mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
812 lines
27 KiB
812 lines
27 KiB
14 years ago
|
#include "test_precomp.hpp"
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace std;
|
||
|
|
||
|
|
||
|
class Core_ReduceTest : public cvtest::BaseTest
|
||
|
{
|
||
|
public:
|
||
|
Core_ReduceTest() {};
|
||
|
protected:
|
||
|
void run( int);
|
||
|
int checkOp( const Mat& src, int dstType, int opType, const Mat& opRes, int dim, double eps );
|
||
|
int checkCase( int srcType, int dstType, int dim, Size sz );
|
||
|
int checkDim( int dim, Size sz );
|
||
|
int checkSize( Size sz );
|
||
|
};
|
||
|
|
||
|
template<class Type>
|
||
|
void testReduce( const Mat& src, Mat& sum, Mat& avg, Mat& max, Mat& min, int dim )
|
||
|
{
|
||
|
assert( src.channels() == 1 );
|
||
|
if( dim == 0 ) // row
|
||
|
{
|
||
|
sum.create( 1, src.cols, CV_64FC1 );
|
||
|
max.create( 1, src.cols, CV_64FC1 );
|
||
|
min.create( 1, src.cols, CV_64FC1 );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sum.create( src.rows, 1, CV_64FC1 );
|
||
|
max.create( src.rows, 1, CV_64FC1 );
|
||
|
min.create( src.rows, 1, CV_64FC1 );
|
||
|
}
|
||
|
sum.setTo(Scalar(0));
|
||
|
max.setTo(Scalar(-DBL_MAX));
|
||
|
min.setTo(Scalar(DBL_MAX));
|
||
|
|
||
|
const Mat_<Type>& src_ = src;
|
||
|
Mat_<double>& sum_ = (Mat_<double>&)sum;
|
||
|
Mat_<double>& min_ = (Mat_<double>&)min;
|
||
|
Mat_<double>& max_ = (Mat_<double>&)max;
|
||
|
|
||
|
if( dim == 0 )
|
||
|
{
|
||
|
for( int ri = 0; ri < src.rows; ri++ )
|
||
|
{
|
||
|
for( int ci = 0; ci < src.cols; ci++ )
|
||
|
{
|
||
|
sum_(0, ci) += src_(ri, ci);
|
||
|
max_(0, ci) = std::max( max_(0, ci), (double)src_(ri, ci) );
|
||
|
min_(0, ci) = std::min( min_(0, ci), (double)src_(ri, ci) );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for( int ci = 0; ci < src.cols; ci++ )
|
||
|
{
|
||
|
for( int ri = 0; ri < src.rows; ri++ )
|
||
|
{
|
||
|
sum_(ri, 0) += src_(ri, ci);
|
||
|
max_(ri, 0) = std::max( max_(ri, 0), (double)src_(ri, ci) );
|
||
|
min_(ri, 0) = std::min( min_(ri, 0), (double)src_(ri, ci) );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
sum.convertTo( avg, CV_64FC1 );
|
||
|
avg = avg * (1.0 / (dim==0 ? (double)src.rows : (double)src.cols));
|
||
|
}
|
||
|
|
||
|
void getMatTypeStr( int type, string& str)
|
||
|
{
|
||
|
str = type == CV_8UC1 ? "CV_8UC1" :
|
||
|
type == CV_8SC1 ? "CV_8SC1" :
|
||
|
type == CV_16UC1 ? "CV_16UC1" :
|
||
|
type == CV_16SC1 ? "CV_16SC1" :
|
||
|
type == CV_32SC1 ? "CV_32SC1" :
|
||
|
type == CV_32FC1 ? "CV_32FC1" :
|
||
|
type == CV_64FC1 ? "CV_64FC1" : "unsupported matrix type";
|
||
|
}
|
||
|
|
||
|
int Core_ReduceTest::checkOp( const Mat& src, int dstType, int opType, const Mat& opRes, int dim, double eps )
|
||
|
{
|
||
|
int srcType = src.type();
|
||
|
bool support = false;
|
||
|
if( opType == CV_REDUCE_SUM || opType == CV_REDUCE_AVG )
|
||
|
{
|
||
|
if( srcType == CV_8U && (dstType == CV_32S || dstType == CV_32F || dstType == CV_64F) )
|
||
|
support = true;
|
||
|
