Init qrcode algo (#11829)
parent
5dc0e51682
commit
0081dc478f
3 changed files with 857 additions and 0 deletions
@ -0,0 +1,775 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#include "precomp.hpp" |
||||
#include "opencv2/objdetect.hpp" |
||||
// #include "opencv2/calib3d.hpp"
|
||||
|
||||
#include <limits> |
||||
#include <cmath> |
||||
#include <iostream> |
||||
|
||||
namespace cv |
||||
{ |
||||
class QRDecode |
||||
{ |
||||
public: |
||||
void init(Mat src, double eps_vertical_ = 0.19, double eps_horizontal_ = 0.09); |
||||
void binarization(); |
||||
bool localization(); |
||||
bool transformation(); |
||||
Mat getBinBarcode() { return bin_barcode; } |
||||
Mat getLocalizationBarcode() { return local_barcode; } |
||||
Mat getTransformationBarcode() { return transform_barcode; } |
||||
std::vector<Point> getTransformationPoints() { return transformation_points; } |
||||
Mat getStraightBarcode() { return straight_barcode; } |
||||
protected: |
||||
std::vector<Vec3d> searchVerticalLines(); |
||||
std::vector<Vec3d> separateHorizontalLines(std::vector<Vec3d> list_lines); |
||||
std::vector<Vec3d> pointClustering(std::vector<Vec3d> list_lines); |
||||
void fixationPoints(std::vector<Point> &local_point, std::vector<double> &local_len); |
||||
Point getTransformationPoint(Point left, Point center, double cos_angle_rotation, |
||||
bool right_rotate = true); |
||||
Point intersectionLines(Point a1, Point a2, Point b1, Point b2); |
||||
std::vector<Point> getQuadrilateral(std::vector<Point> angle_list); |
||||
double getQuadrilateralArea(Point a, Point b, Point c, Point d); |
||||
double getCosVectors(Point a, Point b, Point c); |
||||
|
||||
Mat barcode, bin_barcode, local_barcode, transform_barcode, straight_barcode; |
||||
std::vector<Point> localization_points, transformation_points; |
||||
std::vector<double> localization_length; |
||||
double experimental_area; |
||||
|
||||
double eps_vertical, eps_horizontal; |
||||
std::vector<Vec3d> result; |
||||
std::vector<double> test_lines; |
||||
uint8_t next_pixel, future_pixel; |
||||
double length, weight; |
||||
}; |
||||
|
||||
void QRDecode::init(Mat src, double eps_vertical_, double eps_horizontal_) |
||||
{ |
||||
barcode = src; |
||||
eps_vertical = eps_vertical_; |
||||
eps_horizontal = eps_horizontal_; |
||||
} |
||||
|
||||
void QRDecode::binarization() |
||||
{ |
||||
Mat filter_barcode; |
||||
GaussianBlur(barcode, filter_barcode, Size(3, 3), 0); |
||||
threshold(filter_barcode, bin_barcode, 0, 255, THRESH_BINARY + THRESH_OTSU); |
||||
} |
||||
|
||||
bool QRDecode::localization() |
||||
{ |
||||
cvtColor(bin_barcode, local_barcode, COLOR_GRAY2RGB); |
||||
Point begin, end; |
||||
|
||||
std::vector<Vec3d> list_lines_x = searchVerticalLines(); |
||||
std::vector<Vec3d> list_lines_y = separateHorizontalLines(list_lines_x); |
||||
std::vector<Vec3d> result_point = pointClustering(list_lines_y); |
||||
for (int i = 0; i < 3; i++) |
||||
{ |
||||
localization_points.push_back( |
||||
Point(static_cast<int>(result_point[i][0]), |
||||
static_cast<int>(result_point[i][1] + result_point[i][2]))); |
||||
localization_length.push_back(result_point[i][2]); |
||||
} |
||||
|
||||
fixationPoints(localization_points, localization_length); |
||||
|
||||
|
||||
if (localization_points.size() != 3) { return false; } |
||||
return true; |
||||
|
||||
} |
||||
|
||||
std::vector<Vec3d> QRDecode::searchVerticalLines() |
||||
{ |
||||
result.clear(); |
||||
int temp_length = 0; |
||||
|
||||
for (int x = 0; x < bin_barcode.rows; x++) |
||||
{ |
||||
for (int y = 0; y < bin_barcode.cols; y++) |
||||
{ |
