|
|
|
@ -40,197 +40,88 @@ |
|
|
|
|
// |
|
|
|
|
//M*/ |
|
|
|
|
|
|
|
|
|
#if !defined CUDA_DISABLER |
|
|
|
|
#include "opencv2/opencv_modules.hpp" |
|
|
|
|
|
|
|
|
|
#include "opencv2/core/cuda/common.hpp" |
|
|
|
|
#include "opencv2/core/cuda/vec_traits.hpp" |
|
|
|
|
#include "opencv2/core/cuda/vec_math.hpp" |
|
|
|
|
#include "opencv2/core/cuda/functional.hpp" |
|
|
|
|
#include "opencv2/core/cuda/reduce.hpp" |
|
|
|
|
#include "opencv2/core/cuda/emulation.hpp" |
|
|
|
|
#include "opencv2/core/cuda/limits.hpp" |
|
|
|
|
#include "opencv2/core/cuda/utility.hpp" |
|
|
|
|
#ifndef HAVE_OPENCV_CUDEV |
|
|
|
|
|
|
|
|
|
using namespace cv::cuda; |
|
|
|
|
using namespace cv::cuda::device; |
|
|
|
|
#error "opencv_cudev is required" |
|
|
|
|
|
|
|
|
|
namespace minMaxLoc |
|
|
|
|
{ |
|
|
|
|
// To avoid shared bank conflicts we convert each value into value of |
|
|
|
|
// appropriate type (32 bits minimum) |
|
|
|
|
template <typename T> struct MinMaxTypeTraits; |
|
|
|
|
template <> struct MinMaxTypeTraits<unsigned char> { typedef int best_type; }; |
|
|
|
|
template <> struct MinMaxTypeTraits<signed char> { typedef int best_type; }; |
|
|
|
|
template <> struct MinMaxTypeTraits<unsigned short> { typedef int best_type; }; |
|
|
|
|
template <> struct MinMaxTypeTraits<short> { typedef int best_type; }; |
|
|
|
|
template <> struct MinMaxTypeTraits<int> { typedef int best_type; }; |
|
|
|
|
template <> struct MinMaxTypeTraits<float> { typedef float best_type; }; |
|
|
|
|
template <> struct MinMaxTypeTraits<double> { typedef double best_type; }; |
|
|
|
|
|
|
|
|
|
template <int BLOCK_SIZE, typename T, class Mask> |
|
|
|
|
__global__ void kernel_pass_1(const PtrStepSz<T> src, const Mask mask, T* minval, T* maxval, unsigned int* minloc, unsigned int* maxloc, const int twidth, const int theight) |
|
|
|
|
{ |
|
|
|
|
typedef typename MinMaxTypeTraits<T>::best_type work_type; |
|
|
|
|
|
|
|
|
|
__shared__ work_type sminval[BLOCK_SIZE]; |
|
|
|
|
__shared__ work_type smaxval[BLOCK_SIZE]; |
|
|
|
|
__shared__ unsigned int sminloc[BLOCK_SIZE]; |
|
|
|
|
__shared__ unsigned int smaxloc[BLOCK_SIZE]; |
|
|
|
|
#else |
|
|
|
|
|
|
|
|
|
const int x0 = blockIdx.x * blockDim.x * twidth + threadIdx.x; |
|
|
|
|
const int y0 = blockIdx.y * blockDim.y * theight + threadIdx.y; |
|
|
|
|
#include "opencv2/cudaarithm.hpp" |
|
|
|
|
#include "opencv2/cudev.hpp" |
|
|
|
|
|
|
|
|
|
const int tid = threadIdx.y * blockDim.x + threadIdx.x; |
|
|
|
|
const int bid = blockIdx.y * gridDim.x + blockIdx.x; |
|
|
|
|
using namespace cv::cudev; |
|
|
|
|
|
|
|
|
|
work_type mymin = numeric_limits<work_type>::max(); |
|
|
|
|
work_type mymax = -numeric_limits<work_type>::max(); |
|
|
|
|
unsigned int myminloc = 0; |
|
|
|
|
unsigned int mymaxloc = 0; |
