_caller_multi<4, 1, 5, 5>}
},
{ // index 2
{sparse_caller_multi<4, 2, 1, 1>, sparse_caller_multi<4, 2, 2, 1>, sparse_caller_multi<4, 2, 3, 1>, sparse_caller_multi<4, 2, 4, 1>, sparse_caller_multi<4, 2, 5, 1>},
{sparse_caller_multi<4, 2, 1, 2>, sparse_caller_multi<4, 2, 2, 2>, sparse_caller_multi<4, 2, 3, 2>, sparse_caller_multi<4, 2, 4, 2>, sparse_caller_multi<4, 2, 5, 2>},
{sparse_caller_multi<4, 2, 1, 3>, sparse_caller_multi<4, 2, 2, 3>, sparse_caller_multi<4, 2, 3, 3>, sparse_caller_multi<4, 2, 4, 3>, sparse_caller_multi<4, 2, 5, 3>},
{sparse_caller_multi<4, 2, 1, 4>, sparse_caller_multi<4, 2, 2, 4>, sparse_caller_multi<4, 2, 3, 4>, sparse_caller_multi<4, 2, 4, 4>, sparse_caller_multi<4, 2, 5, 4>},
{sparse_caller_multi<4, 2, 1, 5>, sparse_caller_multi<4, 2, 2, 5>, sparse_caller_multi<4, 2, 3, 5>, sparse_caller_multi<4, 2, 4, 5>, sparse_caller_multi<4, 2, 5, 5>}
},
{ // index 3
{sparse_caller_multi<4, 3, 1, 1>, sparse_caller_multi<4, 3, 2, 1>, sparse_caller_multi<4, 3, 3, 1>, sparse_caller_multi<4, 3, 4, 1>, sparse_caller_multi<4, 3, 5, 1>},
{sparse_caller_multi<4, 3, 1, 2>, sparse_caller_multi<4, 3, 2, 2>, sparse_caller_multi<4, 3, 3, 2>, sparse_caller_multi<4, 3, 4, 2>, sparse_caller_multi<4, 3, 5, 2>},
{sparse_caller_multi<4, 3, 1, 3>, sparse_caller_multi<4, 3, 2, 3>, sparse_caller_multi<4, 3, 3, 3>, sparse_caller_multi<4, 3, 4, 3>, sparse_caller_multi<4, 3, 5, 3>},
{sparse_caller_multi<4, 3, 1, 4>, sparse_caller_multi<4, 3, 2, 4>, sparse_caller_multi<4, 3, 3, 4>, sparse_caller_multi<4, 3, 4, 4>, sparse_caller_multi<4, 3, 5, 4>},
{sparse_caller_multi<4, 3, 1, 5>, sparse_caller_multi<4, 3, 2, 5>, sparse_caller_multi<4, 3, 3, 5>, sparse_caller_multi<4, 3, 4, 5>, sparse_caller_multi<4, 3, 5, 5>}
},
{ // index 4
{sparse_caller_multi<4, 4, 1, 1>, sparse_caller_multi<4, 4, 2, 1>, sparse_caller_multi<4, 4, 3, 1>, sparse_caller_multi<4, 4, 4, 1>, sparse_caller_multi<4, 4, 5, 1>},
{sparse_caller_multi<4, 4, 1, 2>, sparse_caller_multi<4, 4, 2, 2>, sparse_caller_multi<4, 4, 3, 2>, sparse_caller_multi<4, 4, 4, 2>, sparse_caller_multi<4, 4, 5, 2>},
{sparse_caller_multi<4, 4, 1, 3>, sparse_caller_multi<4, 4, 2, 3>, sparse_caller_multi<4, 4, 3, 3>, sparse_caller_multi<4, 4, 4, 3>, sparse_caller_multi<4, 4, 5, 3>},
{sparse_caller_multi<4, 4, 1, 4>, sparse_caller_multi<4, 4, 2, 4>, sparse_caller_multi<4, 4, 3, 4>, sparse_caller_multi<4, 4, 4, 4>, sparse_caller_multi<4, 4, 5, 4>},
{sparse_caller_multi<4, 4, 1, 5>, sparse_caller_multi<4, 4, 2, 5>, sparse_caller_multi<4, 4, 3, 5>, sparse_caller_multi<4, 4, 4, 5>, sparse_caller_multi<4, 4, 5, 5>}
}
};
switch(index)
{
case 0:
bindTexture(&tex_If4_multi0, I);
bindTexture(&tex_Jf4_multi0, J);
break;
case 1:
bindTexture(&tex_If4_multi1, I);
bindTexture(&tex_Jf4_multi1, J);
break;
case 2:
bindTexture(&tex_If4_multi2, I);
bindTexture(&tex_Jf4_multi2, J);
break;
case 3:
bindTexture(&tex_If4_multi3, I);
bindTexture(&tex_Jf4_multi3, J);
break;
case 4:
bindTexture(&tex_If4_multi4, I);
bindTexture(&tex_Jf4_multi4, J);
break;
default:
CV_Error(CV_StsBadArg, "invalid execution line index");
break;
}
funcs[index][patch.y - 1][patch.x - 1](I.rows, I.cols, prevPts, nextPts, status, err, ptcount,
level, block, stream);
}
#endif // defined(HAVE_TBB)