||||
if (bin_barcode.at<uint8_t>(x, y) > 0) { continue; } |
||||
|
||||
// --------------- Search vertical lines --------------- //
|
||||
|
||||
test_lines.clear(); |
||||
future_pixel = 255; |
||||
|
||||
for (int i = x; i < bin_barcode.rows - 1; i++) |
||||
{ |
||||
next_pixel = bin_barcode.at<uint8_t>(i + 1, y); |
||||
temp_length++; |
||||
if (next_pixel == future_pixel) |
||||
{ |
||||
future_pixel = 255 - future_pixel; |
||||
test_lines.push_back(temp_length); |
||||
temp_length = 0; |
||||
if (test_lines.size() == 5) { break; } |
||||
} |
||||
} |
||||
|
||||
// --------------- Compute vertical lines --------------- //
|
||||
|
||||
if (test_lines.size() == 5) |
||||
{ |
||||
length = 0.0; weight = 0.0; |
||||
|
||||
for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; } |
||||
|
||||
for (size_t i = 0; i < test_lines.size(); i++) |
||||
{ |
||||
if (i == 2) { weight += abs((test_lines[i] / length) - 3.0/7.0); } |
||||
else { weight += abs((test_lines[i] / length) - 1.0/7.0); } |
||||
} |
||||
|
||||
if (weight < eps_vertical) |
||||
{ |
||||
Vec3d line; |
||||
line[0] = x; line[1] = y, line[2] = length; |
||||
result.push_back(line); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
return result; |
||||
} |
||||
|
||||
std::vector<Vec3d> QRDecode::separateHorizontalLines(std::vector<Vec3d> list_lines) |
||||
{ |
||||
result.clear(); |
||||
int temp_length = 0; |
||||
int x, y; |
||||
|
||||
for (size_t pnt = 0; pnt < list_lines.size(); pnt++) |
||||
{ |
||||
x = static_cast<int>(list_lines[pnt][0] + list_lines[pnt][2] / 2); |
||||
y = static_cast<int>(list_lines[pnt][1]); |
||||
|
||||
// --------------- Search horizontal up-lines --------------- //
|
||||
test_lines.clear(); |
||||
future_pixel = 255; |
||||
|
||||
for (int j = y; j < bin_barcode.cols - 1; j++) |
||||
{ |
||||
next_pixel = bin_barcode.at<uint8_t>(x, j + 1); |
||||
temp_length++; |
||||
if (next_pixel == future_pixel) |
||||
{ |
||||
future_pixel = 255 - future_pixel; |
||||
test_lines.push_back(temp_length); |
||||
temp_length = 0; |
||||
if (test_lines.size() == 3) { break; } |
||||
} |
||||
} |
||||
|
||||
// --------------- Search horizontal down-lines --------------- //
|
||||
future_pixel = 255; |
||||
|
||||
for (int j = y; j >= 1; j--) |
||||
{ |
||||
next_pixel = bin_barcode.at<uint8_t>(x, j - 1); |
||||
temp_length++; |
||||
if (next_pixel == future_pixel) |
||||
{ |
||||
future_pixel = 255 - future_pixel; |
||||
test_lines.push_back(temp_length); |
||||
temp_length = 0; |
||||
if (test_lines.size() == 6) { break; } |
||||
} |
||||
} |
||||
|
||||
// --------------- Compute horizontal lines --------------- //
|
||||
|
||||
if (test_lines.size() == 6) |
||||
{ |
||||
length = 0.0; weight = 0.0; |
||||
|
||||
for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; } |
||||
|
||||
for (size_t i = 0; i < test_lines.size(); i++) |
||||
{ |
||||
if (i % 3 == 0) { weight += abs((test_lines[i] / length) - 3.0/14.0); } |
||||
else { weight += abs((test_lines[i] / length) - 1.0/ 7.0); } |
||||
} |
||||
} |
||||
|
||||
if(weight < eps_horizontal) |
||||
{ |
||||
result.push_back(list_lines[pnt]); |
||||
} |
||||
} |
||||
return result; |
||||
} |
||||
|
||||
std::vector<Vec3d> QRDecode::pointClustering(std::vector<Vec3d> list_lines) |
||||
{ |
||||
std::vector<Vec3d> centers; |
||||
std::vector<Point> clusters[3]; |
||||
double weight_clusters[3] = {0.0, 0.0, 0.0}; |
||||
Point basis[3], temp_pnt; |
||||
double temp_norm = 0.0, temp_compute_norm, distance[3]; |
||||
|
||||
basis[0] = Point(static_cast<int>(list_lines[0][1]), static_cast<int>(list_lines[0][0])); |
||||
