|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
#define ICV_DIST_SHIFT 16
|
|
|
|
#define ICV_INIT_DIST0 (INT_MAX >> 2)
|
|
|
|
|
|
|
|
static CvStatus
|
|
|
|
icvInitTopBottom( int* temp, int tempstep, CvSize size, int border )
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
for( i = 0; i < border; i++ )
|
|
|
|
{
|
|
|
|
int* ttop = (int*)(temp + i*tempstep);
|
|
|
|
int* tbottom = (int*)(temp + (size.height + border*2 - i - 1)*tempstep);
|
|
|
|
|
|
|
|
for( j = 0; j < size.width + border*2; j++ )
|
|
|
|
{
|
|
|
|
ttop[j] = ICV_INIT_DIST0;
|
|
|
|
tbottom[j] = ICV_INIT_DIST0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return CV_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static CvStatus CV_STDCALL
|
|
|
|
icvDistanceTransform_3x3_C1R( const uchar* src, int srcstep, int* temp,
|
|
|
|
int step, float* dist, int dststep, CvSize size, const float* metrics )
|
|
|
|
{
|
|
|
|
const int BORDER = 1;
|
|
|
|
int i, j;
|
|
|
|
const int HV_DIST = CV_FLT_TO_FIX( metrics[0], ICV_DIST_SHIFT );
|
|
|
|
const int DIAG_DIST = CV_FLT_TO_FIX( metrics[1], ICV_DIST_SHIFT );
|
|
|
|
const float scale = 1.f/(1 << ICV_DIST_SHIFT);
|
|
|
|
|
|
|
|
srcstep /= sizeof(src[0]);
|
|
|
|
step /= sizeof(temp[0]);
|
|
|
|
dststep /= sizeof(dist[0]);
|
|
|
|
|
|
|
|
icvInitTopBottom( temp, step, size, BORDER );
|
|
|
|
|
|
|
|
// forward pass
|
|
|
|
for( i = 0; i < size.height; i++ )
|
|
|
|
{
|
|
|
|
const uchar* s = src + i*srcstep;
|
|
|
|
int* tmp = (int*)(temp + (i+BORDER)*step) + BORDER;
|
|
|
|
|
|
|
|
for( j = 0; j < BORDER; j++ )
|
|
|
|
tmp[-j-1] = tmp[size.width + j] = ICV_INIT_DIST0;
|
|
|
|
|
|
|
|
for( j = 0; j < size.width; j++ )
|
|
|
|
{
|
|
|
|
if( !s[j] )
|
|
|
|
tmp[j] = 0;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int t0 = tmp[j-step-1] + DIAG_DIST;
|
|
|
|
int t = tmp[j-step] + HV_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j-step+1] + DIAG_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j-1] + HV_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
tmp[j] = t0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// backward pass
|
|
|
|
for( i = size.height - 1; i >= 0; i-- )
|
|
|
|
{
|
|
|
|
float* d = (float*)(dist + i*dststep);
|
|
|
|
int* tmp = (int*)(temp + (i+BORDER)*step) + BORDER;
|
|
|
|
|
|
|
|
for( j = size.width - 1; j >= 0; j-- )
|
|
|
|
{
|
|
|
|
int t0 = tmp[j];
|
|
|
|
if( t0 > HV_DIST )
|
|
|
|
{
|
|
|
|
int t = tmp[j+step+1] + DIAG_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j+step] + HV_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j+step-1] + DIAG_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j+1] + HV_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
tmp[j] = t0;
|
|
|
|
}
|
|
|
|
d[j] = (float)(t0 * scale);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return CV_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static CvStatus CV_STDCALL
|
|
|
|
icvDistanceTransform_5x5_C1R( const uchar* src, int srcstep, int* temp,
|
|
|
|
int step, float* dist, int dststep, CvSize size, const float* metrics )
|
|
|
|
{
|
|
|
|
