|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#ifndef __OPENCV_GPU_HPP__
|
|
|
|
#define __OPENCV_GPU_HPP__
|
|
|
|
|
|
|
|
#ifndef SKIP_INCLUDES
|
|
|
|
#include <vector>
|
|
|
|
#include <memory>
|
|
|
|
#include <iosfwd>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "opencv2/core/gpumat.hpp"
|
|
|
|
#include "opencv2/gpuarithm.hpp"
|
|
|
|
#include "opencv2/gpufilters.hpp"
|
|
|
|
#include "opencv2/gpuimgproc.hpp"
|
|
|
|
#include "opencv2/gpufeatures2d.hpp"
|
|
|
|
#include "opencv2/gpuvideo.hpp"
|
|
|
|
|
|
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
#include "opencv2/objdetect.hpp"
|
|
|
|
#include "opencv2/features2d.hpp"
|
|
|
|
|
|
|
|
namespace cv { namespace gpu {
|
|
|
|
////////////////////////////// Image processing //////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////// Calibration 3D //////////////////////////////////
|
|
|
|
|
|
|
|
CV_EXPORTS void transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
|
|
|
|
GpuMat& dst, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
CV_EXPORTS void projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
|
|
|
|
const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst,
|
|
|
|
Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
CV_EXPORTS void solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat,
|
|
|
|
const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false,
|
|
|
|
int num_iters=100, float max_dist=8.0, int min_inlier_count=100,
|
|
|
|
std::vector<int>* inliers=NULL);
|
|
|
|
|
|
|
|
//////////////////////////////// Image Labeling ////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////// Histograms //////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////// StereoBM_GPU ////////////////////////////////
|
|
|
|
|
|
|
|
class CV_EXPORTS StereoBM_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 };
|
|
|
|
|
|
|
|
enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 };
|
|
|
|
|
|
|
|
//! the default constructor
|
|
|
|
StereoBM_GPU();
|
|
|
|
//! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8.
|
|
|
|
StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ);
|
|
|
|
|
|
|
|
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
|
|
|
|
//! Output disparity has CV_8U type.
|
|
|
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! Some heuristics that tries to estmate
|
|
|
|
// if current GPU will be faster than CPU in this algorithm.
|
|
|
|
// It queries current active device.
|
|
|
|
static bool checkIfGpuCallReasonable();
|
|
|
|
|
|
|
|
int preset;
|
|
|
|
int ndisp;
|
|
|
|
int winSize;
|
|
|
|
|
|
|
|
// If avergeTexThreshold == 0 => post procesing is disabled
|
|
|
|
// If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image
|
|
|
|
// SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold
|
|
|
|
// i.e. input left image is low textured.
|
|
|
|
float avergeTexThreshold;
|
|
|
|
|
|
|
|
private:
|
|
|
|
GpuMat minSSD, leBuf, riBuf;
|
|
|
|
};
|
|
|
|
|
|
|
|
////////////////////////// StereoBeliefPropagation ///////////////////////////
|
|
|
|
// "Efficient Belief Propagation for Early Vision"
|
|
|
|
// P.Felzenszwalb
|
|
|
|
|
|
|
|
class CV_EXPORTS StereoBeliefPropagation
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { DEFAULT_NDISP = 64 };
|
|
|
|
enum { DEFAULT_ITERS = 5 };
|
|
|
|
enum { DEFAULT_LEVELS = 5 };
|
|
|
|
|
|
|
|
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels);
|
|
|
|
|
|
|
|
//! the default constructor
|
|
|
|
explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP,
|
|
|
|
int iters = DEFAULT_ITERS,
|
|
|
|
int levels = DEFAULT_LEVELS,
|
|
|
|
int msg_type = CV_32F);
|
|
|
|
|
|
|
|
//! the full constructor taking the number of disparities, number of BP iterations on each level,
|
|
|
|
//! number of levels, truncation of data cost, data weight,
|
|
|
|
//! truncation of discontinuity cost and discontinuity single jump
|
|
|
|
//! DataTerm = data_weight * min(fabs(I2-I1), max_data_term)
|
|
|
|
//! DiscTerm = min(disc_single_jump * fabs(f1-f2), max_disc_term)
|
|
|
|
//! please see paper for more details
|
|
|
|
StereoBeliefPropagation(int ndisp, int iters, int levels,
|
|
|
|
float max_data_term, float data_weight,
|
|
|
|
float max_disc_term, float disc_single_jump,
|
|
|
|
int msg_type = CV_32F);
|
|
|
|
|
|
|
|
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
|
|
|
|
//! if disparity is empty output type will be CV_16S else output type will be disparity.type().