for (size_t i = 1; i < list_lines.size(); i++) |
||||
{ |
||||
temp_pnt = Point(static_cast<int>(list_lines[i][1]), static_cast<int>(list_lines[i][0])); |
||||
temp_compute_norm = norm(basis[0] - temp_pnt); |
||||
if (temp_norm < temp_compute_norm) |
||||
{ |
||||
basis[1] = temp_pnt; |
||||
temp_norm = temp_compute_norm; |
||||
} |
||||
} |
||||
|
||||
for (size_t i = 1; i < list_lines.size(); i++) |
||||
{ |
||||
temp_pnt = Point(static_cast<int>(list_lines[i][1]), static_cast<int>(list_lines[i][0])); |
||||
temp_compute_norm = norm(basis[0] - temp_pnt) + norm(basis[1] - temp_pnt); |
||||
if (temp_norm < temp_compute_norm) |
||||
{ |
||||
basis[2] = temp_pnt; |
||||
temp_norm = temp_compute_norm; |
||||
} |
||||
} |
||||
|
||||
for (size_t i = 0; i < list_lines.size(); i++) |
||||
{ |
||||
temp_pnt = Point(static_cast<int>(list_lines[i][1]), static_cast<int>(list_lines[i][0])); |
||||
distance[0] = norm(basis[0] - temp_pnt); |
||||
distance[1] = norm(basis[1] - temp_pnt); |
||||
distance[2] = norm(basis[2] - temp_pnt); |
||||
if (distance[0] < distance[1] && distance[0] < distance[2]) |
||||
{ |
||||
clusters[0].push_back(temp_pnt); |
||||
weight_clusters[0] += list_lines[i][2]; |
||||
} |
||||
else if (distance[1] < distance[0] && distance[1] < distance[2]) |
||||
{ |
||||
clusters[1].push_back(temp_pnt); |
||||
weight_clusters[1] += list_lines[i][2]; |
||||
} |
||||
else |
||||
{ |
||||
clusters[2].push_back(temp_pnt); |
||||
weight_clusters[2] += list_lines[i][2]; |
||||
} |
||||
} |
||||
|
||||
for (int i = 0; i < 3; i++) |
||||
{ |
||||
basis[i] = Point(0, 0); |
||||
for (size_t j = 0; j < clusters[i].size(); j++) { basis[i] += clusters[i][j]; } |
||||
basis[i] = basis[i] / static_cast<int>(clusters[i].size()); |
||||
weight = weight_clusters[i] / (2 * clusters[i].size()); |
||||
centers.push_back(Vec3d(basis[i].x, basis[i].y, weight)); |
||||
} |
||||
|
||||
return centers; |
||||
} |
||||
|
||||
void QRDecode::fixationPoints(std::vector<Point> &local_point, std::vector<double> &local_len) |
||||
{ |
||||
double cos_angles[3], norm_triangl[3]; |
||||
|
||||
norm_triangl[0] = norm(local_point[1] - local_point[2]); |
||||
norm_triangl[1] = norm(local_point[0] - local_point[2]); |
||||
norm_triangl[2] = norm(local_point[1] - local_point[0]); |
||||
|
||||
cos_angles[0] = (pow(norm_triangl[1], 2) + pow(norm_triangl[2], 2) - pow(norm_triangl[0], 2)) |
||||
/ (2 * norm_triangl[1] * norm_triangl[2]); |
||||
cos_angles[1] = (pow(norm_triangl[0], 2) + pow(norm_triangl[2], 2) - pow(norm_triangl[1], 2)) |
||||
/ (2 * norm_triangl[0] * norm_triangl[2]); |
||||
cos_angles[2] = (pow(norm_triangl[0], 2) + pow(norm_triangl[1], 2) - pow(norm_triangl[2], 2)) |
||||
/ (2 * norm_triangl[0] * norm_triangl[1]); |
||||
|
||||
int i_min_cos = |
||||
(cos_angles[0] < cos_angles[1] && cos_angles[0] < cos_angles[2]) ? 0 : |
||||
(cos_angles[1] < cos_angles[0] && cos_angles[1] < cos_angles[2]) ? 1 : 2; |
||||
|
||||
Point temp_pnt; |
||||
double tmp_len; |
||||
temp_pnt = local_point[0]; |
||||
tmp_len = local_len[0]; |
||||
local_point[0] = local_point[i_min_cos]; |
||||
local_len[0] = local_len[i_min_cos]; |
||||
local_point[i_min_cos] = temp_pnt; |
||||
local_len[i_min_cos] = tmp_len; |
||||
|
||||
Mat vector_mult(Size(3, 3), CV_32FC1); |
||||
vector_mult.at<float>(0, 0) = 1; |
||||
vector_mult.at<float>(1, 0) = 1; |
||||
vector_mult.at<float>(2, 0) = 1; |
||||
vector_mult.at<float>(0, 1) = static_cast<float>((local_point[1] - local_point[0]).x); |
||||
vector_mult.at<float>(1, 1) = static_cast<float>((local_point[1] - local_point[0]).y); |
||||
