|
|
|
from collections import OrderedDict
|
|
|
|
import cv2 as cv
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from .stitching_error import StitchingError
|
|
|
|
|
|
|
|
|
|
|
|
class CameraAdjuster:
|
|
|
|
"""https://docs.opencv.org/4.x/d5/d56/classcv_1_1detail_1_1BundleAdjusterBase.html""" # noqa
|
|
|
|
|
|
|
|
CAMERA_ADJUSTER_CHOICES = OrderedDict()
|
|
|
|
CAMERA_ADJUSTER_CHOICES['ray'] = cv.detail_BundleAdjusterRay
|
|
|
|
CAMERA_ADJUSTER_CHOICES['reproj'] = cv.detail_BundleAdjusterReproj
|
|
|
|
CAMERA_ADJUSTER_CHOICES['affine'] = cv.detail_BundleAdjusterAffinePartial
|
|
|
|
CAMERA_ADJUSTER_CHOICES['no'] = cv.detail_NoBundleAdjuster
|
|
|
|
|
|
|
|
DEFAULT_CAMERA_ADJUSTER = list(CAMERA_ADJUSTER_CHOICES.keys())[0]
|
|
|
|
DEFAULT_REFINEMENT_MASK = "xxxxx"
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
adjuster=DEFAULT_CAMERA_ADJUSTER,
|
|
|
|
refinement_mask=DEFAULT_REFINEMENT_MASK):
|
|
|
|
|
|
|
|
self.adjuster = CameraAdjuster.CAMERA_ADJUSTER_CHOICES[adjuster]()
|
|
|
|
self.set_refinement_mask(refinement_mask)
|
|
|
|
self.adjuster.setConfThresh(1)
|
|
|
|
|
|
|
|
def set_refinement_mask(self, refinement_mask):
|
|
|
|
mask_matrix = np.zeros((3, 3), np.uint8)
|
|
|
|
if refinement_mask[0] == 'x':
|
|
|
|
mask_matrix[0, 0] = 1
|
|
|
|
if refinement_mask[1] == 'x':
|
|
|
|
mask_matrix[0, 1] = 1
|
|
|
|
if refinement_mask[2] == 'x':
|
|
|
|
mask_matrix[0, 2] = 1
|
|
|
|
if refinement_mask[3] == 'x':
|
|
|
|
mask_matrix[1, 1] = 1
|
|
|
|
if refinement_mask[4] == 'x':
|
|
|
|
mask_matrix[1, 2] = 1
|
|
|
|
self.adjuster.setRefinementMask(mask_matrix)
|
|
|
|
|
|
|
|
def adjust(self, features, pairwise_matches, estimated_cameras):
|
|
|
|
b, cameras = self.adjuster.apply(features,
|
|
|
|
pairwise_matches,
|
|
|
|
estimated_cameras)
|
|
|
|
if not b:
|
|
|
|
raise StitchingError("Camera parameters adjusting failed.")
|
|
|
|
|
|
|
|
return cameras
|