|
|
|
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
|
|
|
|
//! version for user specified data term
|
|
|
|
void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
int ndisp;
|
|
|
|
|
|
|
|
int iters;
|
|
|
|
int levels;
|
|
|
|
|
|
|
|
float max_data_term;
|
|
|
|
float data_weight;
|
|
|
|
float max_disc_term;
|
|
|
|
float disc_single_jump;
|
|
|
|
|
|
|
|
int msg_type;
|
|
|
|
private:
|
|
|
|
GpuMat u, d, l, r, u2, d2, l2, r2;
|
|
|
|
std::vector<GpuMat> datas;
|
|
|
|
GpuMat out;
|
|
|
|
};
|
|
|
|
|
|
|
|
/////////////////////////// StereoConstantSpaceBP ///////////////////////////
|
|
|
|
// "A Constant-Space Belief Propagation Algorithm for Stereo Matching"
|
|
|
|
// Qingxiong Yang, Liang Wang, Narendra Ahuja
|
|
|
|
// http://vision.ai.uiuc.edu/~qyang6/
|
|
|
|
|
|
|
|
class CV_EXPORTS StereoConstantSpaceBP
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { DEFAULT_NDISP = 128 };
|
|
|
|
enum { DEFAULT_ITERS = 8 };
|
|
|
|
enum { DEFAULT_LEVELS = 4 };
|
|
|
|
enum { DEFAULT_NR_PLANE = 4 };
|
|
|
|
|
|
|
|
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane);
|
|
|
|
|
|
|
|
//! the default constructor
|
|
|
|
explicit StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP,
|
|
|
|
int iters = DEFAULT_ITERS,
|
|
|
|
int levels = DEFAULT_LEVELS,
|
|
|
|
int nr_plane = DEFAULT_NR_PLANE,
|
|
|
|
int msg_type = CV_32F);
|
|
|
|
|
|
|
|
//! the full constructor taking the number of disparities, number of BP iterations on each level,
|
|
|
|
//! number of levels, number of active disparity on the first level, truncation of data cost, data weight,
|
|
|
|
//! truncation of discontinuity cost, discontinuity single jump and minimum disparity threshold
|
|
|
|
StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane,
|
|
|
|
float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
|
|
|
|
int min_disp_th = 0,
|
|
|
|
int msg_type = CV_32F);
|
|
|
|
|
|
|
|
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
|
|
|
|
//! if disparity is empty output type will be CV_16S else output type will be disparity.type().
|
|
|
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
int ndisp;
|
|
|
|
|
|
|
|
int iters;
|
|
|
|
int levels;
|
|
|
|
|
|
|
|
int nr_plane;
|
|
|
|
|
|
|
|
float max_data_term;
|
|
|
|
float data_weight;
|
|
|
|
float max_disc_term;
|
|
|
|
float disc_single_jump;
|
|
|
|
|
|
|
|
int min_disp_th;
|
|
|
|
|
|
|
|
int msg_type;
|
|
|
|
|
|
|
|
bool use_local_init_data_cost;
|
|
|
|
private:
|
|
|
|
GpuMat messages_buffers;
|
|
|
|
|
|
|
|
GpuMat temp;
|
|
|
|
GpuMat out;
|
|
|
|
};
|
|
|
|
|
|
|
|
/////////////////////////// DisparityBilateralFilter ///////////////////////////
|
|
|
|
// Disparity map refinement using joint bilateral filtering given a single color image.
|
|
|
|
// Qingxiong Yang, Liang Wang, Narendra Ahuja
|
|
|
|
// http://vision.ai.uiuc.edu/~qyang6/
|
|
|
|
|
|
|
|
class CV_EXPORTS DisparityBilateralFilter
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { DEFAULT_NDISP = 64 };
|
|
|
|
enum { DEFAULT_RADIUS = 3 };
|
|
|
|
enum { DEFAULT_ITERS = 1 };
|
|
|
|
|
|
|
|
//! the default constructor
|
|
|
|
explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS);
|
|
|
|
|
|
|
|
//! the full constructor taking the number of disparities, filter radius,
|
|
|
|
//! number of iterations, truncation of data continuity, truncation of disparity continuity
|
|
|
|
//! and filter range sigma
|
|
|
|
DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range);
|
|
|
|
|
|
|
|
//! the disparity map refinement operator. Refine disparity map using joint bilateral filtering given a single color image.
