Merge pull request #632 from pengx17:2.4

pull/644/merge
Andrey Kamaev 12 years ago committed by OpenCV Buildbot
commit 00d8ad9e7e
  1. 2
      modules/ocl/CMakeLists.txt
  2. 22
      modules/ocl/src/kernels/nonfree_surf.cl
  3. 5
      modules/ocl/src/surf.cpp
  4. 2
      modules/ocl/test/precomp.hpp
  5. 227
      modules/ocl/test/test_surf.cpp

@ -4,7 +4,7 @@ if(NOT HAVE_OPENCL)
endif() endif()
set(the_description "OpenCL-accelerated Computer Vision") set(the_description "OpenCL-accelerated Computer Vision")
ocv_add_module(ocl opencv_core opencv_imgproc opencv_features2d opencv_objdetect opencv_video) ocv_add_module(ocl opencv_core opencv_imgproc opencv_features2d opencv_objdetect opencv_video opencv_nonfree)
ocv_module_include_directories() ocv_module_include_directories()

@ -78,7 +78,12 @@ uchar read_imgTex(IMAGE_INT8 img, sampler_t sam, float2 coord, int rows, int col
// dynamically change the precision used for floating type // dynamically change the precision used for floating type
#if defined DOUBLE_SUPPORT #if defined (DOUBLE_SUPPORT)
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#elif defined (cl_amd_fp64)
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#endif
#define F double #define F double
#else #else
#define F float #define F float
@ -892,9 +897,9 @@ __kernel
kp_dir += 2.0f * CV_PI_F; kp_dir += 2.0f * CV_PI_F;
kp_dir *= 180.0f / CV_PI_F; kp_dir *= 180.0f / CV_PI_F;
//kp_dir = 360.0f - kp_dir; kp_dir = 360.0f - kp_dir;
//if (fabs(kp_dir - 360.f) < FLT_EPSILON) if (fabs(kp_dir - 360.f) < FLT_EPSILON)
// kp_dir = 0.f; kp_dir = 0.f;
featureDir[get_group_id(0)] = kp_dir; featureDir[get_group_id(0)] = kp_dir;
} }
@ -913,7 +918,7 @@ __kernel
if(get_global_id(0) <= nFeatures) if(get_global_id(0) <= nFeatures)
{ {
featureDir[get_global_id(0)] = 90.0f; featureDir[get_global_id(0)] = 270.0f;
} }
} }
@ -1011,7 +1016,12 @@ void calc_dx_dy(
const float centerX = featureX[get_group_id(0)]; const float centerX = featureX[get_group_id(0)];
const float centerY = featureY[get_group_id(0)]; const float centerY = featureY[get_group_id(0)];
const float size = featureSize[get_group_id(0)]; const float size = featureSize[get_group_id(0)];
float descriptor_dir = featureDir[get_group_id(0)] * (float)(CV_PI_F / 180.0f); float descriptor_dir = 360.0f - featureDir[get_group_id(0)];
if(fabs(descriptor_dir - 360.0f) < FLT_EPSILON)
{
descriptor_dir = 0.0f;
}
descriptor_dir *= (float)(CV_PI_F / 180.0f);
/* The sampling intervals and wavelet sized for selecting an orientation /* The sampling intervals and wavelet sized for selecting an orientation
and building the keypoint descriptor are defined relative to 's' */ and building the keypoint descriptor are defined relative to 's' */

@ -160,7 +160,7 @@ public:
if (use_mask) if (use_mask)
{ {
throw std::exception(); CV_Error(CV_StsBadFunc, "Masked SURF detector is not implemented yet");
//!FIXME //!FIXME
// temp fix for missing min overload // temp fix for missing min overload
//oclMat temp(mask.size(), mask.type()); //oclMat temp(mask.size(), mask.type());
@ -623,7 +623,7 @@ void SURF_OCL_Invoker::icvSetUpright_gpu(const oclMat &keypoints, int nFeatures)
args.push_back( make_pair( sizeof(cl_int), (void *)&nFeatures)); args.push_back( make_pair( sizeof(cl_int), (void *)&nFeatures));
size_t localThreads[3] = {256, 1, 1}; size_t localThreads[3] = {256, 1, 1};
size_t globalThreads[3] = {nFeatures, 1, 1}; size_t globalThreads[3] = {saturate_cast<size_t>(nFeatures), 1, 1};
openCLExecuteKernelSURF(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1); openCLExecuteKernelSURF(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
} }
@ -725,4 +725,3 @@ void SURF_OCL_Invoker::compute_descriptors_gpu(const oclMat &descriptors, const
openCLExecuteKernelSURF(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1); openCLExecuteKernelSURF(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
} }
} }

@ -70,7 +70,7 @@
#include "opencv2/ts/ts.hpp" #include "opencv2/ts/ts.hpp"
#include "opencv2/ts/ts_perf.hpp" #include "opencv2/ts/ts_perf.hpp"
#include "opencv2/ocl/ocl.hpp" #include "opencv2/ocl/ocl.hpp"
//#include "opencv2/nonfree/nonfree.hpp" #include "opencv2/nonfree/nonfree.hpp"
#include "utility.hpp" #include "utility.hpp"
#include "interpolation.hpp" #include "interpolation.hpp"

