mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
466 lines
15 KiB
466 lines
15 KiB
14 years ago
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// Intel License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
#include "opencv2/imgproc/imgproc.hpp"
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace std;
|
||
|
|
||
|
//#define GET_STAT
|
||
|
|
||
|
#define DIST_E "distE"
|
||
|
#define S_E "sE"
|
||
|
#define NO_PAIR_E "noPairE"
|
||
|
//#define TOTAL_NO_PAIR_E "totalNoPairE"
|
||
|
|
||
|
#define DETECTOR_NAMES "detector_names"
|
||
|
#define DETECTORS "detectors"
|
||
|
#define IMAGE_FILENAMES "image_filenames"
|
||
|
#define VALIDATION "validation"
|
||
|
#define FILENAME "fn"
|
||
|
|
||
|
#define C_SCALE_CASCADE "scale_cascade"
|
||
|
|
||
|
class CV_DetectorTest : public cvtest::BaseTest
|
||
|
{
|
||
|
public:
|
||
|
CV_DetectorTest();
|
||
|
protected:
|
||
|
virtual int prepareData( FileStorage& fs );
|
||
|
virtual void run( int startFrom );
|
||
|
virtual string& getValidationFilename();
|
||
|
|
||
|
virtual void readDetector( const FileNode& fn ) = 0;
|
||
|
virtual void writeDetector( FileStorage& fs, int di ) = 0;
|
||
|
int runTestCase( int detectorIdx, vector<vector<Rect> >& objects );
|
||
|
virtual int detectMultiScale( int di, const Mat& img, vector<Rect>& objects ) = 0;
|
||
|
int validate( int detectorIdx, vector<vector<Rect> >& objects );
|
||
|
|
||
|
struct
|
||
|
{
|
||
|
float dist;
|
||
|
float s;
|
||
|
float noPair;
|
||
|
//float totalNoPair;
|
||
|
} eps;
|
||
|
vector<string> detectorNames;
|
||
|
vector<string> detectorFilenames;
|
||
|
vector<string> imageFilenames;
|
||
|
vector<Mat> images;
|
||
|
string validationFilename;
|
||
|
FileStorage validationFS;
|
||
|
};
|
||
|
|
||
|
CV_DetectorTest::CV_DetectorTest()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
string& CV_DetectorTest::getValidationFilename()
|
||
|
{
|
||
|
return validationFilename;
|
||
|
}
|
||
|
|
||
|
int CV_DetectorTest::prepareData( FileStorage& _fs )
|
||
|
{
|
||
|
if( !_fs.isOpened() )
|
||
|
test_case_count = -1;
|
||
|
else
|
||
|
{
|
||
|
FileNode fn = _fs.getFirstTopLevelNode();
|
||
|
|
||
|
fn[DIST_E] >> eps.dist;
|
||
|
fn[S_E] >> eps.s;
|
||
|
fn[NO_PAIR_E] >> eps.noPair;
|
||
|
// fn[TOTAL_NO_PAIR_E] >> eps.totalNoPair;
|
||
|
|
||
|
// read detectors
|
||
|
if( fn[DETECTOR_NAMES].node->data.seq != 0 )
|
||
|
{
|
||
|
FileNodeIterator it = fn[DETECTOR_NAMES].begin();
|
||
|
for( ; it != fn[DETECTOR_NAMES].end(); )
|
||
|
{
|
||
|
string name;
|
||
|
it >> name;
|
||
|
detectorNames.push_back(name);
|
||
|
readDetector(fn[DETECTORS][name]);
|
||
|
}
|
||
|
}
|
||
|
test_case_count = (int)detectorNames.size();
|
||
|
|
||
|
// read images filenames and images
|
||
|
string dataPath = ts->get_data_path();
|
||
|
if( fn[IMAGE_FILENAMES].node->data.seq != 0 )
|
||
|
{
|
||
|
for( FileNodeIterator it = fn[IMAGE_FILENAMES].begin(); it != fn[IMAGE_FILENAMES].end(); )
|
||
|
{
|
||
|
string filename;
|
||
|
it >> filename;
|
||
|
imageFilenames.push_back(filename);
|
||
|
Mat img = imread( dataPath+filename, 1 );
|
||
|
images.push_back( img );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
void CV_DetectorTest::run( int )
|
||
|
{
|
||
|
string dataPath = ts->get_data_path();
|
||
|
validationFS.open( dataPath + getValidationFilename(), FileStorage::READ );
|
||
|
int code = prepareData( validationFS );
|
||
|
if( code < 0 )
|
||
|
{
|
||
|
ts->set_failed_test_info( code );
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