const int BORDER = 2;
|
|
|
|
int i, j;
|
|
|
|
const int HV_DIST = CV_FLT_TO_FIX( metrics[0], ICV_DIST_SHIFT );
|
|
|
|
const int DIAG_DIST = CV_FLT_TO_FIX( metrics[1], ICV_DIST_SHIFT );
|
|
|
|
const int LONG_DIST = CV_FLT_TO_FIX( metrics[2], ICV_DIST_SHIFT );
|
|
|
|
const float scale = 1.f/(1 << ICV_DIST_SHIFT);
|
|
|
|
|
|
|
|
srcstep /= sizeof(src[0]);
|
|
|
|
step /= sizeof(temp[0]);
|
|
|
|
dststep /= sizeof(dist[0]);
|
|
|
|
|
|
|
|
icvInitTopBottom( temp, step, size, BORDER );
|
|
|
|
|
|
|
|
// forward pass
|
|
|
|
for( i = 0; i < size.height; i++ )
|
|
|
|
{
|
|
|
|
const uchar* s = src + i*srcstep;
|
|
|
|
int* tmp = (int*)(temp + (i+BORDER)*step) + BORDER;
|
|
|
|
|
|
|
|
for( j = 0; j < BORDER; j++ )
|
|
|
|
tmp[-j-1] = tmp[size.width + j] = ICV_INIT_DIST0;
|
|
|
|
|
|
|
|
for( j = 0; j < size.width; j++ )
|
|
|
|
{
|
|
|
|
if( !s[j] )
|
|
|
|
tmp[j] = 0;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int t0 = tmp[j-step*2-1] + LONG_DIST;
|
|
|
|
int t = tmp[j-step*2+1] + LONG_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j-step-2] + LONG_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j-step-1] + DIAG_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j-step] + HV_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j-step+1] + DIAG_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j-step+2] + LONG_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j-1] + HV_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
tmp[j] = t0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// backward pass
|
|
|
|
for( i = size.height - 1; i >= 0; i-- )
|
|
|
|
{
|
|
|
|
float* d = (float*)(dist + i*dststep);
|
|
|
|
int* tmp = (int*)(temp + (i+BORDER)*step) + BORDER;
|
|
|
|
|
|
|
|
for( j = size.width - 1; j >= 0; j-- )
|
|
|
|
{
|
|
|
|
int t0 = tmp[j];
|
|
|
|
if( t0 > HV_DIST )
|
|
|
|
{
|
|
|
|
int t = tmp[j+step*2+1] + LONG_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j+step*2-1] + LONG_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j+step+2] + LONG_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j+step+1] + DIAG_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j+step] + HV_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j+step-1] + DIAG_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j+step-2] + LONG_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
t = tmp[j+1] + HV_DIST;
|
|
|
|
if( t0 > t ) t0 = t;
|
|
|
|
tmp[j] = t0;
|
|
|
|
}
|
|
|
|
d[j] = (float)(t0 * scale);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return CV_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static CvStatus CV_STDCALL
|
|
|
|
icvDistanceTransformEx_5x5_C1R( const uchar* src, int srcstep, int* temp,
|
|
|
|
int step, float* dist, int dststep, int* labels, int lstep,
|
|
|
|
CvSize size, const float* metrics )
|
|
|
|
{
|
|
|
|
const int BORDER = 2;
|
|
|
|
|
|
|
|
int i, j;
|
|
|
|
const int HV_DIST = CV_FLT_TO_FIX( metrics[0], ICV_DIST_SHIFT );
|
|
|
|
const int DIAG_DIST = CV_FLT_TO_FIX( metrics[1], ICV_DIST_SHIFT );
|
|
|
|
const int LONG_DIST = CV_FLT_TO_FIX( metrics[2], ICV_DIST_SHIFT );