if( srcType == CV_16U && (dstType == CV_32F || dstType == CV_64F) )
|
||
|
support = true;
|
||
|
if( srcType == CV_16S && (dstType == CV_32F || dstType == CV_64F) )
|
||
|
support = true;
|
||
|
if( srcType == CV_32F && (dstType == CV_32F || dstType == CV_64F) )
|
||
|
support = true;
|
||
|
if( srcType == CV_64F && dstType == CV_64F)
|
||
|
support = true;
|
||
|
}
|
||
|
else if( opType == CV_REDUCE_MAX )
|
||
|
{
|
||
|
if( srcType == CV_8U && dstType == CV_8U )
|
||
|
support = true;
|
||
|
if( srcType == CV_32F && dstType == CV_32F )
|
||
|
support = true;
|
||
|
if( srcType == CV_64F && dstType == CV_64F )
|
||
|
support = true;
|
||
|
}
|
||
|
else if( opType == CV_REDUCE_MIN )
|
||
|
{
|
||
|
if( srcType == CV_8U && dstType == CV_8U)
|
||
|
support = true;
|
||
|
if( srcType == CV_32F && dstType == CV_32F)
|
||
|
support = true;
|
||
|
if( srcType == CV_64F && dstType == CV_64F)
|
||
|
support = true;
|
||
|
}
|
||
|
if( !support )
|
||
|
return cvtest::TS::OK;
|
||
|
|
||
|
assert( opRes.type() == CV_64FC1 );
|
||
|
Mat _dst, dst;
|
||
|
reduce( src, _dst, dim, opType, dstType );
|
||
|
_dst.convertTo( dst, CV_64FC1 );
|
||
|
if( norm( opRes, dst, NORM_INF ) > eps )
|
||
|
{
|
||
|
char msg[100];
|
||
|
const char* opTypeStr = opType == CV_REDUCE_SUM ? "CV_REDUCE_SUM" :
|
||
|
opType == CV_REDUCE_AVG ? "CV_REDUCE_AVG" :
|
||
|
opType == CV_REDUCE_MAX ? "CV_REDUCE_MAX" :
|
||
|
opType == CV_REDUCE_MIN ? "CV_REDUCE_MIN" : "unknown operation type";
|
||
|
string srcTypeStr, dstTypeStr;
|
||
|
getMatTypeStr( src.type(), srcTypeStr );
|
||
|
getMatTypeStr( dstType, dstTypeStr );
|
||
|
const char* dimStr = dim == 0 ? "ROWS" : "COLS";
|
||
|
|
||
|
sprintf( msg, "bad accuracy with srcType = %s, dstType = %s, opType = %s, dim = %s",
|
||
|
srcTypeStr.c_str(), dstTypeStr.c_str(), opTypeStr, dimStr );
|
||
|
ts->printf( cvtest::TS::LOG, msg );
|
||
|
return cvtest::TS::FAIL_BAD_ACCURACY;
|
||
|
}
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
int Core_ReduceTest::checkCase( int srcType, int dstType, int dim, Size sz )
|
||
|
{
|
||
|
int code = cvtest::TS::OK, tempCode;
|
||
|
Mat src, sum, avg, max, min;
|
||
|
|
||
|
src.create( sz, srcType );
|
||
|
randu( src, Scalar(0), Scalar(100) );
|
||
|
|
||
|
if( srcType == CV_8UC1 )
|
||
|
testReduce<uchar>( src, sum, avg, max, min, dim );
|
||
|
else if( srcType == CV_8SC1 )
|
||
|
testReduce<char>( src, sum, avg, max, min, dim );
|
||
|
else if( srcType == CV_16UC1 )
|
||
|
testReduce<unsigned short int>( src, sum, avg, max, min, dim );
|
||
|
else if( srcType == CV_16SC1 )
|
||
|
testReduce<short int>( src, sum, avg, max, min, dim );
|
||
|
else if( srcType == CV_32SC1 )
|
||
|
testReduce<int>( src, sum, avg, max, min, dim );
|
||
|
else if( srcType == CV_32FC1 )
|
||
|
testReduce<float>( src, sum, avg, max, min, dim );
|
||
|
else if( srcType == CV_64FC1 )
|
||
|
testReduce<double>( src, sum, avg, max, min, dim );
|
||
|
else
|
||
|
assert( 0 );
|
||
|
|
||
|
// 1. sum
|
||
|
tempCode = checkOp( src, dstType, CV_REDUCE_SUM, sum, dim,
|
||
|