#ifdef GET_STAT
|
||
|
validationFS.release();
|
||
|
string filename = ts->get_data_path();
|
||
|
filename += getValidationFilename();
|
||
|
validationFS.open( filename, FileStorage::WRITE );
|
||
|
validationFS << FileStorage::getDefaultObjectName(validationFilename) << "{";
|
||
|
|
||
|
validationFS << DIST_E << eps.dist;
|
||
|
validationFS << S_E << eps.s;
|
||
|
validationFS << NO_PAIR_E << eps.noPair;
|
||
|
// validationFS << TOTAL_NO_PAIR_E << eps.totalNoPair;
|
||
|
|
||
|
// write detector names
|
||
|
validationFS << DETECTOR_NAMES << "[";
|
||
|
vector<string>::const_iterator nit = detectorNames.begin();
|
||
|
for( ; nit != detectorNames.end(); ++nit )
|
||
|
{
|
||
|
validationFS << *nit;
|
||
|
}
|
||
|
validationFS << "]"; // DETECTOR_NAMES
|
||
|
|
||
|
// write detectors
|
||
|
validationFS << DETECTORS << "{";
|
||
|
assert( detectorNames.size() == detectorFilenames.size() );
|
||
|
nit = detectorNames.begin();
|
||
|
for( int di = 0; di < detectorNames.size(), nit != detectorNames.end(); ++nit, di++ )
|
||
|
{
|
||
|
validationFS << *nit << "{";
|
||
|
writeDetector( validationFS, di );
|
||
|
validationFS << "}";
|
||
|
}
|
||
|
validationFS << "}";
|
||
|
|
||
|
// write image filenames
|
||
|
validationFS << IMAGE_FILENAMES << "[";
|
||
|
vector<string>::const_iterator it = imageFilenames.begin();
|
||
|
for( int ii = 0; it != imageFilenames.end(); ++it, ii++ )
|
||
|
{
|
||
|
char buf[10];
|
||
|
sprintf( buf, "%s%d", "img_", ii );
|
||
|
cvWriteComment( validationFS.fs, buf, 0 );
|
||
|
validationFS << *it;
|
||
|
}
|
||
|
validationFS << "]"; // IMAGE_FILENAMES
|
||
|
|
||
|
validationFS << VALIDATION << "{";
|
||
|
#endif
|
||
|
|
||
|
int progress = 0;
|
||
|
for( int di = 0; di < test_case_count; di++ )
|
||
|
{
|
||
|
progress = update_progress( progress, di, test_case_count, 0 );
|
||
|
#ifdef GET_STAT
|
||
|
validationFS << detectorNames[di] << "{";
|
||
|
#endif
|
||
|
vector<vector<Rect> > objects;
|
||
|
int temp_code = runTestCase( di, objects );
|
||
|
#ifndef GET_STAT
|
||
|
if (temp_code == cvtest::TS::OK)
|
||
|
temp_code = validate( di, objects );
|
||
|
#endif
|
||
|
if (temp_code != cvtest::TS::OK)
|
||
|
code = temp_code;
|
||
|
#ifdef GET_STAT
|
||
|
validationFS << "}"; // detectorNames[di]
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#ifdef GET_STAT
|
||
|
validationFS << "}"; // VALIDATION
|
||
|
validationFS << "}"; // getDefaultObjectName
|
||
|
#endif
|
||
|
if ( test_case_count <= 0 || imageFilenames.size() <= 0 )
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "validation file is not determined or not correct" );
|
||
|
code = cvtest::TS::FAIL_INVALID_TEST_DATA;
|
||
|
}
|
||
|
ts->set_failed_test_info( code );
|
||
|
}
|
||
|
|
||
|
int CV_DetectorTest::runTestCase( int detectorIdx, vector<vector<Rect> >& objects )
|
||
|
{
|
||
|
string dataPath = ts->get_data_path(), detectorFilename;
|
||
|
if( !detectorFilenames[detectorIdx].empty() )
|
||
|
detectorFilename = dataPath + detectorFilenames[detectorIdx];
|
||
|
|
||
|
for( int ii = 0; ii < (int)imageFilenames.size(); ++ii )
|
||
|
{
|
||
|
vector<Rect> imgObjects;
|
||
|
Mat image = images[ii];
|
||
|
if( image.empty() )
|
||
|
{
|
||
|
char msg[30];
|
||
|
sprintf( msg, "%s %d %s", "image ", ii, " can not be read" );
|
||
|
ts->printf( cvtest::TS::LOG, msg );
|
||
|
return cvtest::TS::FAIL_INVALID_TEST_DATA;
|
||
|
}
|
||
|
int code = detectMultiScale( detectorIdx, image, imgObjects );
|
||
|
if( code != cvtest::TS::OK )
|
||
|
return code;
|
||
