|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include <opencv2/core/ocl.hpp>
|
|
|
|
#include <iostream>
|
|
|
|
#include "npy_blob.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
#include <opencv2/dnn/all_layers.hpp>
|
|
|
|
#include <opencv2/ts/ocl_test.hpp>
|
|
|
|
|
|
|
|
namespace cvtest
|
|
|
|
{
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::dnn;
|
|
|
|
|
|
|
|
template<typename TString>
|
|
|
|
static String _tf(TString filename)
|
|
|
|
{
|
|
|
|
String basetestdir = getOpenCVExtraDir();
|
|
|
|
size_t len = basetestdir.size();
|
|
|
|
if(len > 0 && basetestdir[len-1] != '/' && basetestdir[len-1] != '\\')
|
|
|
|
return (basetestdir + "/dnn/layers") + filename;
|
|
|
|
return (basetestdir + "dnn/layers/") + filename;
|
|
|
|
}
|
|
|
|
|
|
|
|
void runLayer(Ptr<Layer> layer, std::vector<Mat> &inpBlobs, std::vector<Mat> &outBlobs)
|
|
|
|
{
|
|
|
|
size_t i, ninputs = inpBlobs.size();
|
|
|
|
std::vector<Mat> inp_(ninputs);
|
|
|
|
std::vector<Mat*> inp(ninputs);
|
|
|
|
std::vector<Mat> outp, intp;
|
|
|
|
std::vector<MatShape> inputs, outputs, internals;
|
|
|
|
|
|
|
|
for( i = 0; i < ninputs; i++ )
|
|
|
|
{
|
|
|
|
inp_[i] = inpBlobs[i].clone();
|
|
|
|
inp[i] = &inp_[i];
|
|
|
|
inputs.push_back(shape(inp_[i]));
|
|
|
|
}
|
|
|
|
|
|
|
|
layer->getMemoryShapes(inputs, 0, outputs, internals);
|
|
|
|
for(int i = 0; i < outputs.size(); i++)
|
|
|
|
{
|
|
|
|
outp.push_back(Mat(outputs[i], CV_32F));
|
|
|
|
}
|
|
|
|
for(int i = 0; i < internals.size(); i++)
|
|
|
|
{
|
|
|
|
intp.push_back(Mat(internals[i], CV_32F));
|
|
|
|
}
|
|
|
|
|
|
|
|
layer->finalize(inp, outp);
|
|
|
|
layer->forward(inp, outp, intp);
|
|
|
|
|
|
|
|
size_t noutputs = outp.size();
|
|
|
|
outBlobs.resize(noutputs);
|
|
|
|
for( i = 0; i < noutputs; i++ )
|
|
|
|
outBlobs[i] = outp[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void testLayerUsingCaffeModels(String basename, bool useCaffeModel = false, bool useCommonInputBlob = true)
|
|
|
|
{
|
|
|
|
String prototxt = _tf(basename + ".prototxt");
|
|
|
|
String caffemodel = _tf(basename + ".caffemodel");
|
|
|
|
|
|
|
|
String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy");
|
|
|
|
String outfile = _tf(basename + ".npy");
|
|
|
|
|
|
|
|
cv::setNumThreads(cv::getNumberOfCPUs());
|
|
|
|
|
|
|
|
Net net = readNetFromCaffe(prototxt, (useCaffeModel) ? caffemodel : String());
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
|
|
|
|
Mat inp = blobFromNPY(inpfile);
|
|
|
|
Mat ref = blobFromNPY(outfile);
|
|
|
|
|
|
|
|
net.setInput(inp, "input");
|
|
|
|
Mat out = net.forward("output");
|
|
|
|
|
|
|
|
normAssert(ref, out);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_Softmax, Accuracy)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_softmax");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_LRN_spatial, Accuracy)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_lrn_spatial");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_LRN_channels, Accuracy)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_lrn_channels");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