srcType == CV_32FC1 && dstType == CV_32FC1 ? 0.05 : FLT_EPSILON );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
// 2. avg
|
||
|
tempCode = checkOp( src, dstType, CV_REDUCE_AVG, avg, dim,
|
||
|
dstType == CV_32SC1 ? 0.6 : 0.00007 );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
// 3. max
|
||
|
tempCode = checkOp( src, dstType, CV_REDUCE_MAX, max, dim, FLT_EPSILON );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
// 4. min
|
||
|
tempCode = checkOp( src, dstType, CV_REDUCE_MIN, min, dim, FLT_EPSILON );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
return code;
|
||
|
}
|
||
|
|
||
|
int Core_ReduceTest::checkDim( int dim, Size sz )
|
||
|
{
|
||
|
int code = cvtest::TS::OK, tempCode;
|
||
|
|
||
|
// CV_8UC1
|
||
|
tempCode = checkCase( CV_8UC1, CV_8UC1, dim, sz );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
tempCode = checkCase( CV_8UC1, CV_32SC1, dim, sz );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
tempCode = checkCase( CV_8UC1, CV_32FC1, dim, sz );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
tempCode = checkCase( CV_8UC1, CV_64FC1, dim, sz );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
// CV_16UC1
|
||
|
tempCode = checkCase( CV_16UC1, CV_32FC1, dim, sz );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
tempCode = checkCase( CV_16UC1, CV_64FC1, dim, sz );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
// CV_16SC1
|
||
|
tempCode = checkCase( CV_16SC1, CV_32FC1, dim, sz );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
tempCode = checkCase( CV_16SC1, CV_64FC1, dim, sz );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
// CV_32FC1
|
||
|
tempCode = checkCase( CV_32FC1, CV_32FC1, dim, sz );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
tempCode = checkCase( CV_32FC1, CV_64FC1, dim, sz );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
// CV_64FC1
|
||
|
tempCode = checkCase( CV_64FC1, CV_64FC1, dim, sz );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
return code;
|
||
|
}
|
||
|
|
||
|
int Core_ReduceTest::checkSize( Size sz )
|
||
|
{
|
||
|
int code = cvtest::TS::OK, tempCode;
|
||
|
|
||
|
tempCode = checkDim( 0, sz ); // rows
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
tempCode = checkDim( 1, sz ); // cols
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
return code;
|
||
|
}
|
||
|
|
||
|
void Core_ReduceTest::run( int )
|
||
|
{
|
||
|
int code = cvtest::TS::OK, tempCode;
|
||
|
|
||
|
tempCode = checkSize( Size(1,1) );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
tempCode = checkSize( Size(1,100) );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
tempCode = checkSize( Size(100,1) );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
tempCode = checkSize( Size(1000,500) );
|
||
|
code = tempCode != cvtest::TS::OK ? tempCode : code;
|
||
|
|
||
|
ts->set_failed_test_info( code );
|
||
|
}
|
||
|
|
||
|
|
||
|
#define CHECK_C
|
||
|
|
||
|
Size sz(200, 500);
|
||
|
|
||
|
class Core_PCATest : public cvtest::BaseTest
|
||
|
{
|
||
|
public:
|
