parent
9ec3d76b21
commit
01f97f150c
3 changed files with 172 additions and 3 deletions
@ -0,0 +1,102 @@ |
|||||||
|
// This file is part of OpenCV project. |
||||||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
||||||
|
// of this distribution and at http://opencv.org/license.html. |
||||||
|
|
||||||
|
#include <cuda_runtime.h> |
||||||
|
#include <cuda_fp16.h> |
||||||
|
|
||||||
|
#include "grid_stride_range.hpp" |
||||||
|
#include "execution.hpp" |
||||||
|
#include "vector_traits.hpp" |
||||||
|
|
||||||
|
#include "../cuda4dnn/csl/stream.hpp" |
||||||
|
#include "../cuda4dnn/csl/span.hpp" |
||||||
|
|
||||||
|
using namespace cv::dnn::cuda4dnn::csl; |
||||||
|
using namespace cv::dnn::cuda4dnn::csl::device; |
||||||
|
|
||||||
|
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels { |
||||||
|
|
||||||
|
namespace raw { |
||||||
|
template <std::size_t N> |
||||||
|
__global__ void fp32_to_fp16(Span<__half> output, View<float> input) { |
||||||
|
using output_vector_type = get_vector_type_t<__half, N>; |
||||||
|
using input_vector_type = get_vector_type_t<float, N>; |
||||||
|
|
||||||
|
auto output_vPtr = output_vector_type::get_pointer(output.data()); |
||||||
|
auto input_vPtr = input_vector_type::get_pointer(input.data()); |
||||||
|
|
||||||
|
for (auto i : grid_stride_range(output.size() / output_vector_type::size())) { |
||||||
|
input_vector_type in_vec; |
||||||
|
v_load(in_vec, input_vPtr[i]); |
||||||
|
|
||||||
|
output_vector_type out_vec; |
||||||
|
for (int j = 0; j < output_vector_type::size(); j++) |
||||||
|
out_vec.data[j] = __float2half(in_vec.data[j]); |
||||||
|
|
||||||
|
v_store(output_vPtr[i], out_vec); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
template <std::size_t N> |
||||||
|
__global__ void fp16_to_fp32(Span<float> output, View<__half> input) { |
||||||
|
using output_vector_type = get_vector_type_t<float, N>; |
||||||
|
using input_vector_type = get_vector_type_t<__half, N>; |
||||||
|
|
||||||
|
auto output_vPtr = output_vector_type::get_pointer(output.data()); |
||||||
|
auto input_vPtr = input_vector_type::get_pointer(input.data()); |
||||||
|
|
||||||
|
for (auto i : grid_stride_range(output.size() / output_vector_type::size())) { |
||||||
|
input_vector_type in_vec; |
||||||
|
v_load(in_vec, input_vPtr[i]); |
||||||
|
|
||||||
|
output_vector_type out_vec; |
||||||
|
for (int j = 0; j < output_vector_type::size(); j++) |
||||||
|
out_vec.data[j] = __half2float(in_vec.data[j]); |
||||||
|
|
||||||
|
v_store(output_vPtr[i], out_vec); |
||||||
|
} |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
template <std::size_t N> static |
||||||
|
void launch_vectorized_fp32_to_fp16(const Stream& stream, Span<__half> output, View<float> input) { |
||||||
|
CV_Assert(is_fully_aligned<__half>(output, N)); |
||||||
|
CV_Assert(is_fully_aligned<float>(input, N)); |
||||||
|
|
||||||
|
auto kernel = raw::fp32_to_fp16<N>; |
||||||
|
auto policy = make_policy(kernel, output.size() / N, 0, stream); |
||||||
|
launch_kernel(kernel, policy, output, input); |
||||||
|
} |
||||||
|
|
||||||
|
void fp32_to_fp16(const Stream& stream, Span<__half> output, View<float> input) { |
||||||
|
if (is_fully_aligned<__half>(output, 4) && is_fully_aligned<float>(input, 4)) { |
||||||
|
launch_vectorized_fp32_to_fp16<4>(stream, output, input); |
||||||
|
} else if (is_fully_aligned<__half>(output, 2) && is_fully_aligned<float>(input, 2)) { |
||||||
|
launch_vectorized_fp32_to_fp16<2>(stream, output, input); |
||||||
|
} else { |
||||||
|
launch_vectorized_fp32_to_fp16<1>(stream, output, input); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
template <std::size_t N> static |
||||||
|
void launch_vectorized_fp16_to_fp32(const Stream& stream, Span<float> output, View<__half> input) { |
||||||
|
CV_Assert(is_fully_aligned<float>(output, N)); |
||||||
|
CV_Assert(is_fully_aligned<__half>(input, N)); |
||||||
|
|
||||||
|
auto kernel = raw::fp16_to_fp32<N>; |
||||||
|
auto policy = make_policy(kernel, output.size() / N, 0, stream); |
||||||
|
launch_kernel(kernel, policy, output, input); |
||||||
|
} |
||||||
|
|
||||||
|
void fp16_to_fp32(const Stream& stream, Span<float> output, View<__half> input) { |
||||||
|
if (is_fully_aligned<float>(output, 4) && is_fully_aligned<__half>(input, 4)) { |
||||||
|
launch_vectorized_fp16_to_fp32<4>(stream, output, input); |
||||||
|
} else if (is_fully_aligned<float>(output, 2) && is_fully_aligned<__half>(input, 2)) { |
||||||
|
launch_vectorized_fp16_to_fp32<2>(stream, output, input); |
||||||
|
} else { |
||||||
|
launch_vectorized_fp16_to_fp32<1>(stream, output, input); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
}}}} /* namespace cv::dnn::cuda4dnn::kernels */ |
@ -0,0 +1,18 @@ |
|||||||
|
// This file is part of OpenCV project.
|
||||||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||||
|
// of this distribution and at http://opencv.org/license.html.
|
||||||
|
|
||||||
|
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_FP_CONVERSION_HPP |
||||||
|
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_FP_CONVERSION_HPP |
||||||
|
|
||||||
|
#include "../csl/stream.hpp" |
||||||
|
#include "../csl/span.hpp" |
||||||
|
|
||||||
|
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels { |
||||||
|
|
||||||
|
void fp32_to_fp16(const csl::Stream& stream, csl::Span<half> output, csl::View<float> input); |
||||||
|
void fp16_to_fp32(const csl::Stream& stream, csl::Span<float> output, csl::View<half> input); |
||||||
|
|
||||||
|
}}}} /* namespace cv::dnn::cuda4dnn::kernels */ |
||||||
|
|
||||||
|
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_FP_CONVERSION_HPP */ |
Loading…
Reference in new issue