|
|
|
|
|
|
|
|
|
for (int i = 0, y = y0; i < theight && y < src.rows; ++i, y += blockDim.y) |
|
|
|
|
{ |
|
|
|
|
const T* ptr = src.ptr(y); |
|
|
|
|
|
|
|
|
|
for (int j = 0, x = x0; j < twidth && x < src.cols; ++j, x += blockDim.x) |
|
|
|
|
{ |
|
|
|
|
if (mask(y, x)) |
|
|
|
|
{ |
|
|
|
|
const work_type srcVal = ptr[x]; |
|
|
|
|
|
|
|
|
|
if (srcVal < mymin) |
|
|
|
|
{ |
|
|
|
|
mymin = srcVal; |
|
|
|
|
myminloc = y * src.cols + x; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (srcVal > mymax) |
|
|
|
|
{ |
|
|
|
|
mymax = srcVal; |
|
|
|
|
mymaxloc = y * src.cols + x; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
reduceKeyVal<BLOCK_SIZE>(smem_tuple(sminval, smaxval), thrust::tie(mymin, mymax), |
|
|
|
|
smem_tuple(sminloc, smaxloc), thrust::tie(myminloc, mymaxloc), |
|
|
|
|
tid, |
|
|
|
|
thrust::make_tuple(less<work_type>(), greater<work_type>())); |
|
|
|
|
|
|
|
|
|
if (tid == 0) |
|
|
|
|
{ |
|
|
|
|
minval[bid] = (T) mymin; |
|
|
|
|
maxval[bid] = (T) mymax; |
|
|
|
|
minloc[bid] = myminloc; |
|
|
|
|
maxloc[bid] = mymaxloc; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
template <int BLOCK_SIZE, typename T> |
|
|
|
|
__global__ void kernel_pass_2(T* minval, T* maxval, unsigned int* minloc, unsigned int* maxloc, int count) |
|
|
|
|
namespace |
|
|
|
|
{ |
|
|
|
|
template <typename T> |
|
|
|
|
void minMaxLocImpl(const GpuMat& _src, const GpuMat& mask, GpuMat& _valBuf, GpuMat& _locBuf, double* minVal, double* maxVal, cv::Point* minLoc, cv::Point* maxLoc) |
|
|
|
|
{ |
|
|
|
|
typedef typename MinMaxTypeTraits<T>::best_type work_type; |
|
|
|
|
typedef typename SelectIf< |
|
|
|
|
TypesEquals<T, double>::value, |
|
|
|
|
double, |
|
|
|
|
typename SelectIf<TypesEquals<T, float>::value, float, int>::type |
|
|
|
|
>::type work_type; |
|
|
|
|
|
|
|
|
|
const GpuMat_<T>& src = (const GpuMat_<T>&) _src; |
|
|
|
|
GpuMat_<work_type>& valBuf = (GpuMat_<work_type>&) _valBuf; |
|
|
|
|
GpuMat_<int>& locBuf = (GpuMat_<int>&) _locBuf; |
|
|
|
|
|
|
|
|
|
if (mask.empty()) |
|
|
|
|
gridMinMaxLoc(src, valBuf, locBuf); |
|
|
|
|
else |
|
|
|
|
gridMinMaxLoc(src, valBuf, locBuf, globPtr<uchar>(mask)); |
|
|
|
|
|
|
|
|
|
__shared__ work_type sminval[BLOCK_SIZE]; |
|
|
|
|
__shared__ work_type smaxval[BLOCK_SIZE]; |
|
|
|
|
__shared__ unsigned int sminloc[BLOCK_SIZE]; |
|
|
|
|
__shared__ unsigned int smaxloc[BLOCK_SIZE]; |
|
|
|
|
cv::Mat_<work_type> h_valBuf; |
|
|
|
|
cv::Mat_<int> h_locBuf; |
|
|
|
|
|
|
|
|
|
unsigned int idx = ::min(threadIdx.x, count - 1); |
|
|
|
|
valBuf.download(h_valBuf); |
|
|
|
|
locBuf.download(h_locBuf); |
|
|
|
|
|
|
|
|
|
work_type mymin = minval[idx]; |
|
|
|
|
work_type mymax = maxval[idx]; |
|
|
|
|
unsigned int myminloc = minloc[idx]; |
|
|
|
|