vector_mult.at<float>(0, 2) = static_cast<float>((local_point[2] - local_point[0]).x); |
||||
vector_mult.at<float>(1, 2) = static_cast<float>((local_point[2] - local_point[0]).y); |
||||
double res_vect_mult = determinant(vector_mult); |
||||
if (res_vect_mult < 0) |
||||
{ |
||||
temp_pnt = local_point[1]; |
||||
tmp_len = local_len[1]; |
||||
local_point[1] = local_point[2]; |
||||
local_len[1] = local_len[2]; |
||||
local_point[2] = temp_pnt; |
||||
local_len[2] = tmp_len; |
||||
} |
||||
} |
||||
|
||||
bool QRDecode::transformation() |
||||
{ |
||||
cvtColor(bin_barcode, transform_barcode, COLOR_GRAY2RGB); |
||||
if (localization_points.size() != 3) { return false; } |
||||
|
||||
Point red = localization_points[0]; |
||||
Point green = localization_points[1]; |
||||
Point blue = localization_points[2]; |
||||
Point adj_b_r_pnt, adj_r_b_pnt, adj_g_r_pnt, adj_r_g_pnt; |
||||
Point line_r_b_pnt, line_r_g_pnt, norm_r_b_pnt, norm_r_g_pnt; |
||||
adj_b_r_pnt = getTransformationPoint(blue, red, -1); |
||||
adj_r_b_pnt = getTransformationPoint(red, blue, -1); |
||||
adj_g_r_pnt = getTransformationPoint(green, red, -1); |
||||
adj_r_g_pnt = getTransformationPoint(red, green, -1); |
||||
line_r_b_pnt = getTransformationPoint(red, blue, -0.91); |
||||
line_r_g_pnt = getTransformationPoint(red, green, -0.91); |
||||
norm_r_b_pnt = getTransformationPoint(red, blue, 0.0, true); |
||||
norm_r_g_pnt = getTransformationPoint(red, green, 0.0, false); |
||||
|
||||
transformation_points.push_back(intersectionLines( |
||||
adj_r_g_pnt, line_r_g_pnt, adj_r_b_pnt, line_r_b_pnt)); |
||||
transformation_points.push_back(intersectionLines( |
||||
adj_b_r_pnt, norm_r_g_pnt, adj_r_g_pnt, line_r_g_pnt)); |
||||
transformation_points.push_back(intersectionLines( |
||||
norm_r_b_pnt, adj_g_r_pnt, adj_b_r_pnt, norm_r_g_pnt)); |
||||
transformation_points.push_back(intersectionLines( |
||||
norm_r_b_pnt, adj_g_r_pnt, adj_r_b_pnt, line_r_b_pnt)); |
||||
|
||||
experimental_area = getQuadrilateralArea(transformation_points[0], |
||||
transformation_points[1], |
||||
transformation_points[2], |
||||
transformation_points[3]); |
||||
std::vector<Point> quadrilateral = getQuadrilateral(transformation_points); |
||||
transformation_points = quadrilateral; |
||||
|
||||
int max_length_norm = -1; |
||||
size_t transform_size = transformation_points.size(); |
||||
for (size_t i = 0; i < transform_size; i++) |
||||
{ |
||||
int len_norm = static_cast<int>(norm(transformation_points[i % transform_size] - |
||||
transformation_points[(i + 1) % transform_size])); |
||||
if (max_length_norm < len_norm) { max_length_norm = len_norm; } |
||||
} |
||||
|
||||
std::vector<Point> perspective_points; |
||||
perspective_points.push_back(Point(0, 0)); |
||||
perspective_points.push_back(Point(0, max_length_norm)); |
||||
perspective_points.push_back(Point(max_length_norm, max_length_norm)); |
||||
perspective_points.push_back(Point(max_length_norm, 0)); |
||||
|
||||
// warpPerspective(bin_barcode, straight_barcode,
|
||||
// findHomography(transformation_points, perspective_points),
|
||||
// Size(max_length_norm, max_length_norm));
|
||||
return true; |
||||
} |
||||
|
||||
Point QRDecode::getTransformationPoint(Point left, Point center, double cos_angle_rotation, |
||||
bool right_rotate) |
||||
{ |
||||
Point temp_pnt, prev_pnt(0, 0), next_pnt, start_pnt(center); |
||||
double temp_delta, min_delta; |
||||
int steps = 0; |
||||
|
||||
future_pixel = 255; |
||||
while(true) |
||||
{ |
||||
min_delta = std::numeric_limits<double>::max(); |
||||
for (int i = -1; i < 2; i++) |
||||
{ |
||||
for (int j = -1; j < 2; j++) |