|
|
|
|
const float scale = 1.f/(1 << ICV_DIST_SHIFT);
|
|
|
|
|
|
|
|
srcstep /= sizeof(src[0]);
|
|
|
|
step /= sizeof(temp[0]);
|
|
|
|
dststep /= sizeof(dist[0]);
|
|
|
|
lstep /= sizeof(labels[0]);
|
|
|
|
|
|
|
|
icvInitTopBottom( temp, step, size, BORDER );
|
|
|
|
|
|
|
|
// forward pass
|
|
|
|
for( i = 0; i < size.height; i++ )
|
|
|
|
{
|
|
|
|
const uchar* s = src + i*srcstep;
|
|
|
|
int* tmp = (int*)(temp + (i+BORDER)*step) + BORDER;
|
|
|
|
int* lls = (int*)(labels + i*lstep);
|
|
|
|
|
|
|
|
for( j = 0; j < BORDER; j++ )
|
|
|
|
tmp[-j-1] = tmp[size.width + j] = ICV_INIT_DIST0;
|
|
|
|
|
|
|
|
for( j = 0; j < size.width; j++ )
|
|
|
|
{
|
|
|
|
if( !s[j] )
|
|
|
|
{
|
|
|
|
tmp[j] = 0;
|
|
|
|
//assert( lls[j] != 0 );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int t0 = ICV_INIT_DIST0, t;
|
|
|
|
int l0 = 0;
|
|
|
|
|
|
|
|
t = tmp[j-step*2-1] + LONG_DIST;
|
|
|
|
if( t0 > t )
|
|
|
|
{
|
|
|
|
t0 = t;
|
|
|
|
l0 = lls[j-lstep*2-1];
|
|
|
|
}
|
|
|
|
t = tmp[j-step*2+1] + LONG_DIST;
|
|
|
|
if( t0 > t )
|
|
|
|
{
|
|
|
|
t0 = t;
|
|
|
|
l0 = lls[j-lstep*2+1];
|
|
|
|
}
|
|
|
|
t = tmp[j-step-2] + LONG_DIST;
|
|
|
|
if( t0 > t )
|
|
|
|
{
|
|
|
|
t0 = t;
|
|
|
|
l0 = lls[j-lstep-2];
|
|
|
|
}
|
|
|
|
t = tmp[j-step-1] + DIAG_DIST;
|
|
|
|
if( t0 > t )
|
|
|
|
{
|
|
|
|
t0 = t;
|
|
|
|
l0 = lls[j-lstep-1];
|
|
|
|
}
|
|
|
|
t = tmp[j-step] + HV_DIST;
|
|
|
|
if( t0 > t )
|
|
|
|
{
|
|
|
|
t0 = t;
|
|
|
|
l0 = lls[j-lstep];
|
|
|
|
}
|
|
|
|
t = tmp[j-step+1] + DIAG_DIST;
|
|
|
|
if( t0 > t )
|
|
|
|
{
|
|
|
|
t0 = t;
|
|
|
|
l0 = lls[j-lstep+1];
|
|
|
|
}
|
|
|
|
t = tmp[j-step+2] + LONG_DIST;
|
|
|
|
if( t0 > t )
|
|
|
|
{
|
|
|
|
t0 = t;
|
|
|
|
l0 = lls[j-lstep+2];
|
|
|
|
}
|
|
|
|
t = tmp[j-1] + HV_DIST;
|
|
|
|
if( t0 > t )
|
|
|
|
{
|
|
|
|
t0 = t;
|
|
|
|
l0 = lls[j-1];
|
|
|
|
}
|
|
|
|
|
|
|
|
tmp[j] = t0;
|
|
|
|
lls[j] = l0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// backward pass
|
|
|
|
for( i = size.height - 1; i >= 0; i-- )
|
|
|
|
{
|
|
|
|
float* d = (float*)(dist + i*dststep);
|
|
|
|
int* tmp = (int*)(temp + (i+BORDER)*step) + BORDER;
|
|
|
|
int* lls = (int*)(labels + i*lstep);
|
|
|
|
|
|
|
|
for( j = size.width - 1; j >= 0; j-- )
|
|
|
|
{
|
|
|
|
int t0 = tmp[j];
|
|
|
|
int l0 = lls[j];
|
|
|
|
if( t0 > HV_DIST )
|
|
|
|
{
|
|
|
|
int t = tmp[j+step*2+1] + LONG_DIST;
|
|
|
|
if( t0 > t )
|
|
|
|
{
|
|
|
|
t0 = t;
|
|
|
|
l0 = lls[j+lstep*2+1];
|
|
|
|
}
|
|
|
|
t = tmp[j+step*2-1] + LONG_DIST;
|
|
|
|
if( t0 > t )
|
|
|
|
{
|
|
|
|
t0 = t;
|
|
|
|
l0 = lls[j+lstep*2-1];
|
|
|
|
}
|
|
|
|
t = tmp[j+step+2] + LONG_DIST;
|
|
|
|
if( t0 > t )
|
|
|
|
{
|
|
|
|
t0 = t;
|
|
|
|
l0 = lls[j+lstep+2];
|
|
|
|
}
|
|
|
|
t = tmp[j+step+1] + DIAG_DIST;
|
|
|
|
if( t0 > t )
|
|
|
|
{
|
|
|
|
t0 = t;
|
|
|
|
l0 = lls[j+lstep+1];
|
|
|
|
}
|
|
|
|
t = tmp[j+step] + HV_DIST;
|
|
|
|
if( t0 > t )
|
|
|
|
{
|
|
|
|
t0 = t;
|
|
|
|
l0 = lls[j+lstep];
|
|
|
|
}
|
|
|
|
t = tmp[j+step-1] + DIAG_DIST;
|
|
|
|
if( t0 > t )
|
|
|
|
{
|
|
|
|
t0 = t;
|
|
|
|
l0 = lls[j+lstep-1];