void dense(PtrStepSzb I, PtrStepSzf J, PtrStepSzf u, PtrStepSzf v, PtrStepSzf prevU, PtrStepSzf prevV, PtrStepSzf err, int2 winSize, cudaStream_t stream)
{
dim3 block(16, 16);

@ -42,6 +42,11 @@
#include "precomp.hpp"
#ifdef HAVE_TBB
#include <tbb/compat/condition_variable>
#include <tbb/mutex.h>
#endif
using namespace std;
using namespace cv;
using namespace cv::gpu;
@ -64,6 +69,22 @@ namespace pyrlk
void sparse4(PtrStepSz<float4> I, PtrStepSz<float4> J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream = 0);
#if !defined(HAVE_TBB)
void loadConstants_multi(int2, int, int, cudaStream_t) { throw_notbb(); }
void sparse1_multi(PtrStepSzf, PtrStepSzf, const float2*, float2*, uchar*, float*, int,
int, dim3, dim3, cudaStream_t, int) { throw_notbb(); }
void sparse4_multi(PtrStepSz<float4>, PtrStepSz<float4>, const float2*, float2*, uchar*, float*, int,
int, dim3, dim3, cudaStream_t, int) { throw_notbb(); }
#else
void loadConstants_multi(int2 winSize, int iters, int index = 0, cudaStream_t stream = 0);
void sparse1_multi(PtrStepSzf I, PtrStepSzf J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream = 0, int index = 0);
void sparse4_multi(PtrStepSz<float4> I, PtrStepSz<float4> J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream = 0, int index = 0);
#endif
void dense(PtrStepSzb I, PtrStepSzf J, PtrStepSzf u, PtrStepSzf v, PtrStepSzf prevU, PtrStepSzf prevV,
PtrStepSzf err, int2 winSize, cudaStream_t stream = 0);
}
@ -98,7 +119,9 @@ namespace
}
}
void cv::gpu::PyrLKOpticalFlow::sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err)
void cv::gpu::PyrLKOpticalFlow::sparse(const GpuMat& prevImg,
const GpuMat& nextImg, const GpuMat& prevPts,
GpuMat& nextPts, GpuMat& status, GpuMat* err)
{
if (prevPts.empty())
{
@ -181,6 +204,130 @@ void cv::gpu::PyrLKOpticalFlow::sparse(const GpuMat& prevImg, const GpuMat& next
}
}
#ifdef HAVE_TBB
//--------------------------------------------------------------------------
// Multi-threading support
static bool index_vector_use[5] = {true, true, true, true, true}; // all free
static tbb::mutex s_PyrLKOpticalFlow_Mutex;
static condition_variable s_PyrLKOpticalFlow_ConditionVariable;
void cv::gpu::PyrLKOpticalFlow::sparse_multi(const GpuMat& prevImg,
const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
GpuMat& status, Stream& stream, GpuMat* err)
{
if (prevPts.empty())
{
nextPts.release();
status.release();
if (err) err->release();
return;
}
dim3 block, patch;
calcPatchSize(winSize, block, patch);
CV_Assert(prevImg.channels() == 1 || prevImg.channels() == 3 || prevImg.channels() == 4);
CV_Assert(prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type());
CV_Assert(maxLevel >= 0);
CV_Assert(winSize.width > 2 && winSize.height > 2);
CV_Assert(patch.x > 0 && patch.x < 6 && patch.y > 0 && patch.y < 6);
CV_Assert(prevPts.rows == 1 && prevPts.type() == CV_32FC2);
if (useInitialFlow)
CV_Assert(nextPts.size() == prevPts.size() && nextPts.type() == CV_32FC2);
else
ensureSizeIsEnough(1, prevPts.cols, prevPts.type(), nextPts);
GpuMat temp1 = (useInitialFlow ? nextPts : prevPts).reshape(1);
GpuMat temp2 = nextPts.reshape(1);
multiply(temp1, Scalar::all(1.0 / (1 << maxLevel) / 2.0), temp2);
ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status);
status.setTo(Scalar::all(1));
if (err)
ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);
// build the image pyramids.