|
|
|
|
//! disparity must have CV_8U or CV_16S type, image must have CV_8UC1 or CV_8UC3 type.
|
|
|
|
void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
private:
|
|
|
|
int ndisp;
|
|
|
|
int radius;
|
|
|
|
int iters;
|
|
|
|
|
|
|
|
float edge_threshold;
|
|
|
|
float max_disc_threshold;
|
|
|
|
float sigma_range;
|
|
|
|
|
|
|
|
GpuMat table_color;
|
|
|
|
GpuMat table_space;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
|
|
|
|
struct CV_EXPORTS HOGConfidence
|
|
|
|
{
|
|
|
|
double scale;
|
|
|
|
std::vector<Point> locations;
|
|
|
|
std::vector<double> confidences;
|
|
|
|
std::vector<double> part_scores[4];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct CV_EXPORTS HOGDescriptor
|
|
|
|
{
|
|
|
|
enum { DEFAULT_WIN_SIGMA = -1 };
|
|
|
|
enum { DEFAULT_NLEVELS = 64 };
|
|
|
|
enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
|
|
|
|
|
|
|
|
HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
|
|
|
|
Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
|
|
|
|
int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA,
|
|
|
|
double threshold_L2hys=0.2, bool gamma_correction=true,
|
|
|
|
int nlevels=DEFAULT_NLEVELS);
|
|
|
|
|
|
|
|
size_t getDescriptorSize() const;
|
|
|
|
size_t getBlockHistogramSize() const;
|
|
|
|
|
|
|
|
void setSVMDetector(const std::vector<float>& detector);
|
|
|
|
|
|
|
|
static std::vector<float> getDefaultPeopleDetector();
|
|
|
|
static std::vector<float> getPeopleDetector48x96();
|
|
|
|
static std::vector<float> getPeopleDetector64x128();
|
|
|
|
|
|
|
|
void detect(const GpuMat& img, std::vector<Point>& found_locations,
|
|
|
|
double hit_threshold=0, Size win_stride=Size(),
|
|
|
|
Size padding=Size());
|
|
|
|
|
|
|
|
void detectMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
|
|
|
|
double hit_threshold=0, Size win_stride=Size(),
|
|
|
|
Size padding=Size(), double scale0=1.05,
|
|
|
|
int group_threshold=2);
|
|
|
|
|
|
|
|
void computeConfidence(const GpuMat& img, std::vector<Point>& hits, double hit_threshold,
|
|
|
|
Size win_stride, Size padding, std::vector<Point>& locations, std::vector<double>& confidences);
|
|
|
|
|
|
|
|
void computeConfidenceMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
|
|
|
|
double hit_threshold, Size win_stride, Size padding,
|
|
|
|
std::vector<HOGConfidence> &conf_out, int group_threshold);
|
|
|
|
|
|
|
|
void getDescriptors(const GpuMat& img, Size win_stride,
|
|
|
|
GpuMat& descriptors,
|
|
|
|
int descr_format=DESCR_FORMAT_COL_BY_COL);
|
|
|
|
|
|
|
|
Size win_size;
|
|
|
|
Size block_size;
|
|
|
|
Size block_stride;
|
|
|
|
Size cell_size;
|
|
|
|
int nbins;
|
|
|
|
double win_sigma;
|
|
|
|
double threshold_L2hys;
|
|
|
|
bool gamma_correction;
|
|
|
|
int nlevels;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void computeBlockHistograms(const GpuMat& img);
|
|
|
|
void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle);
|
|
|
|
|
|
|
|
double getWinSigma() const;
|
|
|
|
bool checkDetectorSize() const;
|
|
|
|
|
|
|
|
static int numPartsWithin(int size, int part_size, int stride);
|
|
|
|
static Size numPartsWithin(Size size, Size part_size, Size stride);
|
|
|
|
|
|
|
|
// Coefficients of the separating plane
|
|
|
|
float free_coef;
|
|
|
|
GpuMat detector;
|
|
|
|
|
|
|
|
// Results of the last classification step
|
|
|
|
GpuMat labels, labels_buf;
|
|
|
|
Mat labels_host;
|
|
|
|
|
|
|
|
// Results of the last histogram evaluation step
|
|
|
|
GpuMat block_hists, block_hists_buf;
|
|
|
|
|
|
|
|
// Gradients conputation results
|
|
|
|
GpuMat grad, qangle, grad_buf, qangle_buf;
|
|
|
|
|
|
|
|
// returns subbuffer with required size, reallocates buffer if nessesary.