|
|
|
|
}
|
|
|
|
t = tmp[j+step-2] + LONG_DIST;
|
|
|
|
if( t0 > t )
|
|
|
|
{
|
|
|
|
t0 = t;
|
|
|
|
l0 = lls[j+lstep-2];
|
|
|
|
}
|
|
|
|
t = tmp[j+1] + HV_DIST;
|
|
|
|
if( t0 > t )
|
|
|
|
{
|
|
|
|
t0 = t;
|
|
|
|
l0 = lls[j+1];
|
|
|
|
}
|
|
|
|
tmp[j] = t0;
|
|
|
|
lls[j] = l0;
|
|
|
|
}
|
|
|
|
d[j] = (float)(t0 * scale);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return CV_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static CvStatus
|
|
|
|
icvGetDistanceTransformMask( int maskType, float *metrics )
|
|
|
|
{
|
|
|
|
if( !metrics )
|
|
|
|
return CV_NULLPTR_ERR;
|
|
|
|
|
|
|
|
switch (maskType)
|
|
|
|
{
|
|
|
|
case 30:
|
|
|
|
metrics[0] = 1.0f;
|
|
|
|
metrics[1] = 1.0f;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 31:
|
|
|
|
metrics[0] = 1.0f;
|
|
|
|
metrics[1] = 2.0f;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 32:
|
|
|
|
metrics[0] = 0.955f;
|
|
|
|
metrics[1] = 1.3693f;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 50:
|
|
|
|
metrics[0] = 1.0f;
|
|
|
|
metrics[1] = 1.0f;
|
|
|
|
metrics[2] = 2.0f;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 51:
|
|
|
|
metrics[0] = 1.0f;
|
|
|
|
metrics[1] = 2.0f;
|
|
|
|
metrics[2] = 3.0f;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 52:
|
|
|
|
metrics[0] = 1.0f;
|
|
|
|
metrics[1] = 1.4f;
|
|
|
|
metrics[2] = 2.1969f;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return CV_BADRANGE_ERR;
|
|
|
|
}
|
|
|
|
|
|
|
|
return CV_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
|
|
|
|
struct DTColumnInvoker
|
|
|
|
{
|
|
|
|
DTColumnInvoker( const CvMat* _src, CvMat* _dst, const int* _sat_tab, const float* _sqr_tab)
|
|
|
|
{
|
|
|
|
src = _src;
|
|
|
|
dst = _dst;
|
|
|
|
sat_tab = _sat_tab + src->rows*2 + 1;
|
|
|
|
sqr_tab = _sqr_tab;
|
|
|
|
}
|
|
|
|
|
|
|
|
void operator()( const BlockedRange& range ) const
|
|
|
|
{
|
|
|
|
int i, i1 = range.begin(), i2 = range.end();
|
|
|
|
int m = src->rows;
|
|
|
|
size_t sstep = src->step, dstep = dst->step/sizeof(float);
|
|
|
|
AutoBuffer<int> _d(m);
|
|
|
|
int* d = _d;
|
|
|
|
|
|
|
|
for( i = i1; i < i2; i++ )
|
|
|
|
{
|
|
|
|
const uchar* sptr = src->data.ptr + i + (m-1)*sstep;
|
|
|
|
float* dptr = dst->data.fl + i;
|
|
|
|
int j, dist = m-1;
|
|
|
|
|
|
|
|
for( j = m-1; j >= 0; j--, sptr -= sstep )
|
|
|
|
{
|
|
|
|
dist = (dist + 1) & (sptr[0] == 0 ? 0 : -1);
|
|
|
|
d[j] = dist;
|
|
|
|
}
|
|
|
|
|
|
|
|
dist = m-1;
|
|
|
|
for( j = 0; j < m; j++, dptr += dstep )
|
|
|
|
{
|
|
|
|
dist = dist + 1 - sat_tab[dist - d[j]];
|
|
|
|
d[j] = dist;
|
|
|
|
dptr[0] = sqr_tab[dist];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const CvMat* src;
|
|
|
|
CvMat* dst;
|
|
|
|
const int* sat_tab;
|
|
|
|
const float* sqr_tab;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
struct DTRowInvoker
|
|
|
|
{
|
|
|
|
DTRowInvoker( CvMat* _dst, const float* _sqr_tab, const float* _inv_tab )
|
|
|
|
{
|
|
|
|
dst = _dst;
|
|
|
|
sqr_tab = _sqr_tab;
|
|
|
|
inv_tab = _inv_tab;
|
|
|
|
}
|
|
|
|
|
|
|
|
void operator()( const BlockedRange& range ) const