||
|
Core_PCATest() {}
|
||
|
protected:
|
||
|
void run(int)
|
||
|
{
|
||
|
int code = cvtest::TS::OK;
|
||
|
|
||
|
double diffPrjEps, diffBackPrjEps,
|
||
|
prjEps, backPrjEps,
|
||
|
evalEps, evecEps;
|
||
|
int maxComponents = 100;
|
||
|
Mat rPoints(sz, CV_32FC1), rTestPoints(sz, CV_32FC1);
|
||
|
RNG& rng = ts->get_rng();
|
||
|
|
||
|
rng.fill( rPoints, RNG::UNIFORM, Scalar::all(0.0), Scalar::all(1.0) );
|
||
|
rng.fill( rTestPoints, RNG::UNIFORM, Scalar::all(0.0), Scalar::all(1.0) );
|
||
|
|
||
|
PCA rPCA( rPoints, Mat(), CV_PCA_DATA_AS_ROW, maxComponents ), cPCA;
|
||
|
|
||
|
// 1. check C++ PCA & ROW
|
||
|
Mat rPrjTestPoints = rPCA.project( rTestPoints );
|
||
|
Mat rBackPrjTestPoints = rPCA.backProject( rPrjTestPoints );
|
||
|
|
||
|
Mat avg(1, sz.width, CV_32FC1 );
|
||
|
reduce( rPoints, avg, 0, CV_REDUCE_AVG );
|
||
|
Mat Q = rPoints - repeat( avg, rPoints.rows, 1 ), Qt = Q.t(), eval, evec;
|
||
|
Q = Qt * Q;
|
||
|
Q = Q /(float)rPoints.rows;
|
||
|
|
||
|
eigen( Q, eval, evec );
|
||
|
/*SVD svd(Q);
|
||
|
evec = svd.vt;
|
||
|
eval = svd.w;*/
|
||
|
|
||
|
Mat subEval( maxComponents, 1, eval.type(), eval.data ),
|
||
|
subEvec( maxComponents, evec.cols, evec.type(), evec.data );
|
||
|
|
||
|
#ifdef CHECK_C
|
||
|
Mat prjTestPoints, backPrjTestPoints, cPoints = rPoints.t(), cTestPoints = rTestPoints.t();
|
||
|
CvMat _points, _testPoints, _avg, _eval, _evec, _prjTestPoints, _backPrjTestPoints;
|
||
|
#endif
|
||
|
|
||
|
// check eigen()
|
||
|
double eigenEps = 1e-6;
|
||
|
double err;
|
||
|
for(int i = 0; i < Q.rows; i++ )
|
||
|
{
|
||
|
Mat v = evec.row(i).t();
|
||
|
Mat Qv = Q * v;
|
||
|
|
||
|
Mat lv = eval.at<float>(i,0) * v;
|
||
|
err = norm( Qv, lv );
|
||
|
if( err > eigenEps )
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "bad accuracy of eigen(); err = %f\n", err );
|
||
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||
|
goto exit_func;
|
||
|
}
|
||
|
}
|
||
|
// check pca eigenvalues
|
||
|
evalEps = 1e-6, evecEps = 1;
|
||
|
err = norm( rPCA.eigenvalues, subEval );
|
||
|
if( err > evalEps )
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "pca.eigenvalues is incorrect (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||
|
goto exit_func;
|
||
|
}
|
||
|
// check pca eigenvectors
|
||
|
err = norm( rPCA.eigenvectors, subEvec, CV_RELATIVE_L2 );
|
||
|
if( err > evecEps )
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "pca.eigenvectors is incorrect (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||
|
goto exit_func;
|
||
|
}
|
||
|
|
||
|
prjEps = 1.265, backPrjEps = 1.265;
|
||
|
for( int i = 0; i < rTestPoints.rows; i++ )
|
||
|
{
|
||
|
// check pca project
|
||
|
Mat subEvec_t = subEvec.t();
|
||
|
Mat prj = rTestPoints.row(i) - avg; prj *= subEvec_t;
|
||
|
err = norm(rPrjTestPoints.row(i), prj, CV_RELATIVE_L2);
|
||
|
if( err > prjEps )
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "bad accuracy of project() (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||
|
goto exit_func;
|
||
|
}
|
||
