Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

130 lines
3.5 KiB

%YAML:1.0
################################################################################
# Object detection models.
################################################################################
# OpenCV's face detection network
opencv_fd:
model: "opencv_face_detector.caffemodel"
config: "opencv_face_detector.prototxt"
mean: [104, 177, 123]
scale: 1.0
width: 300
height: 300
rgb: false
sample: "object_detection"
# YOLO object detection family from Darknet (https://pjreddie.com/darknet/yolo/)
# Might be used for all YOLOv2, TinyYolov2 and YOLOv3
yolo:
model: "yolov3.weights"
config: "yolov3.cfg"
mean: [0, 0, 0]
scale: 0.00392
width: 416
height: 416
rgb: true
classes: "object_detection_classes_yolov3.txt"
sample: "object_detection"
tiny-yolo-voc:
model: "tiny-yolo-voc.weights"
config: "tiny-yolo-voc.cfg"
mean: [0, 0, 0]
scale: 0.00392
width: 416
height: 416
rgb: true
classes: "object_detection_classes_pascal_voc.txt"
sample: "object_detection"
# Caffe implementation of SSD model from https://github.com/chuanqi305/MobileNet-SSD
ssd_caffe:
model: "MobileNetSSD_deploy.caffemodel"
config: "MobileNetSSD_deploy.prototxt"
mean: [127.5, 127.5, 127.5]
scale: 0.007843
width: 300
height: 300
rgb: false
classes: "object_detection_classes_pascal_voc.txt"
sample: "object_detection"
# TensorFlow implementation of SSD model from https://github.com/tensorflow/models/tree/master/research/object_detection
ssd_tf:
model: "ssd_mobilenet_v1_coco_2017_11_17.pb"
config: "ssd_mobilenet_v1_coco_2017_11_17.pbtxt"
mean: [0, 0, 0]
scale: 1.0
width: 300
height: 300
rgb: true
classes: "object_detection_classes_coco.txt"
sample: "object_detection"
# TensorFlow implementation of Faster-RCNN model from https://github.com/tensorflow/models/tree/master/research/object_detection
faster_rcnn_tf:
model: "faster_rcnn_inception_v2_coco_2018_01_28.pb"
config: "faster_rcnn_inception_v2_coco_2018_01_28.pbtxt"
mean: [0, 0, 0]
scale: 1.0
width: 800
height: 600
rgb: true
sample: "object_detection"
################################################################################
# Image classification models.
################################################################################
# SqueezeNet v1.1 from https://github.com/DeepScale/SqueezeNet
squeezenet:
model: "squeezenet_v1.1.caffemodel"
config: "squeezenet_v1.1.prototxt"
mean: [0, 0, 0]
scale: 1.0
width: 227
height: 227
rgb: false
classes: "classification_classes_ILSVRC2012.txt"
sample: "classification"
# Googlenet from https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
googlenet:
model: "bvlc_googlenet.caffemodel"
config: "bvlc_googlenet.prototxt"
mean: [104, 117, 123]
scale: 1.0
width: 224
height: 224
rgb: false
classes: "classification_classes_ILSVRC2012.txt"
sample: "classification"
################################################################################
# Semantic segmentation models.
################################################################################
# ENet road scene segmentation network from https://github.com/e-lab/ENet-training
# Works fine for different input sizes.
enet:
model: "Enet-model-best.net"
mean: [0, 0, 0]
scale: 0.00392
width: 512
height: 256
rgb: true
classes: "enet-classes.txt"
sample: "segmentation"
fcn8s:
model: "fcn8s-heavy-pascal.caffemodel"
config: "fcn8s-heavy-pascal.prototxt"
mean: [0, 0, 0]
scale: 1.0
width: 500
height: 500
rgb: false
sample: "segmentation"