unsigned int mymaxloc = maxloc[idx]; |
|
|
|
|
if (minVal) |
|
|
|
|
*minVal = h_valBuf(0, 0); |
|
|
|
|
|
|
|
|
|
reduceKeyVal<BLOCK_SIZE>(smem_tuple(sminval, smaxval), thrust::tie(mymin, mymax), |
|
|
|
|
smem_tuple(sminloc, smaxloc), thrust::tie(myminloc, mymaxloc), |
|
|
|
|
threadIdx.x, |
|
|
|
|
thrust::make_tuple(less<work_type>(), greater<work_type>())); |
|
|
|
|
if (maxVal) |
|
|
|
|
*maxVal = h_valBuf(1, 0); |
|
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) |
|
|
|
|
if (minLoc) |
|
|
|
|
{ |
|
|
|
|
minval[0] = (T) mymin; |
|
|
|
|
maxval[0] = (T) mymax; |
|
|
|
|
minloc[0] = myminloc; |
|
|
|
|
maxloc[0] = mymaxloc; |
|
|
|
|
const int idx = h_locBuf(0, 0); |
|
|
|
|
*minLoc = cv::Point(idx % src.cols, idx / src.cols); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const int threads_x = 32; |
|
|
|
|
const int threads_y = 8; |
|
|
|
|
|
|
|
|
|
void getLaunchCfg(int cols, int rows, dim3& block, dim3& grid) |
|
|
|
|
{ |
|
|
|
|
block = dim3(threads_x, threads_y); |
|
|
|
|
|
|
|
|
|
grid = dim3(divUp(cols, block.x * block.y), |
|
|
|
|
divUp(rows, block.y * block.x)); |
|
|
|
|
|
|
|
|
|
grid.x = ::min(grid.x, block.x); |
|
|
|
|
grid.y = ::min(grid.y, block.y); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void getBufSize(int cols, int rows, size_t elem_size, int& b1cols, int& b1rows, int& b2cols, int& b2rows) |
|
|
|
|
{ |
|
|
|
|
dim3 block, grid; |
|
|
|
|
getLaunchCfg(cols, rows, block, grid); |
|
|
|
|
|
|
|
|
|
// For values |
|
|
|
|
b1cols = (int)(grid.x * grid.y * elem_size); |
|
|
|
|
b1rows = 2; |
|
|
|
|
|
|
|
|
|
// For locations |
|
|
|
|
b2cols = grid.x * grid.y * sizeof(int); |
|
|
|
|
b2rows = 2; |
|
|
|
|
if (maxLoc) |
|
|
|
|
{ |
|
|
|
|
const int idx = h_locBuf(1, 0); |
|
|
|
|
*maxLoc = cv::Point(idx % src.cols, idx / src.cols); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <typename T> |
|
|
|
|
void run(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf) |
|
|
|
|
void cv::cuda::minMaxLoc(InputArray _src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, InputArray _mask, GpuMat& valBuf, GpuMat& locBuf) |
|
|
|
|
{ |
|
|
|
|
typedef void (*func_t)(const GpuMat& _src, const GpuMat& mask, GpuMat& _valBuf, GpuMat& _locBuf, double* minVal, double* maxVal, cv::Point* minLoc, cv::Point* maxLoc); |
|
|
|
|
static const func_t funcs[] = |
|
|
|
|
{ |
|
|
|
|
dim3 block, grid; |
|
|
|
|
getLaunchCfg(src.cols, src.rows, block, grid); |
|
|
|
|
|
|
|
|
|
const int twidth = divUp(divUp(src.cols, grid.x), block.x); |
|
|
|
|
const int theight = divUp(divUp(src.rows, grid.y), block.y); |
|
|
|
|
minMaxLocImpl<uchar>, |
|
|
|
|
minMaxLocImpl<schar>, |
|
|
|
|
minMaxLocImpl<ushort>, |
|
|
|
|
minMaxLocImpl<short>, |
|
|
|
|
minMaxLocImpl<int>, |
|
|
|
|
minMaxLocImpl<float>, |
|
|
|
