mirror of https://github.com/opencv/opencv.git
Merge pull request #632 from pengx17:2.4
commit
00d8ad9e7e
5 changed files with 247 additions and 11 deletions
@ -0,0 +1,227 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Peng Xiao, pengxiao@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
|
||||
#include "precomp.hpp" |
||||
#ifdef HAVE_OPENCL |
||||
|
||||
extern std::string workdir; |
||||
|
||||
using namespace std; |
||||
|
||||
static bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2) |
||||
{ |
||||
const double maxPtDif = 1.0; |
||||
const double maxSizeDif = 1.0; |
||||
const double maxAngleDif = 2.0; |
||||
const double maxResponseDif = 0.1; |
||||
|
||||
double dist = cv::norm(p1.pt - p2.pt); |
||||
|
||||
if (dist < maxPtDif && |
||||
fabs(p1.size - p2.size) < maxSizeDif && |
||||
abs(p1.angle - p2.angle) < maxAngleDif && |
||||
abs(p1.response - p2.response) < maxResponseDif && |
||||
p1.octave == p2.octave && |
||||
p1.class_id == p2.class_id) |
||||
{ |
||||
return true; |
||||
} |
||||
|
||||
return false; |
||||
} |
||||
|
||||
|
||||
struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool> |
||||
{ |
||||
bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const |
||||
{ |
||||
return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x); |
||||
} |
||||
}; |
||||
|
||||
|
||||
#define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual); |
||||
|
||||
static int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual) |
||||
{ |
||||
std::sort(actual.begin(), actual.end(), KeyPointLess()); |
||||
std::sort(gold.begin(), gold.end(), KeyPointLess()); |
||||
|
||||
int validCount = 0; |
||||
|
||||
for (size_t i = 0; i < gold.size(); ++i) |
||||
{ |
||||
const cv::KeyPoint& p1 = gold[i]; |
||||
const cv::KeyPoint& p2 = actual[i]; |
||||
|
||||
if (keyPointsEquals(p1, p2)) |
||||
++validCount; |
||||
} |
||||
|
||||
return validCount; |
||||
} |
||||
|
||||
static int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches) |
||||
{ |
||||
int validCount = 0; |
||||
|
||||
for (size_t i = 0; i < matches.size(); ++i) |
||||
{ |
||||
const cv::DMatch& m = matches[i]; |
||||
|
||||
const cv::KeyPoint& p1 = keypoints1[m.queryIdx]; |
||||
const cv::KeyPoint& p2 = keypoints2[m.trainIdx]; |
||||
|
||||
if (keyPointsEquals(p1, p2)) |
||||
++validCount; |
||||
} |
||||
|
||||
return validCount; |
||||
} |
||||
|
||||
IMPLEMENT_PARAM_CLASS(SURF_HessianThreshold, double) |
||||
IMPLEMENT_PARAM_CLASS(SURF_Octaves, int) |
||||
IMPLEMENT_PARAM_CLASS(SURF_OctaveLayers, int) |
||||
IMPLEMENT_PARAM_CLASS(SURF_Extended, bool) |
||||
IMPLEMENT_PARAM_CLASS(SURF_Upright, bool) |
||||
|
||||
PARAM_TEST_CASE(SURF, SURF_HessianThreshold, SURF_Octaves, SURF_OctaveLayers, SURF_Extended, SURF_Upright) |
||||
{ |
||||
double hessianThreshold; |
||||
int nOctaves; |
||||
int nOctaveLayers; |
||||
bool extended; |
||||
bool upright; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
hessianThreshold = GET_PARAM(0); |
||||
nOctaves = GET_PARAM(1); |
||||
nOctaveLayers = GET_PARAM(2); |
||||
extended = GET_PARAM(3); |
||||
upright = GET_PARAM(4); |
||||
} |
||||
}; |
