mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
118 lines
3.2 KiB
118 lines
3.2 KiB
6 years ago
|
%YAML:1.0
|
||
|
|
||
|
################################################################################
|
||
|
# Object detection models.
|
||
|
################################################################################
|
||
|
|
||
|
# OpenCV's face detection network
|
||
|
opencv_fd:
|
||
|
model: "opencv_face_detector.caffemodel"
|
||
|
config: "opencv_face_detector.prototxt"
|
||
|
mean: [104, 177, 123]
|
||
|
scale: 1.0
|
||
|
width: 300
|
||
|
height: 300
|
||
|
rgb: false
|
||
|
sample: "object_detection"
|
||
|
|
||
|
# YOLO object detection family from Darknet (https://pjreddie.com/darknet/yolo/)
|
||
|
# Might be used for all YOLOv2, TinyYolov2 and YOLOv3
|
||
|
yolo:
|
||
|
model: "yolov3.weights"
|
||
|
config: "yolov3.cfg"
|
||
|
mean: [0, 0, 0]
|
||
|
scale: 0.00392
|
||
|
width: 416
|
||
|
height: 416
|
||
|
rgb: true
|
||
|
classes: "object_detection_classes_yolov3.txt"
|
||
|
sample: "object_detection"
|
||
|
|
||
|
tiny-yolo-voc:
|
||
|
model: "tiny-yolo-voc.weights"
|
||
|
config: "tiny-yolo-voc.cfg"
|
||
|
mean: [0, 0, 0]
|
||
|
scale: 0.00392
|
||
|
width: 416
|
||
|
height: 416
|
||
|
rgb: true
|
||
|
classes: "object_detection_classes_pascal_voc.txt"
|
||
|
sample: "object_detection"
|
||
|
|
||
|
# Caffe implementation of SSD model from https://github.com/chuanqi305/MobileNet-SSD
|
||
|
ssd_caffe:
|
||
|
model: "MobileNetSSD_deploy.caffemodel"
|
||
|
config: "MobileNetSSD_deploy.prototxt"
|
||
|
mean: [127.5, 127.5, 127.5]
|
||
|
scale: 0.007843
|
||
|
width: 300
|
||
|
height: 300
|
||
|
rgb: false
|
||
|
classes: "object_detection_classes_pascal_voc.txt"
|
||
|
sample: "object_detection"
|
||
|
|
||
|
# TensorFlow implementation of SSD model from https://github.com/tensorflow/models/tree/master/research/object_detection
|
||
|
ssd_tf:
|
||
|
model: "ssd_mobilenet_v1_coco_2017_11_17.pb"
|
||
|
config: "ssd_mobilenet_v1_coco_2017_11_17.pbtxt"
|
||
|
mean: [0, 0, 0]
|
||
|
scale: 1.0
|
||
|
width: 300
|
||
|
height: 300
|
||
|
rgb: true
|
||
|
classes: "object_detection_classes_coco.txt"
|
||
|
sample: "object_detection"
|
||
|
|
||
|
# TensorFlow implementation of Faster-RCNN model from https://github.com/tensorflow/models/tree/master/research/object_detection
|
||
|
faster_rcnn_tf:
|
||
|
model: "faster_rcnn_inception_v2_coco_2018_01_28.pb"
|
||
|
config: "faster_rcnn_inception_v2_coco_2018_01_28.pbtxt"
|
||
|
mean: [0, 0, 0]
|
||
|
scale: 1.0
|
||
|
width: 800
|
||
|
height: 600
|
||
|
rgb: true
|
||
|
sample: "object_detection"
|
||
|
|
||
|
################################################################################
|
||
|
# Image classification models.
|
||
|
################################################################################
|
||
|
|
||
|
# SqueezeNet v1.1 from https://github.com/DeepScale/SqueezeNet
|
||
|
squeezenet:
|
||
|
model: "squeezenet_v1.1.caffemodel"
|
||
|
config: "squeezenet_v1.1.prototxt"
|
||
|
mean: [0, 0, 0]
|
||
|
scale: 1.0
|
||
|
width: 227
|
||
|
height: 227
|
||
|
rgb: false
|
||
|
classes: "classification_classes_ILSVRC2012.txt"
|
||
|
sample: "classification"
|
||
|
|
||
|
################################################################################
|
||
|
# Semantic segmentation models.
|
||
|
################################################################################
|
||
|
|
||
|
# ENet road scene segmentation network from https://github.com/e-lab/ENet-training
|
||
|
# Works fine for different input sizes.
|
||
|
enet:
|
||
|
model: "Enet-model-best.net"
|
||
|
mean: [0, 0, 0]
|
||
|
scale: 0.00392
|
||
|
width: 512
|
||
|
height: 256
|
||
|
rgb: true
|
||
|
classes: "enet-classes.txt"
|
||
|
sample: "segmentation"
|
||
|
|
||
|
fcn8s:
|
||
|
model: "fcn8s-heavy-pascal.caffemodel"
|
||
|
config: "fcn8s-heavy-pascal.prototxt"
|
||
|
mean: [0, 0, 0]
|
||
|
scale: 1.0
|
||
|
width: 500
|
||
|
height: 500
|
||
|
rgb: false
|
||
|
sample: "segmentation"
|