||||
{ |
||||
if (i == 0 && j == 0) { continue; } |
||||
temp_pnt = Point(start_pnt.x + i, start_pnt.y + j); |
||||
temp_delta = abs(getCosVectors(left, center, temp_pnt) - cos_angle_rotation); |
||||
if (temp_delta < min_delta && prev_pnt != temp_pnt) |
||||
{ |
||||
next_pnt = temp_pnt; |
||||
min_delta = temp_delta; |
||||
} |
||||
} |
||||
} |
||||
prev_pnt = start_pnt; |
||||
start_pnt = next_pnt; |
||||
next_pixel = bin_barcode.at<uint8_t>(start_pnt.y, start_pnt.x); |
||||
if (next_pixel == future_pixel) |
||||
{ |
||||
future_pixel = 255 - future_pixel; |
||||
steps++; |
||||
if (steps == 3) { break; } |
||||
} |
||||
} |
||||
|
||||
if (cos_angle_rotation == 0.0) |
||||
{ |
||||
Mat vector_mult(Size(3, 3), CV_32FC1); |
||||
vector_mult.at<float>(0, 0) = 1; |
||||
vector_mult.at<float>(1, 0) = 1; |
||||
vector_mult.at<float>(2, 0) = 1; |
||||
vector_mult.at<float>(0, 1) = static_cast<float>((left - center).x); |
||||
vector_mult.at<float>(1, 1) = static_cast<float>((left - center).y); |
||||
vector_mult.at<float>(0, 2) = static_cast<float>((left - start_pnt).x); |
||||
vector_mult.at<float>(1, 2) = static_cast<float>((left - start_pnt).y); |
||||
double res_vect_mult = determinant(vector_mult); |
||||
if (( right_rotate && res_vect_mult < 0) || |
||||
(!right_rotate && res_vect_mult > 0)) |
||||
{ |
||||
start_pnt = getTransformationPoint(start_pnt, center, -1); |
||||
} |
||||
} |
||||
|
||||
return start_pnt; |
||||
} |
||||
|
||||
Point QRDecode::intersectionLines(Point a1, Point a2, Point b1, Point b2) |
||||
{ |
||||
Point result_square_angle( |
||||
static_cast<int>( |
||||
static_cast<double> |
||||
((a1.x * a2.y - a1.y * a2.x) * (b1.x - b2.x) - |
||||
(b1.x * b2.y - b1.y * b2.x) * (a1.x - a2.x)) / |
||||
((a1.x - a2.x) * (b1.y - b2.y) - |
||||
(a1.y - a2.y) * (b1.x - b2.x))), |
||||
static_cast<int>( |
||||
static_cast<double> |
||||
((a1.x * a2.y - a1.y * a2.x) * (b1.y - b2.y) - |
||||
(b1.x * b2.y - b1.y * b2.x) * (a1.y - a2.y)) / |
||||
((a1.x - a2.x) * (b1.y - b2.y) - |
||||
(a1.y - a2.y) * (b1.x - b2.x))) |
||||
); |
||||
return result_square_angle; |
||||
} |
||||
|
||||
std::vector<Point> QRDecode::getQuadrilateral(std::vector<Point> angle_list) |
||||
{ |
||||
size_t angle_size = angle_list.size(); |
||||
uint8_t value, mask_value; |
||||
Mat mask(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1); |
||||
for (size_t i = 0; i < angle_size; i++) |
||||
{ |
||||
LineIterator line_iter(bin_barcode, angle_list[ i % angle_size], |
||||
angle_list[(i + 1) % angle_size]); |
||||
for(int j = 0; j < line_iter.count; j++, ++line_iter) |
||||
{ |
||||
value = bin_barcode.at<uint8_t>(line_iter.pos()); |
||||
mask_value = mask.at<uint8_t>(line_iter.pos() + Point(1, 1)); |
||||
if (value == 0 && mask_value == 0) |
||||
{ |
||||
floodFill(bin_barcode, mask, line_iter.pos(), 255); |
||||
} |
||||
} |
||||
} |
||||
std::vector<Point> locations; |
||||
Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), |
||||
Range(1, bin_barcode.cols - 1)); |
||||
|
||||
cv::findNonZero(mask_roi, locations); |
||||
|
||||
for (size_t i = 0; i < angle_list.size(); i++) |
||||
{ |
||||
locations.push_back(angle_list[i]); |
||||
} |
||||
|
||||
std::vector< std::vector<Point> > hull(1), approx_hull(1); |
||||
convexHull(Mat(locations), hull[0]); |
||||
int hull_size = static_cast<int>(hull[0].size()); |
||||
|
||||
Point min_pnt; |
||||
|
||||
std::vector<Point> min_abc; |
||||
double min_abs_cos_abc, abs_cos_abc; |
||||
for (int count = 0; count < 4; count++) |
||||
{ |
||||
min_abs_cos_abc = std::numeric_limits<double>::max(); |
||||
