mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
91 lines
2.5 KiB
91 lines
2.5 KiB
3 years ago
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html.
|
||
|
|
||
|
#include "perf_precomp.hpp"
|
||
|
|
||
|
namespace opencv_test {
|
||
|
|
||
|
struct LstmParams {
|
||
|
// Batch size
|
||
|
int nrSamples;
|
||
|
|
||
|
// Size of the input vector
|
||
|
int inputSize;
|
||
|
|
||
|
// Size of the internal state vector
|
||
|
int hiddenSize;
|
||
|
|
||
|
// Number of timesteps for the LSTM
|
||
|
int nrSteps;
|
||
|
};
|
||
|
|
||
|
static inline void PrintTo(const LstmParams& params, ::std::ostream* os) {
|
||
|
(*os) << "BATCH=" << params.nrSamples
|
||
|
<< ", IN=" << params.inputSize
|
||
|
<< ", HIDDEN=" << params.hiddenSize
|
||
|
<< ", TS=" << params.nrSteps;
|
||
|
}
|
||
|
|
||
|
static const LstmParams testLstmConfigs[] = {
|
||
|
{1, 192, 192, 100},
|
||
|
{1, 1024, 192, 100},
|
||
|
{1, 64, 192, 100},
|
||
|
{1, 192, 512, 100},
|
||
|
{64, 192, 192, 2},
|
||
|
{64, 1024, 192, 2},
|
||
|
{64, 64, 192, 2},
|
||
|
{64, 192, 512, 2},
|
||
|
{128, 192, 192, 2},
|
||
|
{128, 1024, 192, 2},
|
||
|
{128, 64, 192, 2},
|
||
|
{128, 192, 512, 2}
|
||
|
};
|
||
|
|
||
|
class Layer_LSTM : public TestBaseWithParam<LstmParams> {};
|
||
|
|
||
|
PERF_TEST_P_(Layer_LSTM, lstm) {
|
||
|
const LstmParams& params = GetParam();
|
||
|
LayerParams lp;
|
||
|
lp.type = "LSTM";
|
||
|
lp.name = "testLstm";
|
||
|
lp.set("produce_cell_output", false);
|
||
|
lp.set("use_timestamp_dim", true);
|
||
|
|
||
|
Mat weightH(params.hiddenSize * 4, params.hiddenSize, CV_32FC1, cv::Scalar(0));
|
||
|
Mat weightX(params.hiddenSize * 4, params.inputSize, CV_32FC1, cv::Scalar(0));
|
||
|
Mat bias(params.hiddenSize * 4, 1, CV_32FC1, cv::Scalar(0));
|
||
|
Mat hInternal(params.nrSteps, params.hiddenSize, CV_32FC1, cv::Scalar(0));
|
||
|
Mat cInternal(params.nrSteps, params.hiddenSize, CV_32FC1, cv::Scalar(0));
|
||
|
lp.blobs.push_back(weightH);
|
||
|
lp.blobs.push_back(weightX);
|
||
|
lp.blobs.push_back(bias);
|
||
|
lp.blobs.push_back(hInternal);
|
||
|
lp.blobs.push_back(cInternal);
|
||
|
|
||
|
std::vector<int> inputDims;
|
||
|
inputDims.push_back(params.nrSamples);
|
||
|
inputDims.push_back(params.nrSteps);
|
||
|
inputDims.push_back(params.inputSize);
|
||
|
Mat input(inputDims.size(), inputDims.data(), CV_32FC1);
|
||
|
input = cv::Scalar(0);
|
||
|
|
||
|
Net net;
|
||
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
||
|
net.setInput(input);
|
||
|
|
||
|
// Warm up
|
||
|
std::vector<Mat> outputs(2);
|
||
|
net.forward(outputs, "testLstm");
|
||
|
|
||
|
TEST_CYCLE()
|
||
|
{
|
||
|
net.forward(outputs, "testLstm");
|
||
|
}
|
||
|
SANITY_CHECK_NOTHING();
|
||
|
}
|
||
|
|
||
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_LSTM, testing::ValuesIn(testLstmConfigs));
|
||
|
|
||
|
} // namespace
|