prevPyr_.resize(maxLevel + 1);
nextPyr_.resize(maxLevel + 1);
int cn = prevImg.channels();
if (cn == 1 || cn == 4)
{
prevImg.convertTo(prevPyr_[0], CV_32F);
nextImg.convertTo(nextPyr_[0], CV_32F);
}
else
{
buf_.resize(1);
cvtColor(prevImg, buf_[0], COLOR_BGR2BGRA);
buf_[0].convertTo(prevPyr_[0], CV_32F);
cvtColor(nextImg, buf_[0], COLOR_BGR2BGRA);
buf_[0].convertTo(nextPyr_[0], CV_32F);
}
for (int level = 1; level <= maxLevel; ++level)
{
pyrDown(prevPyr_[level - 1], prevPyr_[level]);
pyrDown(nextPyr_[level - 1], nextPyr_[level]);
}
//--------------------------------------------------------------------------
// Multithreading support
int index = -1;
do
{
unique_lock<tbb::mutex> ul(s_PyrLKOpticalFlow_Mutex);
for (unsigned int uiI = 0; uiI < 5; ++uiI)
{
if (index_vector_use[uiI])
{
index = uiI;
index_vector_use[uiI] = false;
break;
}
}
if (index < 0)
s_PyrLKOpticalFlow_ConditionVariable.wait(ul);
ul.unlock();
}while (index < 0);
//--------------------------------------------------------------------------
pyrlk::loadConstants_multi(make_int2(winSize.width, winSize.height), iters, index);
for (int level = maxLevel; level >= 0; level--)
{
if (cn == 1)
{
pyrlk::sparse1_multi(prevPyr_[level], nextPyr_[level],
prevPts.ptr<float2>(), nextPts.ptr<float2>(), status.ptr(),
level == 0 && err ? err->ptr<float>() : 0, prevPts.cols,
level, block, patch, StreamAccessor::getStream(stream), index);
}
else
{
pyrlk::sparse4_multi(prevPyr_[level], nextPyr_[level],
prevPts.ptr<float2>(), nextPts.ptr<float2>(), status.ptr(),
level == 0 && err ? err->ptr<float>() : 0, prevPts.cols,
level, block, patch, StreamAccessor::getStream(stream), index);
}
}
unique_lock<tbb::mutex> ul(s_PyrLKOpticalFlow_Mutex);
index_vector_use[index] = true;
s_PyrLKOpticalFlow_ConditionVariable.notify_one();
}
#endif
void cv::gpu::PyrLKOpticalFlow::dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err)
{
CV_Assert(prevImg.type() == CV_8UC1);

@ -44,6 +44,10 @@
#ifdef HAVE_CUDA
#ifdef HAVE_TBB
#include <tbb/tbb.h>
#endif
using namespace cvtest;
//////////////////////////////////////////////////////
@ -322,6 +326,134 @@ GPU_TEST_P(PyrLKOpticalFlow, Sparse)
ASSERT_LE(bad_ratio, 0.01);
}
#ifdef HAVE_TBB
struct Sparse_Multi_Functor
{
explicit Sparse_Multi_Functor(const cv::Mat& in_frame0, const cv::Mat& in_frame1,
const cv::Mat& in_pts_mat,
cv::gpu::GpuMat* in_d_pts,
cv::gpu::GpuMat* in_d_nextPts,
cv::gpu::GpuMat* in_d_status,
cv::gpu::Stream* in_streams):
m_frame0(in_frame0), m_frame1(in_frame1),
m_pts_mat(in_pts_mat),
m_d_pts(in_d_pts), m_d_nextPts(in_d_nextPts),
m_d_status(in_d_status), m_streams(in_streams){}
void operator()( const tbb::blocked_range<size_t>& r ) const
{
for( size_t i = r.begin(); i != r.end(); ++i )
{
m_d_pts[i].upload(m_pts_mat);
cv::gpu::PyrLKOpticalFlow pyrLK;