_Convolution, Accuracy)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_convolution", true);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_DeConvolution, Accuracy)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_deconvolution", true, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_InnerProduct, Accuracy)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_inner_product", true);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_Pooling_max, Accuracy)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_pooling_max");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_Pooling_ave, Accuracy)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_pooling_ave");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_MVN, Accuracy)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_mvn");
|
|
|
|
}
|
|
|
|
|
|
|
|
void testReshape(const MatShape& inputShape, const MatShape& targetShape,
|
|
|
|
int axis = 0, int num_axes = -1,
|
|
|
|
MatShape mask = MatShape())
|
|
|
|
{
|
|
|
|
LayerParams params;
|
|
|
|
params.set("axis", axis);
|
|
|
|
params.set("num_axes", num_axes);
|
|
|
|
if (!mask.empty())
|
|
|
|
{
|
|
|
|
params.set("dim", DictValue::arrayInt<int*>(&mask[0], mask.size()));
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat inp(inputShape.size(), &inputShape[0], CV_32F);
|
|
|
|
std::vector<Mat> inpVec(1, inp);
|
|
|
|
std::vector<Mat> outVec, intVec;
|
|
|
|
|
|
|
|
Ptr<Layer> rl = LayerFactory::createLayerInstance("Reshape", params);
|
|
|
|
runLayer(rl, inpVec, outVec);
|
|
|
|
|
|
|
|
Mat& out = outVec[0];
|
|
|
|
MatShape shape(out.size.p, out.size.p + out.dims);
|
|
|
|
EXPECT_EQ(shape, targetShape);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_Reshape, Accuracy)
|
|
|
|
{
|
|
|
|
{
|
|
|
|
int inp[] = {4, 3, 1, 2};
|
|
|
|
int out[] = {4, 3, 2};
|
|
|
|
testReshape(MatShape(inp, inp + 4), MatShape(out, out + 3), 2, 1);
|
|
|
|
}
|
|
|
|
{
|
|
|
|
int inp[] = {1, 128, 4, 4};
|
|
|
|
int out[] = {1, 2048};
|
|
|
|
int mask[] = {-1, 2048};
|
|
|
|
testReshape(MatShape(inp, inp + 4), MatShape(out, out + 2), 0, -1,
|
|
|
|
MatShape(mask, mask + 2));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_BatchNorm, Accuracy)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_batch_norm", true);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_ReLU, Accuracy)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_relu");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_Dropout, Accuracy)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_dropout");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_Concat, Accuracy)
|
|
|
|
{
|
|
|
|
testLayerUsingCaffeModels("layer_concat");
|
|
|
|
}
|
|
|
|
|
|
|
|
//template<typename XMat>
|
|
|
|
//static void test_Layer_Concat()
|
|
|
|
//{
|
|
|
|
// Matx21f a(1.f, 1.f), b(2.f, 2.f), c(3.f, 3.f);
|
|
|
|
// std::vector<Blob> res(1), src = { Blob(XMat(a)), Blob(XMat(b)), Blob(XMat(c)) };
|
|
|
|
// Blob ref(XMat(Matx23f(1.f, 2.f, 3.f, 1.f, 2.f, 3.f)));
|
|
|
|
//
|
|
|
|
// runLayer(ConcatLayer::create(1), src, res);
|
|
|
|