for (int i = 0; i < hull_size; i++) |
||||
{ |
||||
Point a = hull[0][ i % hull_size]; |
||||
Point b = hull[0][(i + 1) % hull_size]; |
||||
Point c = hull[0][(i + 2) % hull_size]; |
||||
abs_cos_abc = abs(getCosVectors(a, b, c)); |
||||
|
||||
bool flag_detect = true; |
||||
for (size_t j = 0; j < min_abc.size(); j++) |
||||
{ |
||||
if (min_abc[j] == b) { flag_detect = false; break; } |
||||
} |
||||
|
||||
if (flag_detect && (abs_cos_abc < min_abs_cos_abc)) |
||||
{ |
||||
min_pnt = b; |
||||
min_abs_cos_abc = abs_cos_abc; |
||||
} |
||||
} |
||||
min_abc.push_back(min_pnt); |
||||
} |
||||
|
||||
|
||||
int min_abc_size = static_cast<int>(min_abc.size()); |
||||
std::vector<int> index_min_abc(min_abc_size); |
||||
for (int i = 0; i < min_abc_size; i++) |
||||
{ |
||||
for (int j = 0; j < hull_size; j++) |
||||
{ |
||||
if (hull[0][j] == min_abc[i]) { index_min_abc[i] = j; break; } |
||||
} |
||||
} |
||||
|
||||
std::vector<Point> result_hull_point(angle_size); |
||||
double min_norm, temp_norm; |
||||
for (size_t i = 0; i < angle_size; i++) |
||||
{ |
||||
min_norm = std::numeric_limits<double>::max(); |
||||
Point closest_pnt; |
||||
for (int j = 0; j < min_abc_size; j++) |
||||
{ |
||||
if (min_norm > norm(hull[0][index_min_abc[j]] - angle_list[i])) |
||||
{ |
||||
min_norm = norm(hull[0][index_min_abc[j]] - angle_list[i]); |
||||
closest_pnt = hull[0][index_min_abc[j]]; |
||||
} |
||||
} |
||||
result_hull_point[i] = closest_pnt; |
||||
} |
||||
|
||||
int start_line[2] = {0, 0}, finish_line[2] = {0, 0}, unstable_pnt = 0; |
||||
for (int i = 0; i < hull_size; i++) |
||||
{ |
||||
if (result_hull_point[3] == hull[0][i]) { start_line[0] = i; } |
||||
if (result_hull_point[2] == hull[0][i]) { finish_line[0] = start_line[1] = i; } |
||||
if (result_hull_point[1] == hull[0][i]) { finish_line[1] = i; } |
||||
if (result_hull_point[0] == hull[0][i]) { unstable_pnt = i; } |
||||
} |
||||
|
||||
int index_hull, extra_index_hull, next_index_hull, extra_next_index_hull, count_points; |
||||
Point result_side_begin[4], result_side_end[4]; |
||||
|
||||
min_norm = std::numeric_limits<double>::max(); |
||||
index_hull = start_line[0]; |
||||
count_points = abs(start_line[0] - finish_line[0]); |
||||
do |
||||
{ |
||||
if (count_points > hull_size / 2) { next_index_hull = index_hull + 1; } |
||||
else { next_index_hull = index_hull - 1; } |
||||
|
||||
if (next_index_hull == hull_size) { next_index_hull = 0; } |
||||
if (next_index_hull == -1) { next_index_hull = hull_size - 1; } |
||||
|
||||
Point angle_closest_pnt = norm(hull[0][index_hull] - angle_list[2]) > |
||||
norm(hull[0][index_hull] - angle_list[3]) ? angle_list[3] : angle_list[2]; |
||||
|
||||
Point intrsc_line_hull = |
||||
intersectionLines(hull[0][index_hull], hull[0][next_index_hull], |
||||
angle_list[2], angle_list[3]); |
||||
temp_norm = getCosVectors(hull[0][index_hull], intrsc_line_hull, angle_closest_pnt); |
||||
if (min_norm > temp_norm && |
||||
norm(hull[0][index_hull] - hull[0][next_index_hull]) > |
||||
norm(angle_list[2] - angle_list[3]) / 10) |
||||
{ |
||||
min_norm = temp_norm; |
||||
result_side_begin[0] = hull[0][index_hull]; |
||||
result_side_end[0] = hull[0][next_index_hull]; |
||||
} |
||||
|
||||
|
||||
index_hull = next_index_hull; |
||||
} |
||||
while(index_hull != finish_line[0]); |
||||
|
||||
if (min_norm == std::numeric_limits<double>::max()) |
||||
{ |
||||
result_side_begin[0] = angle_list[2]; |
||||
result_side_end[0] = angle_list[3]; |
||||
} |
||||
|
||||
min_norm = std::numeric_limits<double>::max(); |
||||
index_hull = start_line[1]; |
||||
count_points = abs(start_line[1] - finish_line[1]); |
