mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
7.0 KiB
174 lines
7.0 KiB
2 years ago
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html.
|
||
|
|
||
|
#include <vector>
|
||
|
#include <string>
|
||
|
#include <opencv2/calib3d.hpp>
|
||
|
#include <opencv2/imgcodecs.hpp>
|
||
|
#include <opencv2/imgproc.hpp>
|
||
|
#include <iostream>
|
||
|
#include <fstream>
|
||
|
|
||
|
// ! [detectPointsAndCalibrate_signature]
|
||
|
static void detectPointsAndCalibrate (cv::Size pattern_size, float pattern_scale, const std::string &pattern_type,
|
||
|
const std::vector<bool> &is_fisheye, const std::vector<std::string> &filenames)
|
||
|
// ! [detectPointsAndCalibrate_signature]
|
||
|
{
|
||
|
// ! [calib_init]
|
||
|
std::vector<cv::Point3f> board (pattern_size.area());
|
||
|
const int num_cameras = (int)is_fisheye.size();
|
||
|
std::vector<std::vector<cv::Mat>> image_points_all;
|
||
|
std::vector<cv::Size> image_sizes;
|
||
|
std::vector<cv::Mat> Ks, distortions, Ts, Rs;
|
||
|
cv::Mat rvecs0, tvecs0, errors_mat, output_pairs;
|
||
|
if (pattern_type == "checkerboard") {
|
||
|
for (int i = 0; i < pattern_size.height; i++) {
|
||
|
for (int j = 0; j < pattern_size.width; j++) {
|
||
|
board[i*pattern_size.width+j] = cv::Point3f((float)j, (float)i, 0.f) * pattern_scale;
|
||
|
}
|
||
|
}
|
||
|
} else if (pattern_type == "circles") {
|
||
|
for (int i = 0; i < pattern_size.height; i++) {
|
||
|
for (int j = 0; j < pattern_size.width; j++) {
|
||
|
board[i*pattern_size.width+j] = cv::Point3f((float)j, (float)i, 0.f) * pattern_scale;
|
||
|
}
|
||
|
}
|
||
|
} else if (pattern_type == "acircles") {
|
||
|
for (int i = 0; i < pattern_size.height; i++) {
|
||
|
for (int j = 0; j < pattern_size.width; j++) {
|
||
|
if (i % 2 == 1) {
|
||
|
board[i*pattern_size.width+j] = cv::Point3f((j + .5f)*pattern_scale, (i/2 + .5f) * pattern_scale, 0.f);
|
||
|
} else{
|
||
|
board[i*pattern_size.width+j] = cv::Point3f(j*pattern_scale, (i/2)*pattern_scale, 0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
CV_Error(cv::Error::StsNotImplemented, "pattern_type is not implemented!");
|
||
|
}
|
||
|
// ! [calib_init]
|
||
|
// ! [detect_pattern]
|
||
|
int num_frames = -1;
|
||
|
for (const auto &filename : filenames) {
|
||
|
std::fstream file(filename);
|
||
|
CV_Assert(file.is_open());
|
||
|
std::string img_file;
|
||
|
std::vector<cv::Mat> image_points_cameras;
|
||
|
bool save_img_size = true;
|
||
|
while (std::getline(file, img_file)) {
|
||
|
if (img_file.empty())
|
||
|
break;
|
||
|
std::cout << img_file << "\n";
|
||
|
cv::Mat img = cv::imread(img_file), corners;
|
||
|
if (save_img_size) {
|
||
|
image_sizes.emplace_back(cv::Size(img.cols, img.rows));
|
||
|
save_img_size = false;
|
||
|
}
|
||
|
|
||
|
bool success = false;
|
||
|
if (pattern_type == "checkerboard") {
|
||
|
cv::cvtColor(img, img, cv::COLOR_BGR2GRAY);
|
||
|
success = cv::findChessboardCorners(img, pattern_size, corners);
|
||
|
}
|
||
|
else if (pattern_type == "circles")
|
||
|
{
|
||
|
success = cv::findCirclesGrid(img, pattern_size, corners, cv::CALIB_CB_SYMMETRIC_GRID);
|
||
|
}
|
||
|
else if (pattern_type == "acircles")
|
||
|
{
|
||
|
success = cv::findCirclesGrid(img, pattern_size, corners, cv::CALIB_CB_ASYMMETRIC_GRID);
|
||
|
}
|
||
|
|
||
|
cv::Mat corners2;
|
||
|
corners.convertTo(corners2, CV_32FC2);
|
||
|
|
||
|
if (success && corners.rows == pattern_size.area())
|
||
|
image_points_cameras.emplace_back(corners2);
|
||
|
else
|
||
|
image_points_cameras.emplace_back(cv::Mat());
|
||
|
}
|