@ -0,0 +1,227 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_OPENCL
extern std::string workdir;
using namespace std;
static bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
{
const double maxPtDif = 1.0;
const double maxSizeDif = 1.0;
const double maxAngleDif = 2.0;
const double maxResponseDif = 0.1;
double dist = cv::norm(p1.pt - p2.pt);
if (dist < maxPtDif &&
fabs(p1.size - p2.size) < maxSizeDif &&
abs(p1.angle - p2.angle) < maxAngleDif &&
abs(p1.response - p2.response) < maxResponseDif &&
p1.octave == p2.octave &&
p1.class_id == p2.class_id)
{
return true;
}
return false;
}
struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool>
{
bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
{
return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
}
};
#define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual);
static int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
{
std::sort(actual.begin(), actual.end(), KeyPointLess());
std::sort(gold.begin(), gold.end(), KeyPointLess());
int validCount = 0;
for (size_t i = 0; i < gold.size(); ++i)
{
const cv::KeyPoint& p1 = gold[i];
const cv::KeyPoint& p2 = actual[i];
if (keyPointsEquals(p1, p2))
++validCount;
}
return validCount;
}
static int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
{
int validCount = 0;
for (size_t i = 0; i < matches.size(); ++i)
{
const cv::DMatch& m = matches[i];
const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
const cv::KeyPoint& p2 = keypoints2[m.trainIdx];
if (keyPointsEquals(p1, p2))
++validCount;
}
return validCount;
}
IMPLEMENT_PARAM_CLASS(SURF_HessianThreshold, double)
IMPLEMENT_PARAM_CLASS(SURF_Octaves, int)
IMPLEMENT_PARAM_CLASS(SURF_OctaveLayers, int)
IMPLEMENT_PARAM_CLASS(SURF_Extended, bool)
IMPLEMENT_PARAM_CLASS(SURF_Upright, bool)
PARAM_TEST_CASE(SURF, SURF_HessianThreshold, SURF_Octaves, SURF_OctaveLayers, SURF_Extended, SURF_Upright)
{
double hessianThreshold;
int nOctaves;
int nOctaveLayers;
bool extended;
bool upright;
virtual void SetUp()
{
hessianThreshold = GET_PARAM(0);
nOctaves = GET_PARAM(1);
nOctaveLayers = GET_PARAM(2);
extended = GET_PARAM(3);
upright = GET_PARAM(4);
}
};
TEST_P(SURF, Detector)
{
cv::Mat image = readImage(workdir + "fruits.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
cv::ocl::SURF_OCL surf;
surf.hessianThreshold = static_cast<float>(hessianThreshold);
surf.nOctaves = nOctaves;
surf.nOctaveLayers = nOctaveLayers;
surf.extended = extended;
surf.upright = upright;
surf.keypointsRatio = 0.05f;
std::vector<cv::KeyPoint> keypoints;
surf(cv::ocl::oclMat(image), cv::ocl::oclMat(), keypoints);
cv::SURF surf_gold;
surf_gold.hessianThreshold = hessianThreshold;
surf_gold.nOctaves = nOctaves;
surf_gold.nOctaveLayers = nOctaveLayers;
surf_gold.extended = extended;
surf_gold.upright = upright;
std::vector<cv::KeyPoint> keypoints_gold;
surf_gold(image, cv::noArray(), keypoints_gold);
ASSERT_EQ(keypoints_gold.size(), keypoints.size());
int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints);
double matchedRatio = static_cast<double>(matchedCount) / keypoints_gold.size();
EXPECT_GT(matchedRatio, 0.95);
}
TEST_P(SURF, Descriptor)
{
cv::Mat image = readImage(workdir + "fruits.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
cv::ocl::SURF_OCL surf;
surf.hessianThreshold = static_cast<float>(hessianThreshold);
surf.nOctaves = nOctaves;
surf.nOctaveLayers = nOctaveLayers;
surf.extended = extended;
surf.upright = upright;
surf.keypointsRatio = 0.05f;
cv::SURF surf_gold;
surf_gold.hessianThreshold = hessianThreshold;
surf_gold.nOctaves = nOctaves;
surf_gold.nOctaveLayers = nOctaveLayers;
surf_gold.extended = extended;
surf_gold.upright = upright;
std::vector<cv::KeyPoint> keypoints;
surf_gold(image, cv::noArray(), keypoints);
cv::ocl::oclMat descriptors;
surf(cv::ocl::oclMat(image), cv::ocl::oclMat(), keypoints, descriptors, true);
cv::Mat descriptors_gold;
surf_gold(image, cv::noArray(), keypoints, descriptors_gold, true);
cv::BFMatcher matcher(cv::NORM_L2);
std::vector<cv::DMatch> matches;
matcher.match(descriptors_gold, cv::Mat(descriptors), matches);
int matchedCount = getMatchedPointsCount(keypoints, keypoints, matches);
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size();
EXPECT_GT(matchedRatio, 0.35);
}
INSTANTIATE_TEST_CASE_P(OCL_Features2D, SURF, testing::Combine(
testing::Values(/*SURF_HessianThreshold(100.0), */SURF_HessianThreshold(500.0), SURF_HessianThreshold(1000.0)),
testing::Values(SURF_Octaves(3), SURF_Octaves(4)),
testing::Values(SURF_OctaveLayers(2), SURF_OctaveLayers(3)),
testing::Values(SURF_Extended(false), SURF_Extended(true)),
testing::Values(SURF_Upright(false), SURF_Upright(true))));
#endif
Loading…
Cancel
Save