Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

174 lines
7.0 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include <vector>
#include <string>
#include <opencv2/calib3d.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>
#include <fstream>
// ! [detectPointsAndCalibrate_signature]
static void detectPointsAndCalibrate (cv::Size pattern_size, float pattern_scale, const std::string &pattern_type,
const std::vector<bool> &is_fisheye, const std::vector<std::string> &filenames)
// ! [detectPointsAndCalibrate_signature]
{
// ! [calib_init]
std::vector<cv::Point3f> board (pattern_size.area());
const int num_cameras = (int)is_fisheye.size();
std::vector<std::vector<cv::Mat>> image_points_all;
std::vector<cv::Size> image_sizes;
std::vector<cv::Mat> Ks, distortions, Ts, Rs;
cv::Mat rvecs0, tvecs0, errors_mat, output_pairs;
if (pattern_type == "checkerboard") {
for (int i = 0; i < pattern_size.height; i++) {
for (int j = 0; j < pattern_size.width; j++) {
board[i*pattern_size.width+j] = cv::Point3f((float)j, (float)i, 0.f) * pattern_scale;
}
}
} else if (pattern_type == "circles") {
for (int i = 0; i < pattern_size.height; i++) {
for (int j = 0; j < pattern_size.width; j++) {
board[i*pattern_size.width+j] = cv::Point3f((float)j, (float)i, 0.f) * pattern_scale;
}
}
} else if (pattern_type == "acircles") {
for (int i = 0; i < pattern_size.height; i++) {
for (int j = 0; j < pattern_size.width; j++) {
if (i % 2 == 1) {
board[i*pattern_size.width+j] = cv::Point3f((j + .5f)*pattern_scale, (i/2 + .5f) * pattern_scale, 0.f);
} else{
board[i*pattern_size.width+j] = cv::Point3f(j*pattern_scale, (i/2)*pattern_scale, 0);
}
}
}
}
else {
CV_Error(cv::Error::StsNotImplemented, "pattern_type is not implemented!");
}
// ! [calib_init]
// ! [detect_pattern]
int num_frames = -1;
for (const auto &filename : filenames) {
std::fstream file(filename);
CV_Assert(file.is_open());
std::string img_file;
std::vector<cv::Mat> image_points_cameras;
bool save_img_size = true;
while (std::getline(file, img_file)) {
if (img_file.empty())
break;
std::cout << img_file << "\n";
cv::Mat img = cv::imread(img_file), corners;
if (save_img_size) {
image_sizes.emplace_back(cv::Size(img.cols, img.rows));
save_img_size = false;
}
bool success = false;
if (pattern_type == "checkerboard") {
cv::cvtColor(img, img, cv::COLOR_BGR2GRAY);
success = cv::findChessboardCorners(img, pattern_size, corners);
}
else if (pattern_type == "circles")
{
success = cv::findCirclesGrid(img, pattern_size, corners, cv::CALIB_CB_SYMMETRIC_GRID);
}
else if (pattern_type == "acircles")
{
success = cv::findCirclesGrid(img, pattern_size, corners, cv::CALIB_CB_ASYMMETRIC_GRID);
}
cv::Mat corners2;
corners.convertTo(corners2, CV_32FC2);
if (success && corners.rows == pattern_size.area())
image_points_cameras.emplace_back(corners2);
else
image_points_cameras.emplace_back(cv::Mat());
}
if (num_frames == -1)
num_frames = (int)image_points_cameras.size();
else
CV_Assert(num_frames == (int)image_points_cameras.size());
image_points_all.emplace_back(image_points_cameras);
}
// ! [detect_pattern]
// ! [detection_matrix]
cv::Mat visibility(num_cameras, num_frames, CV_8UC1);
for (int i = 0; i < num_cameras; i++) {
for (int j = 0; j < num_frames; j++) {
visibility.at<unsigned char>(i,j) = image_points_all[i][j].empty() ? 0 : 1;
}
}
// ! [detection_matrix]
CV_Assert(num_frames != -1);
std::vector<std::vector<cv::Point3f>> objPoints(num_frames, board);
// ! [multiview_calib]
const double rmse = calibrateMultiview(objPoints, image_points_all, image_sizes, visibility,
Rs, Ts, Ks, distortions, cv::noArray(), cv::noArray(),
is_fisheye, errors_mat, output_pairs);
// ! [multiview_calib]
std::cout << "average RMSE over detection mask " << rmse << "\n";
for (int c = 0; c < (int)Rs.size(); c++) {
std::cout << "camera " << c << '\n';
std::cout << Rs[c] << " rotation\n";
std::cout << Ts[c] << " translation\n";
std::cout << Ks[c] << " intrinsic matrix\n";
std::cout << distortions[c] << " distortion\n";
}
}
int main (int argc, char **argv) {
cv::String keys =
"{help h usage ? || print help }"
"{pattern_width || pattern grid width}"
"{pattern_height || pattern grid height}"
"{pattern_scale || pattern scale}"
"{pattern_type | checkerboard | pattern type, e.g., checkerboard or acircles}"
"{is_fisheye || cameras type fisheye (1), pinhole(0), separated by comma (no space)}"
"{files_with_images || files containing path to image names separated by comma (no space)}";
cv::CommandLineParser parser(argc, argv, keys);
if (parser.has("help")) {
parser.printMessage();
return 0;
}
CV_Assert(parser.has("pattern_width") && parser.has("pattern_height") && parser.has("pattern_type") &&
parser.has("is_fisheye") && parser.has("files_with_images"));
CV_Assert(parser.get<cv::String>("pattern_type") == "checkerboard" ||
parser.get<cv::String>("pattern_type") == "circles" ||
parser.get<cv::String>("pattern_type") == "acircles");
const cv::Size pattern_size (parser.get<int>("pattern_width"), parser.get<int>("pattern_height"));
std::vector<bool> is_fisheye;
const cv::String is_fisheye_str = parser.get<cv::String>("is_fisheye");
for (char i : is_fisheye_str) {
if (i == '0') {
is_fisheye.push_back(false);
} else if (i == '1') {
is_fisheye.push_back(true);
}
}
const cv::String files_with_images_str = parser.get<cv::String>("files_with_images");
std::vector<std::string> filenames;
std::string temp_str;
for (char i : files_with_images_str) {
if (i == ',') {
filenames.emplace_back(temp_str);
temp_str = "";
} else {
temp_str += i;
}
}
filenames.emplace_back(temp_str);
CV_CheckEQ(filenames.size(), is_fisheye.size(), "filenames size must be equal to number of cameras!");
detectPointsAndCalibrate (pattern_size, parser.get<float>("pattern_scale"), parser.get<cv::String>("pattern_type"), is_fisheye, filenames);
return 0;
}