||
|
if (num_frames == -1)
|
||
|
num_frames = (int)image_points_cameras.size();
|
||
|
else
|
||
|
CV_Assert(num_frames == (int)image_points_cameras.size());
|
||
|
image_points_all.emplace_back(image_points_cameras);
|
||
|
}
|
||
|
// ! [detect_pattern]
|
||
|
// ! [detection_matrix]
|
||
|
cv::Mat visibility(num_cameras, num_frames, CV_8UC1);
|
||
|
for (int i = 0; i < num_cameras; i++) {
|
||
|
for (int j = 0; j < num_frames; j++) {
|
||
|
visibility.at<unsigned char>(i,j) = image_points_all[i][j].empty() ? 0 : 1;
|
||
|
}
|
||
|
}
|
||
|
// ! [detection_matrix]
|
||
|
CV_Assert(num_frames != -1);
|
||
|
|
||
|
std::vector<std::vector<cv::Point3f>> objPoints(num_frames, board);
|
||
|
|
||
|
// ! [multiview_calib]
|
||
|
const double rmse = calibrateMultiview(objPoints, image_points_all, image_sizes, visibility,
|
||
|
Rs, Ts, Ks, distortions, cv::noArray(), cv::noArray(),
|
||
|
is_fisheye, errors_mat, output_pairs);
|
||
|
// ! [multiview_calib]
|
||
|
std::cout << "average RMSE over detection mask " << rmse << "\n";
|
||
|
for (int c = 0; c < (int)Rs.size(); c++) {
|
||
|
std::cout << "camera " << c << '\n';
|
||
|
std::cout << Rs[c] << " rotation\n";
|
||
|
std::cout << Ts[c] << " translation\n";
|
||
|
std::cout << Ks[c] << " intrinsic matrix\n";
|
||
|
std::cout << distortions[c] << " distortion\n";
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int main (int argc, char **argv) {
|
||
|
cv::String keys =
|
||
|
"{help h usage ? || print help }"
|
||
|
"{pattern_width || pattern grid width}"
|
||
|
"{pattern_height || pattern grid height}"
|
||
|
"{pattern_scale || pattern scale}"
|
||
|
"{pattern_type | checkerboard | pattern type, e.g., checkerboard or acircles}"
|
||
|
"{is_fisheye || cameras type fisheye (1), pinhole(0), separated by comma (no space)}"
|
||
|
"{files_with_images || files containing path to image names separated by comma (no space)}";
|
||
|
|
||
|
cv::CommandLineParser parser(argc, argv, keys);
|
||
|
if (parser.has("help")) {
|
||
|
parser.printMessage();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
CV_Assert(parser.has("pattern_width") && parser.has("pattern_height") && parser.has("pattern_type") &&
|
||
|
parser.has("is_fisheye") && parser.has("files_with_images"));
|
||
|
CV_Assert(parser.get<cv::String>("pattern_type") == "checkerboard" ||
|
||
|
parser.get<cv::String>("pattern_type") == "circles" ||
|
||
|
parser.get<cv::String>("pattern_type") == "acircles");
|
||
|
|
||
|
const cv::Size pattern_size (parser.get<int>("pattern_width"), parser.get<int>("pattern_height"));
|
||
|
std::vector<bool> is_fisheye;
|
||
|
const cv::String is_fisheye_str = parser.get<cv::String>("is_fisheye");
|
||
|
for (char i : is_fisheye_str) {
|
||
|
if (i == '0') {
|
||
|
is_fisheye.push_back(false);
|
||
|
} else if (i == '1') {
|
||
|
is_fisheye.push_back(true);
|
||
|
}
|
||
|
}
|
||
|
const cv::String files_with_images_str = parser.get<cv::String>("files_with_images");
|
||
|
std::vector<std::string> filenames;
|
||
|
std::string temp_str;
|
||
|
for (char i : files_with_images_str) {
|
||
|
if (i == ',') {
|
||
|
filenames.emplace_back(temp_str);
|
||
|
temp_str = "";
|
||
|
} else {
|
||
|
temp_str += i;
|
||
|
}
|
||
|
}
|
||
|
filenames.emplace_back(temp_str);
|
||
|
CV_CheckEQ(filenames.size(), is_fisheye.size(), "filenames size must be equal to number of cameras!");
|
||
|
detectPointsAndCalibrate (pattern_size, parser.get<float>("pattern_scale"), parser.get<cv::String>("pattern_type"), is_fisheye, filenames);
|
||
|
return 0;
|
||
|
}
|