|
// check pca backProject
|
||
|
Mat backPrj = rPrjTestPoints.row(i) * subEvec + avg;
|
||
|
err = norm( rBackPrjTestPoints.row(i), backPrj, CV_RELATIVE_L2 );
|
||
|
if( err > backPrjEps )
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||
|
goto exit_func;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// 2. check C++ PCA & COL
|
||
|
cPCA( rPoints.t(), Mat(), CV_PCA_DATA_AS_COL, maxComponents );
|
||
|
diffPrjEps = 1, diffBackPrjEps = 1;
|
||
|
err = norm(cPCA.project(rTestPoints.t()), rPrjTestPoints.t(), CV_RELATIVE_L2 );
|
||
|
if( err > diffPrjEps )
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "bad accuracy of project() (CV_PCA_DATA_AS_COL); err = %f\n", err );
|
||
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||
|
goto exit_func;
|
||
|
}
|
||
|
err = norm(cPCA.backProject(rPrjTestPoints.t()), rBackPrjTestPoints.t(), CV_RELATIVE_L2 );
|
||
|
if( err > diffBackPrjEps )
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_COL); err = %f\n", err );
|
||
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||
|
goto exit_func;
|
||
|
}
|
||
|
|
||
|
#ifdef CHECK_C
|
||
|
// 3. check C PCA & ROW
|
||
|
_points = rPoints;
|
||
|
_testPoints = rTestPoints;
|
||
|
_avg = avg;
|
||
|
_eval = eval;
|
||
|
_evec = evec;
|
||
|
prjTestPoints.create(rTestPoints.rows, maxComponents, rTestPoints.type() );
|
||
|
backPrjTestPoints.create(rPoints.size(), rPoints.type() );
|
||
|
_prjTestPoints = prjTestPoints;
|
||
|
_backPrjTestPoints = backPrjTestPoints;
|
||
|
|
||
|
cvCalcPCA( &_points, &_avg, &_eval, &_evec, CV_PCA_DATA_AS_ROW );
|
||
|
cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints );
|
||
|
cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints );
|
||
|
|
||
|
err = norm(prjTestPoints, rPrjTestPoints, CV_RELATIVE_L2);
|
||
|
if( err > diffPrjEps )
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||
|
goto exit_func;
|
||
|
}
|
||
|
err = norm(backPrjTestPoints, rBackPrjTestPoints, CV_RELATIVE_L2);
|
||
|
if( err > diffBackPrjEps )
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||
|
goto exit_func;
|
||
|
}
|
||
|
|
||
|
// 3. check C PCA & COL
|
||
|
_points = cPoints;
|
||
|
_testPoints = cTestPoints;
|
||
|
avg = avg.t(); _avg = avg;
|
||
|
eval = eval.t(); _eval = eval;
|
||
|
evec = evec.t(); _evec = evec;
|
||
|
prjTestPoints = prjTestPoints.t(); _prjTestPoints = prjTestPoints;
|
||
|
backPrjTestPoints = backPrjTestPoints.t(); _backPrjTestPoints = backPrjTestPoints;
|
||
|
|
||
|
cvCalcPCA( &_points, &_avg, &_eval, &_evec, CV_PCA_DATA_AS_COL );
|
||
|
cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints );
|
||
|
cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints );
|
||
|
|
||
|
err = norm(prjTestPoints, rPrjTestPoints.t(), CV_RELATIVE_L2 );
|
||
|
if( err > diffPrjEps )
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_COL); err = %f\n", err );
|
||
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||
|
goto exit_func;
|
||
|
}
|
||
|
err = norm(backPrjTestPoints, rBackPrjTestPoints.t(), CV_RELATIVE_L2);
