mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
277 lines
8.8 KiB
277 lines
8.8 KiB
11 years ago
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2013, Itseez Inc, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
/* Haar features calculation */
|
||
|
|
||
|
#include "precomp.hpp"
|
||
|
#include <stdio.h>
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
|
||
|
/* field names */
|
||
|
|
||
|
#define ICV_HAAR_SIZE_NAME "size"
|
||
|
#define ICV_HAAR_STAGES_NAME "stages"
|
||
|
#define ICV_HAAR_TREES_NAME "trees"
|
||
|
#define ICV_HAAR_FEATURE_NAME "feature"
|
||
|
#define ICV_HAAR_RECTS_NAME "rects"
|
||
|
#define ICV_HAAR_TILTED_NAME "tilted"
|
||
|
#define ICV_HAAR_THRESHOLD_NAME "threshold"
|
||
|
#define ICV_HAAR_LEFT_NODE_NAME "left_node"
|
||
|
#define ICV_HAAR_LEFT_VAL_NAME "left_val"
|
||
|
#define ICV_HAAR_RIGHT_NODE_NAME "right_node"
|
||
|
#define ICV_HAAR_RIGHT_VAL_NAME "right_val"
|
||
|
#define ICV_HAAR_STAGE_THRESHOLD_NAME "stage_threshold"
|
||
|
#define ICV_HAAR_PARENT_NAME "parent"
|
||
|
#define ICV_HAAR_NEXT_NAME "next"
|
||
|
|
||
|
namespace haar_cvt
|
||
|
{
|
||
|
|
||
|
struct HaarFeature
|
||
|
{
|
||
|
enum { RECT_NUM = 3 };
|
||
|
|
||
|
HaarFeature()
|
||
|
{
|
||
|
tilted = false;
|
||
|
for( int i = 0; i < RECT_NUM; i++ )
|
||
|
{
|
||
|
rect[i].r = Rect(0,0,0,0);
|
||
|
rect[i].weight = 0.f;
|
||
|
}
|
||
|
}
|
||
|
bool tilted;
|
||
|
struct
|
||
|
{
|
||
|
Rect r;
|
||
|
float weight;
|
||
|
} rect[RECT_NUM];
|
||
|
};
|
||
|
|
||
|
struct HaarClassifierNode
|
||
|
{
|
||
|
HaarClassifierNode()
|
||
|
{
|
||
|
f = left = right = 0;
|
||
|
threshold = 0.f;
|
||
|
}
|
||
|
int f, left, right;
|
||
|
float threshold;
|
||
|
};
|
||
|
|
||
|
struct HaarClassifier
|
||
|
{
|
||
|
std::vector<HaarClassifierNode> nodes;
|
||
|
std::vector<float> leaves;
|
||
|
};
|
||
|
|
||
|
struct HaarStageClassifier
|
||
|
{
|
||
|
double threshold;
|
||
|
std::vector<HaarClassifier> weaks;
|
||
|
};
|
||
|
|
||
|
static bool convert(const String& oldcascade, const String& newcascade)
|
||
|
{
|
||
|
FileStorage oldfs(oldcascade, FileStorage::READ);
|
||
|
if( !oldfs.isOpened() )
|
||
|
return false;
|
||
|
FileNode oldroot = oldfs.getFirstTopLevelNode();
|
||
|
|
||
|
FileNode sznode = oldroot[ICV_HAAR_SIZE_NAME];
|
||
|
if( sznode.empty() )
|
||
|
return false;
|
||
|
int maxdepth = 0;
|
||
|
Size cascadesize;
|
||
|
cascadesize.width = (int)sznode[0];
|
||
|
cascadesize.height = (int)sznode[1];
|
||
|
std::vector<HaarFeature> features;
|
||
|
|
||
|
size_t i, j, k, n;
|
||
|
|
||
|
FileNode stages_seq = oldroot[ICV_HAAR_STAGES_NAME];
|
||
|
size_t nstages = stages_seq.size();
|
||
|
std::vector<HaarStageClassifier> stages(nstages);
|
||
|
|
||
|
for( i = 0; i < nstages; i++ )
|
||
|
{
|
||
|
FileNode stagenode = stages_seq[i];
|
||
|
HaarStageClassifier& stage = stages[i];
|
||
|
stage.threshold = (double)stagenode[ICV_HAAR_STAGE_THRESHOLD_NAME];
|
||
|
FileNode weaks_seq = stagenode[ICV_HAAR_TREES_NAME];
|
||
|
size_t nweaks = weaks_seq.size();
|
||
|
stage.weaks.resize(nweaks);
|
||
|
|
||
|
for( j = 0; j < nweaks; j++ )
|
||
|
{
|
||
|
HaarClassifier& weak = stage.weaks[j];
|
||
|
FileNode weaknode = weaks_seq[j];
|
||
|
size_t nnodes = weaknode.size();
|
||
|
|
||
|
for( n = 0; n < nnodes; n++ )
|
||
|
{
|
||
|
FileNode nnode = weaknode[n];
|
||
|
FileNode fnode = nnode[ICV_HAAR_FEATURE_NAME];
|
||
|
HaarFeature f;
|
||
|
HaarClassifierNode node;
|
||
|
node.f = (int)features.size();
|
||
|
f.tilted = (int)fnode[ICV_HAAR_TILTED_NAME] != 0;
|
||
|