// normAssert(ref, res[0]);
|
|
|
|
//}
|
|
|
|
//TEST(Layer_Concat, Accuracy)
|
|
|
|
//{
|
|
|
|
// test_Layer_Concat<Mat>());
|
|
|
|
//}
|
|
|
|
//OCL_TEST(Layer_Concat, Accuracy)
|
|
|
|
//{
|
|
|
|
// OCL_ON(test_Layer_Concat<Mat>());
|
|
|
|
// );
|
|
|
|
//}
|
|
|
|
|
|
|
|
static void test_Reshape_Split_Slice_layers()
|
|
|
|
{
|
|
|
|
Net net = readNetFromCaffe(_tf("reshape_and_slice_routines.prototxt"));
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
|
|
|
|
Mat input(6, 12, CV_32F);
|
|
|
|
RNG rng(0);
|
|
|
|
rng.fill(input, RNG::UNIFORM, -1, 1);
|
|
|
|
|
|
|
|
net.setInput(input, "input");
|
|
|
|
Mat output = net.forward("output");
|
|
|
|
|
|
|
|
normAssert(input, output);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Test_Reshape_Split_Slice, Accuracy)
|
|
|
|
{
|
|
|
|
test_Reshape_Split_Slice_layers();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_Conv_Elu, Accuracy)
|
|
|
|
{
|
|
|
|
Net net = readNetFromTensorflow(_tf("layer_elu_model.pb"));
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
|
|
|
|
Mat inp = blobFromNPY(_tf("layer_elu_in.npy"));
|
|
|
|
Mat ref = blobFromNPY(_tf("layer_elu_out.npy"));
|
|
|
|
|
|
|
|
net.setInput(inp, "input");
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
normAssert(ref, out);
|
|
|
|
}
|
|
|
|
|
|
|
|
class Layer_LSTM_Test : public ::testing::Test
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
int numInp, numOut;
|
|
|
|
Mat Wh, Wx, b;
|
|
|
|
Ptr<LSTMLayer> layer;
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
|
|
|
|
|
|
Layer_LSTM_Test() {}
|
|
|
|
|
|
|
|
void init(const MatShape &inpShape_, const MatShape &outShape_,
|
|
|
|
bool produceCellOutput, bool useTimestampDim)
|
|
|
|
{
|
|
|
|
numInp = total(inpShape_);
|
|
|
|
numOut = total(outShape_);
|
|
|
|
|
|
|
|
Wh = Mat::ones(4 * numOut, numOut, CV_32F);
|
|
|
|
Wx = Mat::ones(4 * numOut, numInp, CV_32F);
|
|
|
|
b = Mat::ones(4 * numOut, 1, CV_32F);
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.blobs.resize(3);
|
|
|
|
lp.blobs[0] = Wh;
|
|
|
|
lp.blobs[1] = Wx;
|
|
|
|
lp.blobs[2] = b;
|
|
|
|
lp.set<bool>("produce_cell_output", produceCellOutput);
|
|
|
|
lp.set<bool>("use_timestamp_dim", useTimestampDim);
|
|
|
|
|
|
|
|
layer = LSTMLayer::create(lp);
|
|
|
|
layer->setOutShape(outShape_);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_F(Layer_LSTM_Test, get_set_test)
|
|
|
|
{
|
|
|
|
const int TN = 4;
|
|
|
|
MatShape inpShape = shape(5, 3, 2);
|
|
|
|
MatShape outShape = shape(3, 1, 2);
|
|
|
|
MatShape inpResShape = concat(shape(TN), inpShape);
|
|
|
|
MatShape outResShape = concat(shape(TN), outShape);
|
|
|
|
|
|
|
|
init(inpShape, outShape, true, false);
|
|
|
|
layer->setOutShape(outShape);
|
|
|
|
|
|
|
|
Mat C((int)outResShape.size(), &outResShape[0], CV_32F);
|
|
|
|
randu(C, -1., 1.);
|
|
|
|
Mat H = C.clone();
|
|
|
|
randu(H, -1., 1.);
|
|
|
|
|
|
|
|
Mat inp((int)inpResShape.size(), &inpResShape[0], CV_32F);
|
|
|
|
randu(inp, -1., 1.);
|
|
|
|
|
|
|
|
inputs.push_back(inp);
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
|
|
|
|
EXPECT_EQ(2u, outputs.size());