|
|
||
|
objects.push_back( imgObjects );
|
||
|
|
||
|
#ifdef GET_STAT
|
||
|
char buf[10];
|
||
|
sprintf( buf, "%s%d", "img_", ii );
|
||
|
string imageIdxStr = buf;
|
||
|
validationFS << imageIdxStr << "[:";
|
||
|
for( vector<Rect>::const_iterator it = imgObjects.begin();
|
||
|
it != imgObjects.end(); ++it )
|
||
|
{
|
||
|
validationFS << it->x << it->y << it->width << it->height;
|
||
|
}
|
||
|
validationFS << "]"; // imageIdxStr
|
||
|
#endif
|
||
|
}
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
|
||
|
bool isZero( uchar i ) {return i == 0;}
|
||
|
|
||
|
int CV_DetectorTest::validate( int detectorIdx, vector<vector<Rect> >& objects )
|
||
|
{
|
||
|
assert( imageFilenames.size() == objects.size() );
|
||
|
int imageIdx = 0;
|
||
|
int totalNoPair = 0, totalValRectCount = 0;
|
||
|
|
||
|
for( vector<vector<Rect> >::const_iterator it = objects.begin();
|
||
|
it != objects.end(); ++it, imageIdx++ ) // for image
|
||
|
{
|
||
|
Size imgSize = images[imageIdx].size();
|
||
|
float dist = min(imgSize.height, imgSize.width) * eps.dist;
|
||
|
float wDiff = imgSize.width * eps.s;
|
||
|
float hDiff = imgSize.height * eps.s;
|
||
|
|
||
|
int noPair = 0;
|
||
|
|
||
|
// read validation rectangles
|
||
|
char buf[10];
|
||
|
sprintf( buf, "%s%d", "img_", imageIdx );
|
||
|
string imageIdxStr = buf;
|
||
|
FileNode node = validationFS.getFirstTopLevelNode()[VALIDATION][detectorNames[detectorIdx]][imageIdxStr];
|
||
|
vector<Rect> valRects;
|
||
|
if( node.node->data.seq != 0 )
|
||
|
{
|
||
|
for( FileNodeIterator it = node.begin(); it != node.end(); )
|
||
|
{
|
||
|
Rect r;
|
||
|
it >> r.x >> r.y >> r.width >> r.height;
|
||
|
valRects.push_back(r);
|
||
|
}
|
||
|
}
|
||
|
totalValRectCount += (int)valRects.size();
|
||
|
|
||
|
// compare rectangles
|
||
|
vector<uchar> map(valRects.size(), 0);
|
||
|
for( vector<Rect>::const_iterator cr = it->begin();
|
||
|
cr != it->end(); ++cr )
|
||
|
{
|
||
|
// find nearest rectangle
|
||
|
Point2f cp1 = Point2f( cr->x + (float)cr->width/2.0f, cr->y + (float)cr->height/2.0f );
|
||
|
int minIdx = -1, vi = 0;
|
||
|
float minDist = (float)norm( Point(imgSize.width, imgSize.height) );
|
||
|
for( vector<Rect>::const_iterator vr = valRects.begin();
|
||
|
vr != valRects.end(); ++vr, vi++ )
|
||
|
{
|
||
|
Point2f cp2 = Point2f( vr->x + (float)vr->width/2.0f, vr->y + (float)vr->height/2.0f );
|
||
|
float curDist = (float)norm(cp1-cp2);
|
||
|
if( curDist < minDist )
|
||
|
{
|
||
|
minIdx = vi;
|
||
|
minDist = curDist;
|
||
|
}
|
||
|
}
|
||
|
if( minIdx == -1 )
|
||
|
{
|
||
|
noPair++;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
Rect vr = valRects[minIdx];
|
||
|
if( map[minIdx] != 0 || (minDist > dist) || (abs(cr->width - vr.width) > wDiff) ||
|
||
|
(abs(cr->height - vr.height) > hDiff) )
|
||
|
noPair++;
|
||
|
else
|
||
|
map[minIdx] = 1;
|
||
|
}
|
||
|
}
|
||
|
noPair += (int)count_if( map.begin(), map.end(), isZero );
|
||
|
totalNoPair += noPair;
|
||
|
if( noPair > cvRound(valRects.size()*eps.noPair)+1 )
|
||
|
break;
|
||
|
}
|
||
|
if( imageIdx < (int)imageFilenames.size() )
|
||
|
{
|
||
|
char msg[500];
|
||
|
sprintf( msg, "detector %s has overrated count of rectangles without pair on %s-image\n",
|
||
|
detectorNames[detectorIdx].c_str(), imageFilenames[imageIdx].c_str() );
|
||
|
ts->printf( cvtest::TS::LOG, msg );
|
||
|
return cvtest::TS::FAIL_BAD_ACCURACY;
|
||
|
}
|
||
|
if ( totalNoPair > cvRound(totalValRectCount*eps./*total*/noPair)+1 )