|
||
|
if( err > diffBackPrjEps )
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_COL); err = %f\n", err );
|
||
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||
|
goto exit_func;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
exit_func:
|
||
|
|
||
|
RNG& _rng = ts->get_rng();
|
||
|
_rng = rng;
|
||
|
ts->set_failed_test_info( code );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class Core_ArrayOpTest : public cvtest::BaseTest
|
||
|
{
|
||
|
public:
|
||
|
Core_ArrayOpTest();
|
||
|
~Core_ArrayOpTest();
|
||
|
protected:
|
||
|
void run(int);
|
||
|
};
|
||
|
|
||
|
|
||
|
Core_ArrayOpTest::Core_ArrayOpTest()
|
||
|
{
|
||
|
}
|
||
|
Core_ArrayOpTest::~Core_ArrayOpTest() {}
|
||
|
|
||
|
static string idx2string(const int* idx, int dims)
|
||
|
{
|
||
|
char buf[256];
|
||
|
char* ptr = buf;
|
||
|
for( int k = 0; k < dims; k++ )
|
||
|
{
|
||
|
sprintf(ptr, "%4d ", idx[k]);
|
||
|
ptr += strlen(ptr);
|
||
|
}
|
||
|
ptr[-1] = '\0';
|
||
|
return string(buf);
|
||
|
}
|
||
|
|
||
|
static const int* string2idx(const string& s, int* idx, int dims)
|
||
|
{
|
||
|
const char* ptr = s.c_str();
|
||
|
for( int k = 0; k < dims; k++ )
|
||
|
{
|
||
|
int n = 0;
|
||
|
sscanf(ptr, "%d%n", idx + k, &n);
|
||
|
ptr += n;
|
||
|
}
|
||
|
return idx;
|
||
|
}
|
||
|
|
||
|
static double getValue(SparseMat& M, const int* idx, RNG& rng)
|
||
|
{
|
||
|
int d = M.dims();
|
||
|
size_t hv = 0, *phv = 0;
|
||
|
if( (unsigned)rng % 2 )
|
||
|
{
|
||
|
hv = d == 2 ? M.hash(idx[0], idx[1]) :
|
||
|
d == 3 ? M.hash(idx[0], idx[1], idx[2]) : M.hash(idx);
|
||
|
phv = &hv;
|
||
|
}
|
||
|
|
||
|
const uchar* ptr = d == 2 ? M.ptr(idx[0], idx[1], false, phv) :
|
||
|
d == 3 ? M.ptr(idx[0], idx[1], idx[2], false, phv) :
|
||
|
M.ptr(idx, false, phv);
|
||
|
return !ptr ? 0 : M.type() == CV_32F ? *(float*)ptr : M.type() == CV_64F ? *(double*)ptr : 0;
|
||
|
}
|
||
|
|
||
|
static double getValue(const CvSparseMat* M, const int* idx)
|
||
|
{
|
||
|
int type = 0;
|
||
|
const uchar* ptr = cvPtrND(M, idx, &type, 0);
|
||
|
return !ptr ? 0 : type == CV_32F ? *(float*)ptr : type == CV_64F ? *(double*)ptr : 0;
|
||
|
}
|
||
|
|
||
|
static void eraseValue(SparseMat& M, const int* idx, RNG& rng)
|
||
|
{
|
||
|
int d = M.dims();
|
||
|
size_t hv = 0, *phv = 0;
|
||
|
if( (unsigned)rng % 2 )
|
||
|
{
|
||
|
hv = d == 2 ? M.hash(idx[0], idx[1]) :
|
||
|
d == 3 ? M.hash(idx[0], idx[1], idx[2]) : M.hash(idx);
|
||
|
phv = &hv;
|
||
|
}
|
||
|
|
||
|
if( d == 2 )
|
||
|
M.erase(idx[0], idx[1], phv);
|
||
|
else if( d == 3 )
|
||
|
M.erase(idx[0], idx[1], idx[2], phv);
|
||
|
else
|
||
|
M.erase(idx, phv);
|
||
|
}
|
||
|
|
||
|
static void eraseValue(CvSparseMat* M, const int* idx)
|
||
|
{
|
||
|
cvClearND(M, idx);
|
||
|
}
|
||
|
|
||
|
static void setValue(SparseMat& M, const int* idx, double value, RNG& rng)
|
||
|
{
|
||
|
int d = M.dims();
|
||
|
size_t hv = 0, *phv = 0;
|
||
|
if( (unsigned)rng % 2 )
|
||
|
{
|
||
|
hv = d == 2 ? M.hash(idx[0], idx[1]) :
|
||
|