|
minMaxLocImpl<double> |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
T* minval_buf = (T*) valbuf.ptr(0); |
|
|
|
|
T* maxval_buf = (T*) valbuf.ptr(1); |
|
|
|
|
unsigned int* minloc_buf = locbuf.ptr(0); |
|
|
|
|
unsigned int* maxloc_buf = locbuf.ptr(1); |
|
|
|
|
|
|
|
|
|
if (mask.data) |
|
|
|
|
kernel_pass_1<threads_x * threads_y><<<grid, block>>>((PtrStepSz<T>) src, SingleMask(mask), minval_buf, maxval_buf, minloc_buf, maxloc_buf, twidth, theight); |
|
|
|
|
else |
|
|
|
|
kernel_pass_1<threads_x * threads_y><<<grid, block>>>((PtrStepSz<T>) src, WithOutMask(), minval_buf, maxval_buf, minloc_buf, maxloc_buf, twidth, theight); |
|
|
|
|
GpuMat src = _src.getGpuMat(); |
|
|
|
|
GpuMat mask = _mask.getGpuMat(); |
|
|
|
|
|
|
|
|
|
cudaSafeCall( cudaGetLastError() ); |
|
|
|
|
CV_Assert( src.channels() == 1 ); |
|
|
|
|
CV_DbgAssert( mask.empty() || (mask.size() == src.size() && mask.type() == CV_8U) ); |
|
|
|
|
|
|
|
|
|
kernel_pass_2<threads_x * threads_y><<<1, threads_x * threads_y>>>(minval_buf, maxval_buf, minloc_buf, maxloc_buf, grid.x * grid.y); |
|
|
|
|
cudaSafeCall( cudaGetLastError() ); |
|
|
|
|
|
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
|
|
|
|
|
|
|
|
T minval_, maxval_; |
|
|
|
|
cudaSafeCall( cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost) ); |
|
|
|
|
cudaSafeCall( cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost) ); |
|
|
|
|
*minval = minval_; |
|
|
|
|
*maxval = maxval_; |
|
|
|
|
|
|
|
|
|
unsigned int minloc_, maxloc_; |
|
|
|
|
cudaSafeCall( cudaMemcpy(&minloc_, minloc_buf, sizeof(unsigned int), cudaMemcpyDeviceToHost) ); |
|
|
|
|
cudaSafeCall( cudaMemcpy(&maxloc_, maxloc_buf, sizeof(unsigned int), cudaMemcpyDeviceToHost) ); |
|
|
|
|
minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols; |
|
|
|
|
maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols; |
|
|
|
|
} |
|
|
|
|
const func_t func = funcs[src.depth()]; |
|
|
|
|
|
|
|
|
|
template void run<unsigned char >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf); |
|
|
|
|
template void run<signed char >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf); |
|
|
|
|
template void run<unsigned short>(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf); |
|
|
|
|
template void run<short >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf); |
|
|
|
|
template void run<int >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf); |
|
|
|
|
template void run<float >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf); |
|
|
|
|
template void run<double>(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf); |
|
|
|
|
func(src, mask, valBuf, locBuf, minVal, maxVal, minLoc, maxLoc); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif // CUDA_DISABLER |
|
|
|
|
#endif |
|
|
|
|