diff --git a/modules/photo/include/opencv2/photo.hpp b/modules/photo/include/opencv2/photo.hpp
index 0a42424cb4..c651b9ee33 100644
--- a/modules/photo/include/opencv2/photo.hpp
+++ b/modules/photo/include/opencv2/photo.hpp
@@ -142,7 +142,8 @@ CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, float h
with several computational
optimizations. Noise expected to be a gaussian white noise
-@param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
+@param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
+2-channel, 3-channel or 4-channel image.
@param dst Output image with the same size and type as src .
@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels
@@ -153,7 +154,7 @@ denoising time. Recommended value 21 pixels
parameter applied to all channels or one per channel in dst. Big h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noise
-@param normType Type of norm used for weight calcluation. Can be either NORM_L2 or NORM_L1
+@param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
This function expected to be applied to grayscale images. For colored images look at
fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
@@ -220,9 +221,9 @@ captured in small period of time. For example video. This version of the functio
images or for manual manipulation with colorspaces. For more details see
-@param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or
-4-channel images sequence. All images should have the same type and
-size.
+@param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
+2-channel, 3-channel or 4-channel images sequence. All images should
+have the same type and size.
@param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
@param temporalWindowSize Number of surrounding images to use for target image denoising. Should
be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
@@ -238,10 +239,13 @@ denoising time. Recommended value 21 pixels
parameter applied to all channels or one per channel in dst. Big h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noise
+@param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
*/
CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst,
- int imgToDenoiseIndex, int temporalWindowSize,
- const std::vector& h , int templateWindowSize = 7, int searchWindowSize = 21);
+ int imgToDenoiseIndex, int temporalWindowSize,
+ const std::vector& h,
+ int templateWindowSize = 7, int searchWindowSize = 21,
+ int normType = NORM_L2);
/** @brief Modification of fastNlMeansDenoisingMulti function for colored images sequences
diff --git a/modules/photo/src/denoising.cpp b/modules/photo/src/denoising.cpp
index 4e7922e40c..c68d09b925 100644
--- a/modules/photo/src/denoising.cpp
+++ b/modules/photo/src/denoising.cpp
@@ -230,73 +230,55 @@ static void fastNlMeansDenoisingMultiCheckPreconditions(
}
}
-void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
- int imgToDenoiseIndex, int temporalWindowSize,
- float h, int templateWindowSize, int searchWindowSize)
-{
- fastNlMeansDenoisingMulti(_srcImgs, _dst, imgToDenoiseIndex, temporalWindowSize,
- std::vector(1, h), templateWindowSize, searchWindowSize);
-}
-
-void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
- int imgToDenoiseIndex, int temporalWindowSize,
- const std::vector& h,
- int templateWindowSize, int searchWindowSize)
+template
+static void fastNlMeansDenoisingMulti_( const std::vector& srcImgs, Mat& dst,
+ int imgToDenoiseIndex, int temporalWindowSize,
+ const std::vector& h,
+ int templateWindowSize, int searchWindowSize)
{
- std::vector srcImgs;
- _srcImgs.getMatVector(srcImgs);
-
- fastNlMeansDenoisingMultiCheckPreconditions(
- srcImgs, imgToDenoiseIndex,
- temporalWindowSize, templateWindowSize, searchWindowSize);
-
int hn = (int)h.size();
- CV_Assert(hn == 1 || hn == CV_MAT_CN(srcImgs[0].type()));
-
- _dst.create(srcImgs[0].size(), srcImgs[0].type());
- Mat dst = _dst.getMat();
switch (srcImgs[0].type())
{
case CV_8U:
parallel_for_(cv::Range(0, srcImgs[0].rows),
- FastNlMeansMultiDenoisingInvoker(
+ FastNlMeansMultiDenoisingInvoker(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_8UC2:
if (hn == 1)
parallel_for_(cv::Range(0, srcImgs[0].rows),
- FastNlMeansMultiDenoisingInvoker(
+ FastNlMeansMultiDenoisingInvoker, IT, UIT, D, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, srcImgs[0].rows),
- FastNlMeansMultiDenoisingInvoker(
+ FastNlMeansMultiDenoisingInvoker, IT, UIT, D, Vec2i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_8UC3:
if (hn == 1)
parallel_for_(cv::Range(0, srcImgs[0].rows),
- FastNlMeansMultiDenoisingInvoker(
+ FastNlMeansMultiDenoisingInvoker, IT, UIT, D, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, srcImgs[0].rows),
- FastNlMeansMultiDenoisingInvoker(
+ FastNlMeansMultiDenoisingInvoker, IT, UIT, D, Vec3i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
break;
case CV_8UC4:
if (hn == 1)
parallel_for_(cv::Range(0, srcImgs[0].rows),
- FastNlMeansMultiDenoisingInvoker(
+ FastNlMeansMultiDenoisingInvoker, IT, UIT, D, int>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
else
parallel_for_(cv::Range(0, srcImgs[0].rows),
- FastNlMeansMultiDenoisingInvoker(
+ FastNlMeansMultiDenoisingInvoker, IT, UIT, D, Vec4i>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, &h[0]));
break;
@@ -306,6 +288,75 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds
}
}
+void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
+ int imgToDenoiseIndex, int temporalWindowSize,
+ float h, int templateWindowSize, int searchWindowSize)
+{
+ fastNlMeansDenoisingMulti(_srcImgs, _dst, imgToDenoiseIndex, temporalWindowSize,
+ std::vector(1, h), templateWindowSize, searchWindowSize);
+}
+
+void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
+ int imgToDenoiseIndex, int temporalWindowSize,
+ const std::vector& h,
+ int templateWindowSize, int searchWindowSize, int normType)
+{
+ std::vector srcImgs;
+ _srcImgs.getMatVector(srcImgs);
+
+ fastNlMeansDenoisingMultiCheckPreconditions(
+ srcImgs, imgToDenoiseIndex,
+ temporalWindowSize, templateWindowSize, searchWindowSize);
+
+ int hn = (int)h.size();
+ int type = srcImgs[0].type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
+ CV_Assert(hn == 1 || hn == cn);
+
+ _dst.create(srcImgs[0].size(), srcImgs[0].type());
+ Mat dst = _dst.getMat();
+
+ switch (normType) {
+ case NORM_L2:
+ switch (depth) {
+ case CV_8U:
+ fastNlMeansDenoisingMulti_(srcImgs, dst,
+ imgToDenoiseIndex, temporalWindowSize,
+ h,
+ templateWindowSize, searchWindowSize);
+ break;
+ default:
+ CV_Error(Error::StsBadArg,
+ "Unsupported depth! Only CV_8U is supported for NORM_L2");
+ }
+ break;
+ case NORM_L1:
+ switch (depth) {
+ case CV_8U:
+ fastNlMeansDenoisingMulti_(srcImgs, dst,
+ imgToDenoiseIndex, temporalWindowSize,
+ h,
+ templateWindowSize, searchWindowSize);
+ break;
+ case CV_16U:
+ fastNlMeansDenoisingMulti_(srcImgs, dst,
+ imgToDenoiseIndex, temporalWindowSize,
+ h,
+ templateWindowSize, searchWindowSize);
+ break;
+ default:
+ CV_Error(Error::StsBadArg,
+ "Unsupported depth! Only CV_8U and CV_16U are supported for NORM_L1");
+ }
+ break;
+ default:
+ CV_Error(Error::StsBadArg,
+ "Unsupported norm type! Only NORM_L2 and NORM_L1 are supported");
+ }
+}
+
void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
int imgToDenoiseIndex, int temporalWindowSize,
float h, float hForColorComponents,