|
|
|
|
{
|
|
|
|
const float inf = 1e15f;
|
|
|
|
int i, i1 = range.begin(), i2 = range.end();
|
|
|
|
int n = dst->cols;
|
|
|
|
AutoBuffer<uchar> _buf((n+2)*2*sizeof(float) + (n+2)*sizeof(int));
|
|
|
|
float* f = (float*)(uchar*)_buf;
|
|
|
|
float* z = f + n;
|
|
|
|
int* v = alignPtr((int*)(z + n + 1), sizeof(int));
|
|
|
|
|
|
|
|
for( i = i1; i < i2; i++ )
|
|
|
|
{
|
|
|
|
float* d = (float*)(dst->data.ptr + i*dst->step);
|
|
|
|
int p, q, k;
|
|
|
|
|
|
|
|
v[0] = 0;
|
|
|
|
z[0] = -inf;
|
|
|
|
z[1] = inf;
|
|
|
|
f[0] = d[0];
|
|
|
|
|
|
|
|
for( q = 1, k = 0; q < n; q++ )
|
|
|
|
{
|
|
|
|
float fq = d[q];
|
|
|
|
f[q] = fq;
|
|
|
|
|
|
|
|
for(;;k--)
|
|
|
|
{
|
|
|
|
p = v[k];
|
|
|
|
float s = (fq + sqr_tab[q] - d[p] - sqr_tab[p])*inv_tab[q - p];
|
|
|
|
if( s > z[k] )
|
|
|
|
{
|
|
|
|
k++;
|
|
|
|
v[k] = q;
|
|
|
|
z[k] = s;
|
|
|
|
z[k+1] = inf;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for( q = 0, k = 0; q < n; q++ )
|
|
|
|
{
|
|
|
|
while( z[k+1] < q )
|
|
|
|
k++;
|
|
|
|
p = v[k];
|
|
|
|
d[q] = std::sqrt(sqr_tab[std::abs(q - p)] + f[p]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
CvMat* dst;
|
|
|
|
const float* sqr_tab;
|
|
|
|
const float* inv_tab;
|
|
|
|
};
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
icvTrueDistTrans( const CvMat* src, CvMat* dst )
|
|
|
|
{
|
|
|
|
const float inf = 1e15f;
|
|
|
|
|
|
|
|
if( !CV_ARE_SIZES_EQ( src, dst ))
|
|
|
|
CV_Error( CV_StsUnmatchedSizes, "" );
|
|
|
|
|
|
|
|
if( CV_MAT_TYPE(src->type) != CV_8UC1 ||
|
|
|
|
CV_MAT_TYPE(dst->type) != CV_32FC1 )
|
|
|
|
CV_Error( CV_StsUnsupportedFormat,
|
|
|
|
"The input image must have 8uC1 type and the output one must have 32fC1 type" );
|
|
|
|
|
|
|
|
int i, m = src->rows, n = src->cols;
|
|
|
|
|
|
|
|
cv::AutoBuffer<uchar> _buf(std::max(m*2*sizeof(float) + (m*3+1)*sizeof(int), n*2*sizeof(float)));
|
|
|
|
// stage 1: compute 1d distance transform of each column
|
|
|
|
float* sqr_tab = (float*)(uchar*)_buf;
|
|
|
|
int* sat_tab = cv::alignPtr((int*)(sqr_tab + m*2), sizeof(int));
|
|
|
|
int shift = m*2;
|
|
|
|
|
|
|
|
for( i = 0; i < m; i++ )
|
|
|
|
sqr_tab[i] = (float)(i*i);
|
|
|
|
for( i = m; i < m*2; i++ )
|
|
|
|
sqr_tab[i] = inf;
|
|
|
|
for( i = 0; i < shift; i++ )
|
|
|
|
sat_tab[i] = 0;
|
|
|
|
for( ; i <= m*3; i++ )
|
|
|
|
sat_tab[i] = i - shift;
|
|
|
|
|
|
|
|
cv::parallel_for(cv::BlockedRange(0, n), cv::DTColumnInvoker(src, dst, sat_tab, sqr_tab));
|
|
|
|
|
|
|
|
// stage 2: compute modified distance transform for each row
|
|
|
|
float* inv_tab = sqr_tab + n;
|
|
|
|
|
|
|
|
inv_tab[0] = sqr_tab[0] = 0.f;
|
|
|
|
for( i = 1; i < n; i++ )
|
|
|
|
{
|
|
|
|
inv_tab[i] = (float)(0.5/i);
|
|
|
|
sqr_tab[i] = (float)(i*i);
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::parallel_for(cv::BlockedRange(0, m), cv::DTRowInvoker(dst, sqr_tab, inv_tab));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*********************************** IPP functions *********************************/
|
|
|
|
|
|
|
|
typedef CvStatus (CV_STDCALL * CvIPPDistTransFunc)( const uchar* src, int srcstep,