FileNode rects_seq = fnode[ICV_HAAR_RECTS_NAME];
|
||
|
size_t nrects = rects_seq.size();
|
||
|
|
||
|
for( k = 0; k < nrects; k++ )
|
||
|
{
|
||
|
FileNode rnode = rects_seq[k];
|
||
|
f.rect[k].r.x = (int)rnode[0];
|
||
|
f.rect[k].r.y = (int)rnode[1];
|
||
|
f.rect[k].r.width = (int)rnode[2];
|
||
|
f.rect[k].r.height = (int)rnode[3];
|
||
|
f.rect[k].weight = (float)rnode[4];
|
||
|
}
|
||
|
features.push_back(f);
|
||
|
node.threshold = nnode[ICV_HAAR_THRESHOLD_NAME];
|
||
|
FileNode leftValNode = nnode[ICV_HAAR_LEFT_VAL_NAME];
|
||
|
if( !leftValNode.empty() )
|
||
|
{
|
||
|
node.left = -(int)weak.leaves.size();
|
||
|
weak.leaves.push_back((float)leftValNode);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
node.left = (int)nnode[ICV_HAAR_LEFT_NODE_NAME];
|
||
|
}
|
||
|
FileNode rightValNode = nnode[ICV_HAAR_RIGHT_VAL_NAME];
|
||
|
if( !rightValNode.empty() )
|
||
|
{
|
||
|
node.right = -(int)weak.leaves.size();
|
||
|
weak.leaves.push_back((float)rightValNode);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
node.right = (int)nnode[ICV_HAAR_RIGHT_NODE_NAME];
|
||
|
}
|
||
|
weak.nodes.push_back(node);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
FileStorage newfs(newcascade, FileStorage::WRITE);
|
||
|
if( !newfs.isOpened() )
|
||
|
return false;
|
||
|
|
||
|
size_t maxWeakCount = 0, nfeatures = features.size();
|
||
|
for( i = 0; i < nstages; i++ )
|
||
|
maxWeakCount = std::max(maxWeakCount, stages[i].weaks.size());
|
||
|
|
||
|
newfs << "stageType" << "BOOST"
|
||
|
<< "featureType" << "HAAR"
|
||
|
<< "height" << cascadesize.width
|
||
|
<< "width" << cascadesize.height
|
||
|
<< "stageParams" << "{"
|
||
|
<< "maxDepth" << maxdepth
|
||
|
<< "maxWeakCount" << (int)maxWeakCount
|
||
|
<< "}"
|
||
|
<< "featureParams" << "{"
|
||
|
<< "maxCatCount" << 0
|
||
|
<< "}"
|
||
|
<< "stageNum" << (int)nstages
|
||
|
<< "stages" << "[";
|
||
|
|
||
|
for( i = 0; i < nstages; i++ )
|
||
|
{
|
||
|
size_t nweaks = stages[i].weaks.size();
|
||
|
newfs << "{" << "maxWeakCount" << (int)nweaks
|
||
|
<< "stageThreshold" << stages[i].threshold
|
||
|
<< "weakClassifiers" << "[";
|
||
|
for( j = 0; j < nweaks; j++ )
|
||
|
{
|
||
|
const HaarClassifier& c = stages[i].weaks[j];
|
||
|
newfs << "{" << "internalNodes" << "[";
|
||
|
size_t nnodes = c.nodes.size(), nleaves = c.leaves.size();
|
||
|
for( k = 0; k < nnodes; k++ )
|
||
|
newfs << c.nodes[k].left << c.nodes[k].right
|
||
|
<< c.nodes[k].f << c.nodes[k].threshold;
|
||
|
newfs << "]" << "leafValues" << "[";
|
||
|
for( k = 0; k < nleaves; k++ )
|
||
|
newfs << c.leaves[k];
|
||
|
newfs << "]" << "}";
|
||
|
}
|
||
|
newfs << "]" << "}";
|
||
|
}
|
||
|
|
||
|
newfs << "]"
|
||
|
<< "features" << "[";
|
||
|
|
||
|
for( i = 0; i < nfeatures; i++ )
|
||
|
{
|
||
|
const HaarFeature& f = features[i];
|
||
|
newfs << "{" << "rects" << "[";
|
||
|
for( j = 0; j < (size_t)HaarFeature::RECT_NUM; j++ )
|
||
|
{
|
||
|
if( j >= 2 && fabs(f.rect[j].weight) < FLT_EPSILON )
|
||
|
break;
|
||
|
newfs << f.rect[j].r.x << f.rect[j].r.y <<
|
||
|
f.rect[j].r.width << f.rect[j].r.height << f.rect[j].weight;
|
||
|
}
|
||
|
newfs << "]";
|
||
|
if( f.tilted )
|
||
|
newfs << "tilted" << 1;
|
||
|
newfs << "}";
|
||
|
}
|
||
|
|
||
|
newfs << "]";
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
bool CascadeClassifier::convert(const String& oldcascade, const String& newcascade)
|
||
|
{
|
||
|
bool ok = haar_cvt::convert(oldcascade, newcascade);
|
||
|
if( !ok && newcascade.size() > 0 )
|
||
|
remove(newcascade.c_str());
|
||
|
return ok;
|
||
|
}
|
||
|
|
||
|
}
|