|
|
|
|
static GpuMat getBuffer(const Size& sz, int type, GpuMat& buf);
|
|
|
|
static GpuMat getBuffer(int rows, int cols, int type, GpuMat& buf);
|
|
|
|
|
|
|
|
std::vector<GpuMat> image_scales;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////// BruteForceMatcher //////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <class Distance>
|
|
|
|
class CV_EXPORTS BruteForceMatcher_GPU;
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
class CV_EXPORTS BruteForceMatcher_GPU< L1<T> > : public BFMatcher_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
explicit BruteForceMatcher_GPU() : BFMatcher_GPU(NORM_L1) {}
|
|
|
|
explicit BruteForceMatcher_GPU(L1<T> /*d*/) : BFMatcher_GPU(NORM_L1) {}
|
|
|
|
};
|
|
|
|
template <typename T>
|
|
|
|
class CV_EXPORTS BruteForceMatcher_GPU< L2<T> > : public BFMatcher_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
explicit BruteForceMatcher_GPU() : BFMatcher_GPU(NORM_L2) {}
|
|
|
|
explicit BruteForceMatcher_GPU(L2<T> /*d*/) : BFMatcher_GPU(NORM_L2) {}
|
|
|
|
};
|
|
|
|
template <> class CV_EXPORTS BruteForceMatcher_GPU< Hamming > : public BFMatcher_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
explicit BruteForceMatcher_GPU() : BFMatcher_GPU(NORM_HAMMING) {}
|
|
|
|
explicit BruteForceMatcher_GPU(Hamming /*d*/) : BFMatcher_GPU(NORM_HAMMING) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
////////////////////////////////// CascadeClassifier_GPU //////////////////////////////////////////
|
|
|
|
// The cascade classifier class for object detection: supports old haar and new lbp xlm formats and nvbin for haar cascades olny.
|
|
|
|
class CV_EXPORTS CascadeClassifier_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CascadeClassifier_GPU();
|
|
|
|
CascadeClassifier_GPU(const String& filename);
|
|
|
|
~CascadeClassifier_GPU();
|
|
|
|
|
|
|
|
bool empty() const;
|
|
|
|
bool load(const String& filename);
|
|
|
|
void release();
|
|
|
|
|
|
|
|
/* returns number of detected objects */
|
|
|
|
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor = 1.2, int minNeighbors = 4, Size minSize = Size());
|
|
|
|
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4);
|
|
|
|
|
|
|
|
bool findLargestObject;
|
|
|
|
bool visualizeInPlace;
|
|
|
|
|
|
|
|
Size getClassifierSize() const;
|
|
|
|
|
|
|
|
private:
|
|
|
|
struct CascadeClassifierImpl;
|
|
|
|
CascadeClassifierImpl* impl;
|
|
|
|
struct HaarCascade;
|
|
|
|
struct LbpCascade;
|
|
|
|
friend class CascadeClassifier_GPU_LBP;
|
|
|
|
};
|
|
|
|
|
|
|
|
////////////////////////////////// FAST //////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////// ORB //////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//! removes points (CV_32FC2, single row matrix) with zero mask value
|
|
|
|
CV_EXPORTS void compactPoints(GpuMat &points0, GpuMat &points1, const GpuMat &mask);
|
|
|
|
|
|
|
|
CV_EXPORTS void calcWobbleSuppressionMaps(
|
|
|
|
int left, int idx, int right, Size size, const Mat &ml, const Mat &mr,
|
|
|
|
GpuMat &mapx, GpuMat &mapy);
|
|
|
|
|
|
|
|
} // namespace gpu
|
|
|
|
|
|
|
|
} // namespace cv
|
|
|
|
|
|
|
|
#endif /* __OPENCV_GPU_HPP__ */
|