|
|
|
|
void* dst, int dststep,
|
|
|
|
CvSize size, const void* metrics );
|
|
|
|
|
|
|
|
typedef CvStatus (CV_STDCALL * CvIPPDistTransFunc2)( uchar* src, int srcstep,
|
|
|
|
CvSize size, const int* metrics );
|
|
|
|
|
|
|
|
/***********************************************************************************/
|
|
|
|
|
|
|
|
typedef CvStatus (CV_STDCALL * CvDistTransFunc)( const uchar* src, int srcstep,
|
|
|
|
int* temp, int tempstep,
|
|
|
|
float* dst, int dststep,
|
|
|
|
CvSize size, const float* metrics );
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
Non-inplace and Inplace 8u->8u Distance Transform for CityBlock (a.k.a. L1) metric
|
|
|
|
(C) 2006 by Jay Stavinzky.
|
|
|
|
\****************************************************************************************/
|
|
|
|
|
|
|
|
//BEGIN ATS ADDITION
|
|
|
|
/* 8-bit grayscale distance transform function */
|
|
|
|
static void
|
|
|
|
icvDistanceATS_L1_8u( const CvMat* src, CvMat* dst )
|
|
|
|
{
|
|
|
|
int width = src->cols, height = src->rows;
|
|
|
|
|
|
|
|
int a;
|
|
|
|
uchar lut[256];
|
|
|
|
int x, y;
|
|
|
|
|
|
|
|
const uchar *sbase = src->data.ptr;
|
|
|
|
uchar *dbase = dst->data.ptr;
|
|
|
|
int srcstep = src->step;
|
|
|
|
int dststep = dst->step;
|
|
|
|
|
|
|
|
CV_Assert( CV_IS_MASK_ARR( src ) && CV_MAT_TYPE( dst->type ) == CV_8UC1 );
|
|
|
|
CV_Assert( CV_ARE_SIZES_EQ( src, dst ));
|
|
|
|
|
|
|
|
////////////////////// forward scan ////////////////////////
|
|
|
|
for( x = 0; x < 256; x++ )
|
|
|
|
lut[x] = CV_CAST_8U(x+1);
|
|
|
|
|
|
|
|
//init first pixel to max (we're going to be skipping it)
|
|
|
|
dbase[0] = (uchar)(sbase[0] == 0 ? 0 : 255);
|
|
|
|
|
|
|
|
//first row (scan west only, skip first pixel)
|
|
|
|
for( x = 1; x < width; x++ )
|
|
|
|
dbase[x] = (uchar)(sbase[x] == 0 ? 0 : lut[dbase[x-1]]);
|
|
|
|
|
|
|
|
for( y = 1; y < height; y++ )
|
|
|
|
{
|
|
|
|
sbase += srcstep;
|
|
|
|
dbase += dststep;
|
|
|
|
|
|
|
|
//for left edge, scan north only
|
|
|
|
a = sbase[0] == 0 ? 0 : lut[dbase[-dststep]];
|
|
|
|
dbase[0] = (uchar)a;
|
|
|
|
|
|
|
|
for( x = 1; x < width; x++ )
|
|
|
|
{
|
|
|
|
a = sbase[x] == 0 ? 0 : lut[MIN(a, dbase[x - dststep])];
|
|
|
|
dbase[x] = (uchar)a;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////// backward scan ///////////////////////
|
|
|
|
|
|
|
|
a = dbase[width-1];
|
|
|
|
|
|
|
|
// do last row east pixel scan here (skip bottom right pixel)
|
|
|
|
for( x = width - 2; x >= 0; x-- )
|
|
|
|
{
|
|
|
|
a = lut[a];
|
|
|
|
dbase[x] = (uchar)(CV_CALC_MIN_8U(a, dbase[x]));
|
|
|
|
}
|
|
|
|
|
|
|
|
// right edge is the only error case
|
|
|
|
for( y = height - 2; y >= 0; y-- )
|
|
|
|
{
|
|
|
|
dbase -= dststep;
|
|
|
|
|
|
|
|
// do right edge
|
|
|
|
a = lut[dbase[width-1+dststep]];
|
|
|
|
dbase[width-1] = (uchar)(MIN(a, dbase[width-1]));
|
|
|
|
|
|
|
|
for( x = width - 2; x >= 0; x-- )
|
|
|
|
{
|
|
|
|
int b = dbase[x+dststep];
|
|
|
|
a = lut[MIN(a, b)];
|
|
|
|
dbase[x] = (uchar)(MIN(a, dbase[x]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
//END ATS ADDITION