pyrLK.sparse_multi(loadMat(m_frame0), loadMat(m_frame1), m_d_pts[i],
m_d_nextPts[i], m_d_status[i], m_streams[i]);
m_streams[i].waitForCompletion();
}
}
const cv::Mat& m_frame0;
const cv::Mat& m_frame1;
const cv::Mat& m_pts_mat;
cv::gpu::GpuMat* m_d_pts;
cv::gpu::GpuMat* m_d_nextPts;
cv::gpu::GpuMat* m_d_status;
cv::gpu::Stream* m_streams;
};
GPU_TEST_P(PyrLKOpticalFlow, Sparse_Multi)
{
cv::Mat frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame1.empty());
cv::Mat gray_frame;
if (useGray)
gray_frame = frame0;
else
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
std::vector<cv::Point2f> pts;
cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
//--------------------------------------------------------------------------
// GPU
const unsigned int NB_EXEC_LINES = 27;
cv::gpu::GpuMat d_pts[NB_EXEC_LINES];
cv::gpu::GpuMat d_nextPts[NB_EXEC_LINES];
cv::gpu::GpuMat d_status[NB_EXEC_LINES];
cv::gpu::Stream streams[NB_EXEC_LINES];
cv::Mat pts_mat(1, (int) pts.size(), CV_32FC2, (void*) &pts[0]);
tbb::parallel_for(tbb::blocked_range<size_t>(0, NB_EXEC_LINES),
Sparse_Multi_Functor(frame0, frame1, pts_mat,
d_pts, d_nextPts, d_status, streams));
std::vector<cv::Point2f> nextPts[NB_EXEC_LINES];
std::vector<unsigned char> status[NB_EXEC_LINES];
for (unsigned int i = 0; i < NB_EXEC_LINES; ++i)
{
nextPts[i].resize(d_nextPts[i].cols);
cv::Mat nextPts_mat(1, d_nextPts[i].cols, CV_32FC2, (void*) &(nextPts[i][0]));
d_nextPts[i].download(nextPts_mat);
status[i].resize(d_status[i].cols);
cv::Mat status_mat(1, d_status[i].cols, CV_8UC1, (void*) &(status[i][0]));
d_status[i].download(status_mat);
}
//--------------------------------------------------------------------------
// CPU
std::vector<cv::Point2f> nextPts_gold;
std::vector<unsigned char> status_gold;
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, cv::noArray());
//--------------------------------------------------------------------------
// CHECKS
for (unsigned int uiI = 0; uiI < NB_EXEC_LINES; ++uiI)
{
ASSERT_EQ(nextPts_gold.size(), nextPts[uiI].size());
ASSERT_EQ(status_gold.size(), status[uiI].size());
}
size_t mistmatch = 0;
for (unsigned int uiI = 0; uiI < NB_EXEC_LINES; ++uiI)
{
for (size_t i = 0; i < nextPts[uiI].size(); ++i)
{
cv::Point2i a = nextPts[uiI][i];
cv::Point2i b = nextPts_gold[i];
if (status[uiI][i] != status_gold[i])
{
++mistmatch;
continue;
}
if (status[uiI][i])
{
bool eq = std::abs(a.x - b.x) <= 1 && std::abs(a.y - b.y) <= 1;
if (!eq)
++mistmatch;
}
}
}
double bad_ratio = static_cast<double>(mistmatch) / (nextPts[0].size() * NB_EXEC_LINES);
ASSERT_LE(bad_ratio, 0.01);
}
#endif // HAVE_TBB
INSTANTIATE_TEST_CASE_P(GPU_Video, PyrLKOpticalFlow, testing::Combine(
ALL_DEVICES,
testing::Values(UseGray(true), UseGray(false))));

Loading…
Cancel
Save