|
|
|
|
|
|
|
|
print(outResShape, "outResShape");
|
|
|
|
print(shape(outputs[0]), "out0");
|
|
|
|
print(shape(outputs[0]), "out1");
|
|
|
|
|
|
|
|
EXPECT_EQ(outResShape, shape(outputs[0]));
|
|
|
|
EXPECT_EQ(outResShape, shape(outputs[1]));
|
|
|
|
|
|
|
|
EXPECT_EQ(0, layer->inputNameToIndex("x"));
|
|
|
|
EXPECT_EQ(0, layer->outputNameToIndex("h"));
|
|
|
|
EXPECT_EQ(1, layer->outputNameToIndex("c"));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_LSTM_Test_Accuracy_with_, CaffeRecurrent)
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
lp.blobs.resize(3);
|
|
|
|
lp.blobs[0] = blobFromNPY(_tf("lstm.prototxt.w_2.npy")); // Wh
|
|
|
|
lp.blobs[1] = blobFromNPY(_tf("lstm.prototxt.w_0.npy")); // Wx
|
|
|
|
lp.blobs[2] = blobFromNPY(_tf("lstm.prototxt.w_1.npy")); // bias
|
|
|
|
Ptr<LSTMLayer> layer = LSTMLayer::create(lp);
|
|
|
|
|
|
|
|
Mat inp = blobFromNPY(_tf("recurrent.input.npy"));
|
|
|
|
std::vector<Mat> inputs(1, inp), outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
|
|
|
|
Mat h_t_reference = blobFromNPY(_tf("lstm.prototxt.h_1.npy"));
|
|
|
|
normAssert(h_t_reference, outputs[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Layer_RNN_Test_Accuracy_with_, CaffeRecurrent)
|
|
|
|
{
|
|
|
|
Ptr<RNNLayer> layer = RNNLayer::create(LayerParams());
|
|
|
|
|
|
|
|
layer->setWeights(
|
|
|
|
blobFromNPY(_tf("rnn.prototxt.w_0.npy")),
|
|
|
|
blobFromNPY(_tf("rnn.prototxt.w_1.npy")),
|
|
|
|
blobFromNPY(_tf("rnn.prototxt.w_2.npy")),
|
|
|
|
blobFromNPY(_tf("rnn.prototxt.w_3.npy")),
|
|
|
|
blobFromNPY(_tf("rnn.prototxt.w_4.npy")) );
|
|
|
|
|
|
|
|
std::vector<Mat> output, input(1, blobFromNPY(_tf("recurrent.input.npy")));
|
|
|
|
runLayer(layer, input, output);
|
|
|
|
|
|
|
|
Mat h_ref = blobFromNPY(_tf("rnn.prototxt.h_1.npy"));
|
|
|
|
normAssert(h_ref, output[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class Layer_RNN_Test : public ::testing::Test
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
int nX, nH, nO, nT, nS;
|
|
|
|
Mat Whh, Wxh, bh, Who, bo;
|
|
|
|
Ptr<RNNLayer> layer;
|
|
|
|
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
|
|
|
|
|
|
Layer_RNN_Test()
|
|
|
|
{
|
|
|
|
nT = 3;
|
|
|
|
nS = 5;
|
|
|
|
nX = 31;
|
|
|
|
nH = 64;
|
|
|
|
nO = 100;
|
|
|
|
|
|
|
|
Whh = Mat::ones(nH, nH, CV_32F);
|
|
|
|
Wxh = Mat::ones(nH, nX, CV_32F);
|
|
|
|
bh = Mat::ones(nH, 1, CV_32F);
|
|
|
|
Who = Mat::ones(nO, nH, CV_32F);
|
|
|
|
bo = Mat::ones(nO, 1, CV_32F);
|
|
|
|
|
|
|
|
layer = RNNLayer::create(LayerParams());
|
|
|
|
layer->setProduceHiddenOutput(true);
|
|
|
|
layer->setWeights(Wxh, bh, Whh, Who, bo);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_F(Layer_RNN_Test, get_set_test)
|
|
|
|
{
|
|
|
|
int sz[] = { nT, nS, 1, nX };
|
|
|
|
Mat inp(4, sz, CV_32F);
|
|
|
|
randu(inp, -1., 1.);
|
|
|
|
inputs.push_back(inp);
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
|
|
|
|
EXPECT_EQ(outputs.size(), 2u);
|
|
|
|
EXPECT_EQ(shape(outputs[0]), shape(nT, nS, nO));
|
|
|
|
EXPECT_EQ(shape(outputs[1]), shape(nT, nS, nH));
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|