|
|
|
|
|
|
|
|
|
|
|
|
/* Wrapper function for distance transform group */
|
|
|
|
CV_IMPL void
|
|
|
|
cvDistTransform( const void* srcarr, void* dstarr,
|
|
|
|
int distType, int maskSize,
|
|
|
|
const float *mask,
|
|
|
|
void* labelsarr, int labelType )
|
|
|
|
{
|
|
|
|
float _mask[5] = {0};
|
|
|
|
CvMat srcstub, *src = (CvMat*)srcarr;
|
|
|
|
CvMat dststub, *dst = (CvMat*)dstarr;
|
|
|
|
CvMat lstub, *labels = (CvMat*)labelsarr;
|
|
|
|
|
|
|
|
src = cvGetMat( src, &srcstub );
|
|
|
|
dst = cvGetMat( dst, &dststub );
|
|
|
|
|
|
|
|
if( !CV_IS_MASK_ARR( src ) || (CV_MAT_TYPE( dst->type ) != CV_32FC1 &&
|
|
|
|
(CV_MAT_TYPE(dst->type) != CV_8UC1 || distType != CV_DIST_L1 || labels)) )
|
|
|
|
CV_Error( CV_StsUnsupportedFormat,
|
|
|
|
"source image must be 8uC1 and the distance map must be 32fC1 "
|
|
|
|
"(or 8uC1 in case of simple L1 distance transform)" );
|
|
|
|
|
|
|
|
if( !CV_ARE_SIZES_EQ( src, dst ))
|
|
|
|
CV_Error( CV_StsUnmatchedSizes, "the source and the destination images must be of the same size" );
|
|
|
|
|
|
|
|
if( maskSize != CV_DIST_MASK_3 && maskSize != CV_DIST_MASK_5 && maskSize != CV_DIST_MASK_PRECISE )
|
|
|
|
CV_Error( CV_StsBadSize, "Mask size should be 3 or 5 or 0 (presize)" );
|
|
|
|
|
|
|
|
if( distType == CV_DIST_C || distType == CV_DIST_L1 )
|
|
|
|
maskSize = !labels ? CV_DIST_MASK_3 : CV_DIST_MASK_5;
|
|
|
|
else if( distType == CV_DIST_L2 && labels )
|
|
|
|
maskSize = CV_DIST_MASK_5;
|
|
|
|
|
|
|
|
if( maskSize == CV_DIST_MASK_PRECISE )
|
|
|
|
{
|
|
|
|
icvTrueDistTrans( src, dst );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( labels )
|
|
|
|
{
|
|
|
|
labels = cvGetMat( labels, &lstub );
|
|
|
|
if( CV_MAT_TYPE( labels->type ) != CV_32SC1 )
|
|
|
|
CV_Error( CV_StsUnsupportedFormat, "the output array of labels must be 32sC1" );
|
|
|
|
|
|
|
|
if( !CV_ARE_SIZES_EQ( labels, dst ))
|
|
|
|
CV_Error( CV_StsUnmatchedSizes, "the array of labels has a different size" );
|
|
|
|
|
|
|
|
if( maskSize == CV_DIST_MASK_3 )
|
|
|
|
CV_Error( CV_StsNotImplemented,
|
|
|
|
"3x3 mask can not be used for \"labeled\" distance transform. Use 5x5 mask" );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( distType == CV_DIST_C || distType == CV_DIST_L1 || distType == CV_DIST_L2 )
|
|
|
|
{
|
|
|
|
icvGetDistanceTransformMask( (distType == CV_DIST_C ? 0 :
|
|
|
|
distType == CV_DIST_L1 ? 1 : 2) + maskSize*10, _mask );
|
|
|
|
}
|
|
|
|
else if( distType == CV_DIST_USER )
|
|
|
|
{
|
|
|
|
if( !mask )
|
|
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
|
|
|
|
memcpy( _mask, mask, (maskSize/2 + 1)*sizeof(float));
|
|
|
|
}
|
|
|
|
|
|
|
|
CvSize size = cvGetMatSize(src);
|
|
|
|
|
|
|
|
if( CV_MAT_TYPE(dst->type) == CV_8UC1 )
|
|
|
|
{
|
|
|
|
icvDistanceATS_L1_8u( src, dst );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int border = maskSize == CV_DIST_MASK_3 ? 1 : 2;
|
|
|
|
cv::Ptr<CvMat> temp = cvCreateMat( size.height + border*2, size.width + border*2, CV_32SC1 );
|
|
|
|
|
|
|
|
if( !labels )
|
|
|
|
{
|
|
|
|
CvDistTransFunc func = maskSize == CV_DIST_MASK_3 ?