||||
TEST_P(SURF, Detector) |
||||
{ |
||||
cv::Mat image = readImage(workdir + "fruits.jpg", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(image.empty()); |
||||
|
||||
cv::ocl::SURF_OCL surf; |
||||
surf.hessianThreshold = static_cast<float>(hessianThreshold); |
||||
surf.nOctaves = nOctaves; |
||||
surf.nOctaveLayers = nOctaveLayers; |
||||
surf.extended = extended; |
||||
surf.upright = upright; |
||||
surf.keypointsRatio = 0.05f; |
||||
|
||||
std::vector<cv::KeyPoint> keypoints; |
||||
surf(cv::ocl::oclMat(image), cv::ocl::oclMat(), keypoints); |
||||
|
||||
cv::SURF surf_gold; |
||||
surf_gold.hessianThreshold = hessianThreshold; |
||||
surf_gold.nOctaves = nOctaves; |
||||
surf_gold.nOctaveLayers = nOctaveLayers; |
||||
surf_gold.extended = extended; |
||||
surf_gold.upright = upright; |
||||
|
||||
std::vector<cv::KeyPoint> keypoints_gold; |
||||
surf_gold(image, cv::noArray(), keypoints_gold); |
||||
|
||||
ASSERT_EQ(keypoints_gold.size(), keypoints.size()); |
||||
int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints); |
||||
double matchedRatio = static_cast<double>(matchedCount) / keypoints_gold.size(); |
||||
|
||||
EXPECT_GT(matchedRatio, 0.95); |
||||
} |
||||
|
||||
TEST_P(SURF, Descriptor) |
||||
{ |
||||
cv::Mat image = readImage(workdir + "fruits.jpg", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(image.empty()); |
||||
|
||||
cv::ocl::SURF_OCL surf; |
||||
surf.hessianThreshold = static_cast<float>(hessianThreshold); |
||||
surf.nOctaves = nOctaves; |
||||
surf.nOctaveLayers = nOctaveLayers; |
||||
surf.extended = extended; |
||||
surf.upright = upright; |
||||
surf.keypointsRatio = 0.05f; |
||||
|
||||
cv::SURF surf_gold; |
||||
surf_gold.hessianThreshold = hessianThreshold; |
||||
surf_gold.nOctaves = nOctaves; |
||||
surf_gold.nOctaveLayers = nOctaveLayers; |
||||
surf_gold.extended = extended; |
||||
surf_gold.upright = upright; |
||||
|
||||
std::vector<cv::KeyPoint> keypoints; |
||||
surf_gold(image, cv::noArray(), keypoints); |
||||
|
||||
cv::ocl::oclMat descriptors; |
||||
surf(cv::ocl::oclMat(image), cv::ocl::oclMat(), keypoints, descriptors, true); |
||||
|
||||
cv::Mat descriptors_gold; |
||||
surf_gold(image, cv::noArray(), keypoints, descriptors_gold, true); |
||||
|
||||
cv::BFMatcher matcher(cv::NORM_L2); |
||||
std::vector<cv::DMatch> matches; |
||||
matcher.match(descriptors_gold, cv::Mat(descriptors), matches); |
||||
|
||||
int matchedCount = getMatchedPointsCount(keypoints, keypoints, matches); |
||||
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size(); |
||||
|
||||
EXPECT_GT(matchedRatio, 0.35); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(OCL_Features2D, SURF, testing::Combine( |
||||
testing::Values(/*SURF_HessianThreshold(100.0), */SURF_HessianThreshold(500.0), SURF_HessianThreshold(1000.0)), |
||||
testing::Values(SURF_Octaves(3), SURF_Octaves(4)), |
||||
testing::Values(SURF_OctaveLayers(2), SURF_OctaveLayers(3)), |
||||
testing::Values(SURF_Extended(false), SURF_Extended(true)), |
||||
testing::Values(SURF_Upright(false), SURF_Upright(true)))); |
||||
|
||||
#endif |
Loading…
Reference in new issue