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "overrated count of rectangles without pair on all images set" );
|
||
|
return cvtest::TS::FAIL_BAD_ACCURACY;
|
||
|
}
|
||
|
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------- CascadeDetectorTest -----------------------------------
|
||
|
class CV_CascadeDetectorTest : public CV_DetectorTest
|
||
|
{
|
||
|
public:
|
||
|
CV_CascadeDetectorTest();
|
||
|
protected:
|
||
|
virtual void readDetector( const FileNode& fn );
|
||
|
virtual void writeDetector( FileStorage& fs, int di );
|
||
|
virtual int detectMultiScale( int di, const Mat& img, vector<Rect>& objects );
|
||
|
vector<int> flags;
|
||
|
};
|
||
|
|
||
|
CV_CascadeDetectorTest::CV_CascadeDetectorTest()
|
||
|
{
|
||
|
validationFilename = "cascadeandhog/cascade.xml";
|
||
|
}
|
||
|
|
||
|
void CV_CascadeDetectorTest::readDetector( const FileNode& fn )
|
||
|
{
|
||
|
string filename;
|
||
|
int flag;
|
||
|
fn[FILENAME] >> filename;
|
||
|
detectorFilenames.push_back(filename);
|
||
|
fn[C_SCALE_CASCADE] >> flag;
|
||
|
if( flag )
|
||
|
flags.push_back( 0 );
|
||
|
else
|
||
|
flags.push_back( CV_HAAR_SCALE_IMAGE );
|
||
|
}
|
||
|
|
||
|
void CV_CascadeDetectorTest::writeDetector( FileStorage& fs, int di )
|
||
|
{
|
||
|
int sc = flags[di] & CV_HAAR_SCALE_IMAGE ? 0 : 1;
|
||
|
fs << FILENAME << detectorFilenames[di];
|
||
|
fs << C_SCALE_CASCADE << sc;
|
||
|
}
|
||
|
|
||
|
int CV_CascadeDetectorTest::detectMultiScale( int di, const Mat& img,
|
||
|
vector<Rect>& objects)
|
||
|
{
|
||
|
string dataPath = ts->get_data_path(), filename;
|
||
|
filename = dataPath + detectorFilenames[di];
|
||
|
CascadeClassifier cascade( filename );
|
||
|
if( cascade.empty() )
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "cascade %s can not be opened");
|
||
|
return cvtest::TS::FAIL_INVALID_TEST_DATA;
|
||
|
}
|
||
|
Mat grayImg;
|
||
|
cvtColor( img, grayImg, CV_BGR2GRAY );
|
||
|
equalizeHist( grayImg, grayImg );
|
||
|
cascade.detectMultiScale( grayImg, objects, 1.1, 3, flags[di] );
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------- HOGDetectorTest -----------------------------------
|
||
|
class CV_HOGDetectorTest : public CV_DetectorTest
|
||
|
{
|
||
|
public:
|
||
|
CV_HOGDetectorTest();
|
||
|
protected:
|
||
|
virtual void readDetector( const FileNode& fn );
|
||
|
virtual void writeDetector( FileStorage& fs, int di );
|
||
|
virtual int detectMultiScale( int di, const Mat& img, vector<Rect>& objects );
|
||
|
};
|
||
|
|
||
|
CV_HOGDetectorTest::CV_HOGDetectorTest()
|
||
|
{
|
||
|
validationFilename = "cascadeandhog/hog.xml";
|
||
|
}
|
||
|
|
||
|
void CV_HOGDetectorTest::readDetector( const FileNode& fn )
|
||
|
{
|
||
|
string filename;
|
||
|
if( fn[FILENAME].node->data.seq != 0 )
|
||
|
fn[FILENAME] >> filename;
|
||
|
detectorFilenames.push_back( filename);
|
||
|
}
|
||
|
|
||
|
void CV_HOGDetectorTest::writeDetector( FileStorage& fs, int di )
|
||
|
{
|
||
|
fs << FILENAME << detectorFilenames[di];
|
||
|
}
|
||
|
|
||
|
int CV_HOGDetectorTest::detectMultiScale( int di, const Mat& img,
|
||
|
vector<Rect>& objects)
|
||
|
{
|
||
|
HOGDescriptor hog;
|
||
|
if( detectorFilenames[di].empty() )
|
||
|
hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());
|
||
|
else
|
||
|
assert(0);
|
||
|
hog.detectMultiScale(img, objects);
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
TEST(Objdetect_CascadeDetector, regression) { CV_CascadeDetectorTest test; test.safe_run(); }
|
||
|
TEST(Objdetect_HOGDetector, regression) { CV_HOGDetectorTest test; test.safe_run(); }
|