||||
do |
||||
{ |
||||
if (count_points > hull_size / 2) { next_index_hull = index_hull + 1; } |
||||
else { next_index_hull = index_hull - 1; } |
||||
|
||||
if (next_index_hull == hull_size) { next_index_hull = 0; } |
||||
if (next_index_hull == -1) { next_index_hull = hull_size - 1; } |
||||
|
||||
Point angle_closest_pnt = norm(hull[0][index_hull] - angle_list[1]) > |
||||
norm(hull[0][index_hull] - angle_list[2]) ? angle_list[2] : angle_list[1]; |
||||
|
||||
Point intrsc_line_hull = |
||||
intersectionLines(hull[0][index_hull], hull[0][next_index_hull], |
||||
angle_list[1], angle_list[2]); |
||||
temp_norm = getCosVectors(hull[0][index_hull], intrsc_line_hull, angle_closest_pnt); |
||||
if (min_norm > temp_norm && |
||||
norm(hull[0][index_hull] - hull[0][next_index_hull]) > |
||||
norm(angle_list[1] - angle_list[2]) / 20) |
||||
{ |
||||
min_norm = temp_norm; |
||||
result_side_begin[1] = hull[0][index_hull]; |
||||
result_side_end[1] = hull[0][next_index_hull]; |
||||
} |
||||
|
||||
|
||||
index_hull = next_index_hull; |
||||
} |
||||
while(index_hull != finish_line[1]); |
||||
|
||||
if (min_norm == std::numeric_limits<double>::max()) |
||||
{ |
||||
result_side_begin[1] = angle_list[1]; |
||||
result_side_end[1] = angle_list[2]; |
||||
} |
||||
|
||||
double test_norm[4] = { 0.0, 0.0, 0.0, 0.0 }; |
||||
int test_index[4]; |
||||
for (int i = 0; i < 4; i++) |
||||
{ |
||||
test_index[i] = (i < 2) ? static_cast<int>(start_line[0]) |
||||
: static_cast<int>(finish_line[1]); |
||||
do |
||||
{ |
||||
next_index_hull = ((i + 1) % 2 != 0) ? test_index[i] + 1 : test_index[i] - 1; |
||||
if (next_index_hull == hull_size) { next_index_hull = 0; } |
||||
if (next_index_hull == -1) { next_index_hull = hull_size - 1; } |
||||
test_norm[i] += norm(hull[0][next_index_hull] - hull[0][unstable_pnt]); |
||||
test_index[i] = next_index_hull; |
||||
} |
||||
while(test_index[i] != unstable_pnt); |
||||
} |
||||
|
||||
std::vector<Point> result_angle_list(4), test_result_angle_list(4); |
||||
double min_area = std::numeric_limits<double>::max(), test_area; |
||||
index_hull = start_line[0]; |
||||
do |
||||
{ |
||||
if (test_norm[0] < test_norm[1]) { next_index_hull = index_hull + 1; } |
||||
else { next_index_hull = index_hull - 1; } |
||||
|
||||
if (next_index_hull == hull_size) { next_index_hull = 0; } |
||||
if (next_index_hull == -1) { next_index_hull = hull_size - 1; } |
||||
|
||||
extra_index_hull = finish_line[1]; |
||||
do |
||||
{ |
||||
if (test_norm[2] < test_norm[3]) { extra_next_index_hull = extra_index_hull + 1; } |
||||
else { extra_next_index_hull = extra_index_hull - 1; } |
||||
|
||||
if (extra_next_index_hull == hull_size) { extra_next_index_hull = 0; } |
||||
if (extra_next_index_hull == -1) { extra_next_index_hull = hull_size - 1; } |
||||
|
||||
test_result_angle_list[0] |
||||
= intersectionLines(result_side_begin[0], result_side_end[0], |
||||
result_side_begin[1], result_side_end[1]); |
||||
test_result_angle_list[1] |
||||
= intersectionLines(result_side_begin[1], result_side_end[1], |
||||
hull[0][extra_index_hull], hull[0][extra_next_index_hull]); |
||||
test_result_angle_list[2] |
||||
= intersectionLines(hull[0][extra_index_hull], hull[0][extra_next_index_hull], |
||||
hull[0][index_hull], hull[0][next_index_hull]); |
||||
test_result_angle_list[3] |
||||
= intersectionLines(hull[0][index_hull], hull[0][next_index_hull], |
||||
result_side_begin[0], result_side_end[0]); |
||||
test_area = getQuadrilateralArea(test_result_angle_list[0], |
||||
test_result_angle_list[1], |
||||
test_result_angle_list[2], |
||||