|
|
|
|
icvDistanceTransform_3x3_C1R :
|
|
|
|
icvDistanceTransform_5x5_C1R;
|
|
|
|
|
|
|
|
func( src->data.ptr, src->step, temp->data.i, temp->step,
|
|
|
|
dst->data.fl, dst->step, size, _mask );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cvZero( labels );
|
|
|
|
|
|
|
|
if( labelType == CV_DIST_LABEL_CCOMP )
|
|
|
|
{
|
|
|
|
CvSeq *contours = 0;
|
|
|
|
cv::Ptr<CvMemStorage> st = cvCreateMemStorage();
|
|
|
|
cv::Ptr<CvMat> src_copy = cvCreateMat( size.height+border*2, size.width+border*2, src->type );
|
|
|
|
cvCopyMakeBorder(src, src_copy, cvPoint(border, border), IPL_BORDER_CONSTANT, cvScalarAll(255));
|
|
|
|
cvCmpS( src_copy, 0, src_copy, CV_CMP_EQ );
|
|
|
|
cvFindContours( src_copy, st, &contours, sizeof(CvContour),
|
|
|
|
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE, cvPoint(-border, -border));
|
|
|
|
|
|
|
|
for( int label = 1; contours != 0; contours = contours->h_next, label++ )
|
|
|
|
{
|
|
|
|
CvScalar area_color = cvScalarAll(label);
|
|
|
|
cvDrawContours( labels, contours, area_color, area_color, -255, -1, 8 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int k = 1;
|
|
|
|
for( int i = 0; i < src->rows; i++ )
|
|
|
|
{
|
|
|
|
const uchar* srcptr = src->data.ptr + src->step*i;
|
|
|
|
int* labelptr = (int*)(labels->data.ptr + labels->step*i);
|
|
|
|
|
|
|
|
for( int j = 0; j < src->cols; j++ )
|
|
|
|
if( srcptr[j] == 0 )
|
|
|
|
labelptr[j] = k++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
icvDistanceTransformEx_5x5_C1R( src->data.ptr, src->step, temp->data.i, temp->step,
|
|
|
|
dst->data.fl, dst->step, labels->data.i, labels->step, size, _mask );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void cv::distanceTransform( InputArray _src, OutputArray _dst, OutputArray _labels,
|
|
|
|
int distanceType, int maskSize, int labelType )
|
|
|
|
{
|
|
|
|
Mat src = _src.getMat();
|
|
|
|
_dst.create(src.size(), CV_32F);
|
|
|
|
_labels.create(src.size(), CV_32S);
|
|
|
|
CvMat c_src = src, c_dst = _dst.getMat(), c_labels = _labels.getMat();
|
|
|
|
cvDistTransform(&c_src, &c_dst, distanceType, maskSize, 0, &c_labels, labelType);
|
|
|
|
}
|
|
|
|
|
|
|
|
void cv::distanceTransform( InputArray _src, OutputArray _dst,
|
|
|
|
int distanceType, int maskSize )
|
|
|
|
{
|
|
|
|
Mat src = _src.getMat();
|
|
|
|
_dst.create(src.size(), CV_32F);
|
|
|
|
Mat dst = _dst.getMat();
|
|
|
|
CvMat c_src = src, c_dst = _dst.getMat();
|
|
|
|
cvDistTransform(&c_src, &c_dst, distanceType, maskSize, 0, 0, -1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* End of file. */
|