d == 3 ? M.hash(idx[0], idx[1], idx[2]) : M.hash(idx);
|
||
|
phv = &hv;
|
||
|
}
|
||
|
|
||
|
uchar* ptr = d == 2 ? M.ptr(idx[0], idx[1], true, phv) :
|
||
|
d == 3 ? M.ptr(idx[0], idx[1], idx[2], true, phv) :
|
||
|
M.ptr(idx, true, phv);
|
||
|
if( M.type() == CV_32F )
|
||
|
*(float*)ptr = (float)value;
|
||
|
else if( M.type() == CV_64F )
|
||
|
*(double*)ptr = value;
|
||
|
else
|
||
|
CV_Error(CV_StsUnsupportedFormat, "");
|
||
|
}
|
||
|
|
||
|
void Core_ArrayOpTest::run( int /* start_from */)
|
||
|
{
|
||
|
int errcount = 0;
|
||
|
|
||
|
// dense matrix operations
|
||
|
{
|
||
|
int sz3[] = {5, 10, 15};
|
||
|
MatND A(3, sz3, CV_32F), B(3, sz3, CV_16SC4);
|
||
|
CvMatND matA = A, matB = B;
|
||
|
RNG rng;
|
||
|
rng.fill(A, CV_RAND_UNI, Scalar::all(-10), Scalar::all(10));
|
||
|
rng.fill(B, CV_RAND_UNI, Scalar::all(-10), Scalar::all(10));
|
||
|
|
||
|
int idx0[] = {3,4,5}, idx1[] = {0, 9, 7};
|
||
|
float val0 = 130;
|
||
|
Scalar val1(-1000, 30, 3, 8);
|
||
|
cvSetRealND(&matA, idx0, val0);
|
||
|
cvSetReal3D(&matA, idx1[0], idx1[1], idx1[2], -val0);
|
||
|
cvSetND(&matB, idx0, val1);
|
||
|
cvSet3D(&matB, idx1[0], idx1[1], idx1[2], -val1);
|
||
|
Ptr<CvMatND> matC = cvCloneMatND(&matB);
|
||
|
|
||
|
if( A.at<float>(idx0[0], idx0[1], idx0[2]) != val0 ||
|
||
|
A.at<float>(idx1[0], idx1[1], idx1[2]) != -val0 ||
|
||
|
cvGetReal3D(&matA, idx0[0], idx0[1], idx0[2]) != val0 ||
|
||
|
cvGetRealND(&matA, idx1) != -val0 ||
|
||
|
|
||
|
Scalar(B.at<Vec4s>(idx0[0], idx0[1], idx0[2])) != val1 ||
|
||
|
Scalar(B.at<Vec4s>(idx1[0], idx1[1], idx1[2])) != -val1 ||
|
||
|
Scalar(cvGet3D(matC, idx0[0], idx0[1], idx0[2])) != val1 ||
|
||
|
Scalar(cvGetND(matC, idx1)) != -val1 )
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "one of cvSetReal3D, cvSetRealND, cvSet3D, cvSetND "
|
||
|
"or the corresponding *Get* functions is not correct\n");
|
||
|
errcount++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
RNG rng;
|
||
|
const int MAX_DIM = 5, MAX_DIM_SZ = 10;
|
||
|
// sparse matrix operations
|
||
|
for( int si = 0; si < 10; si++ )
|
||
|
{
|
||
|
int depth = (unsigned)rng % 2 == 0 ? CV_32F : CV_64F;
|
||
|
int dims = ((unsigned)rng % MAX_DIM) + 1;
|
||
|
int i, k, size[MAX_DIM]={0}, idx[MAX_DIM]={0};
|
||
|
vector<string> all_idxs;
|
||
|
vector<double> all_vals;
|
||
|
vector<double> all_vals2;
|
||
|
string sidx, min_sidx, max_sidx;
|
||
|
double min_val=0, max_val=0;
|
||
|
|
||
|
int p = 1;
|
||
|
for( k = 0; k < dims; k++ )
|
||
|
{
|
||
|
size[k] = ((unsigned)rng % MAX_DIM_SZ) + 1;
|
||
|
p *= size[k];
|
||
|
}
|
||
|
SparseMat M( dims, size, depth );
|
||
|
map<string, double> M0;
|
||
|
|
||
|
int nz0 = (unsigned)rng % max(p/5,10);
|
||
|
nz0 = min(max(nz0, 1), p);
|
||
|
all_vals.resize(nz0);
|
||
|
all_vals2.resize(nz0);
|
||
|
Mat_<double> _all_vals(all_vals), _all_vals2(all_vals2);
|
||
|
rng.fill(_all_vals, CV_RAND_UNI, Scalar(-1000), Scalar(1000));
|
||
|
if( depth == CV_32F )
|
||
|
{
|
||
|
Mat _all_vals_f;
|
||
|
_all_vals.convertTo(_all_vals_f, CV_32F);
|
||
|