test_result_angle_list[3]); |
||||
if (min_area > test_area) |
||||
{ |
||||
min_area = test_area; |
||||
for (size_t i = 0; i < test_result_angle_list.size(); i++) |
||||
{ |
||||
result_angle_list[i] = test_result_angle_list[i]; |
||||
} |
||||
} |
||||
|
||||
extra_index_hull = extra_next_index_hull; |
||||
} |
||||
while(extra_index_hull != unstable_pnt); |
||||
|
||||
index_hull = next_index_hull; |
||||
} |
||||
while(index_hull != unstable_pnt); |
||||
|
||||
if (norm(result_angle_list[0] - angle_list[2]) > |
||||
norm(angle_list[2] - angle_list[1]) / 3) { result_angle_list[0] = angle_list[2]; } |
||||
|
||||
if (norm(result_angle_list[1] - angle_list[1]) > |
||||
norm(angle_list[1] - angle_list[0]) / 3) { result_angle_list[1] = angle_list[1]; } |
||||
|
||||
if (norm(result_angle_list[2] - angle_list[0]) > |
||||
norm(angle_list[0] - angle_list[3]) / 3) { result_angle_list[2] = angle_list[0]; } |
||||
|
||||
if (norm(result_angle_list[3] - angle_list[3]) > |
||||
norm(angle_list[3] - angle_list[2]) / 3) { result_angle_list[3] = angle_list[3]; } |
||||
|
||||
|
||||
|
||||
return result_angle_list; |
||||
} |
||||
|
||||
// b __________ c
|
||||
// / |
|
||||
// / |
|
||||
// / S |
|
||||
// / |
|
||||
// a --------------- d
|
||||
|
||||
double QRDecode::getQuadrilateralArea(Point a, Point b, Point c, Point d) |
||||
{ |
||||
double length_sides[4], perimeter = 0.0, result_area = 1.0; |
||||
length_sides[0] = norm(a - b); length_sides[1] = norm(b - c); |
||||
length_sides[2] = norm(c - d); length_sides[3] = norm(d - a); |
||||
|
||||
for (int i = 0; i < 4; i++) { perimeter += length_sides[i]; } |
||||
perimeter /= 2; |
||||
|
||||
for (int i = 0; i < 4; i++) |
||||
{ |
||||
result_area *= (perimeter - length_sides[i]); |
||||
} |
||||
|
||||
result_area = sqrt(result_area); |
||||
|
||||
return result_area; |
||||
} |
||||
|
||||
// / | b
|
||||
// / |
|
||||
// / |
|
||||
// a/ | c
|
||||
|
||||
double QRDecode::getCosVectors(Point a, Point b, Point c) |
||||
{ |
||||
return ((a - b).x * (c - b).x + (a - b).y * (c - b).y) / (norm(a - b) * norm(c - b)); |
||||
} |
||||
|
||||
CV_EXPORTS bool detectQRCode(InputArray in, std::vector<Point> &points, double eps_x, double eps_y) |
||||
{ |
||||
CV_Assert(in.isMat()); |
||||
CV_Assert(in.getMat().type() == CV_8UC1); |
||||
QRDecode qrdec; |
||||
qrdec.init(in.getMat(), eps_x, eps_y); |
||||
qrdec.binarization(); |
||||
if (!qrdec.localization()) { return false; } |
||||
if (!qrdec.transformation()) { return false; } |
||||
points = qrdec.getTransformationPoints(); |
||||
return true; |
||||
} |
||||
|
||||
} |
@ -0,0 +1,74 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
namespace opencv_test { namespace { |
||||
|
||||
TEST(Objdetect_QRCode, regression) |
||||
{ |
||||
String root = cvtest::TS::ptr()->get_data_path() + "qrcode/"; |
||||
// String cascades[] =
|
||||
// {
|
||||
// root + "haarcascade_frontalface_alt.xml",
|
||||
// root + "lbpcascade_frontalface.xml",
|
||||
// String()
|
||||
// };
|
||||
|
||||
// vector<Rect> objects;
|
||||
// RNG rng((uint64)-1);
|
||||
|
||||
// for( int i = 0; !cascades[i].empty(); i++ )
|
||||
// {
|
||||
// printf("%d. %s\n", i, cascades[i].c_str());
|
||||
// CascadeClassifier cascade(cascades[i]);
|
||||
// for( int j = 0; j < 100; j++ )
|
||||
// {
|
||||
// int width = rng.uniform(1, 100);
|
||||
// int height = rng.uniform(1, 100);
|
||||
// Mat img(height, width, CV_8U);
|
||||
// randu(img, 0, 256);
|
||||
// cascade.detectMultiScale(img, objects);
|
||||
// }
|
||||
// }
|
||||
} |
||||
|
||||
}} // namespace
|
Loading…
Reference in new issue