_all_vals_f.convertTo(_all_vals, CV_64F);
|
||
|
}
|
||
|
_all_vals.convertTo(_all_vals2, _all_vals2.type(), 2);
|
||
|
if( depth == CV_32F )
|
||
|
{
|
||
|
Mat _all_vals2_f;
|
||
|
_all_vals2.convertTo(_all_vals2_f, CV_32F);
|
||
|
_all_vals2_f.convertTo(_all_vals2, CV_64F);
|
||
|
}
|
||
|
|
||
|
minMaxLoc(_all_vals, &min_val, &max_val);
|
||
|
double _norm0 = norm(_all_vals, CV_C);
|
||
|
double _norm1 = norm(_all_vals, CV_L1);
|
||
|
double _norm2 = norm(_all_vals, CV_L2);
|
||
|
|
||
|
for( i = 0; i < nz0; i++ )
|
||
|
{
|
||
|
for(;;)
|
||
|
{
|
||
|
for( k = 0; k < dims; k++ )
|
||
|
idx[k] = (unsigned)rng % size[k];
|
||
|
sidx = idx2string(idx, dims);
|
||
|
if( M0.count(sidx) == 0 )
|
||
|
break;
|
||
|
}
|
||
|
all_idxs.push_back(sidx);
|
||
|
M0[sidx] = all_vals[i];
|
||
|
if( all_vals[i] == min_val )
|
||
|
min_sidx = sidx;
|
||
|
if( all_vals[i] == max_val )
|
||
|
max_sidx = sidx;
|
||
|
setValue(M, idx, all_vals[i], rng);
|
||
|
double v = getValue(M, idx, rng);
|
||
|
if( v != all_vals[i] )
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "%d. immediately after SparseMat[%s]=%.20g the current value is %.20g\n",
|
||
|
i, sidx.c_str(), all_vals[i], v);
|
||
|
errcount++;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Ptr<CvSparseMat> M2 = (CvSparseMat*)M;
|
||
|
MatND Md;
|
||
|
M.copyTo(Md);
|
||
|
SparseMat M3; SparseMat(Md).convertTo(M3, Md.type(), 2);
|
||
|
|
||
|
int nz1 = (int)M.nzcount(), nz2 = (int)M3.nzcount();
|
||
|
double norm0 = norm(M, CV_C);
|
||
|
double norm1 = norm(M, CV_L1);
|
||
|
double norm2 = norm(M, CV_L2);
|
||
|
double eps = depth == CV_32F ? FLT_EPSILON*100 : DBL_EPSILON*1000;
|
||
|
|
||
|
if( nz1 != nz0 || nz2 != nz0)
|
||
|
{
|
||
|
errcount++;
|
||
|
ts->printf(cvtest::TS::LOG, "%d: The number of non-zero elements before/after converting to/from dense matrix is not correct: %d/%d (while it should be %d)\n",
|
||
|
si, nz1, nz2, nz0 );
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if( fabs(norm0 - _norm0) > fabs(_norm0)*eps ||
|
||
|
fabs(norm1 - _norm1) > fabs(_norm1)*eps ||
|
||
|
fabs(norm2 - _norm2) > fabs(_norm2)*eps )
|
||
|
{
|
||
|
errcount++;
|
||
|
ts->printf(cvtest::TS::LOG, "%d: The norms are different: %.20g/%.20g/%.20g vs %.20g/%.20g/%.20g\n",
|
||
|
si, norm0, norm1, norm2, _norm0, _norm1, _norm2 );
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
int n = (unsigned)rng % max(p/5,10);
|
||
|
n = min(max(n, 1), p) + nz0;
|
||
|
|
||
|
for( i = 0; i < n; i++ )
|
||
|
{
|
||
|
double val1, val2, val3, val0;
|
||
|
if(i < nz0)
|
||
|
{
|
||
|
sidx = all_idxs[i];
|
||
|
string2idx(sidx, idx, dims);
|
||
|
val0 = all_vals[i];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for( k = 0; k < dims; k++ )
|
||
|
idx[k] = (unsigned)rng % size[k];
|
||
|
sidx = idx2string(idx, dims);
|
||
|
val0 = M0[sidx];
|
||
|
}
|
||
|
val1 = getValue(M, idx, rng);
|
||
|
val2 = getValue(M2, idx);
|
||
|
val3 = getValue(M3, idx, rng);
|
||
|
|
||
|
if( val1 != val0 || val2 != val0 || fabs(val3 - val0*2) > fabs(val0*2)*FLT_EPSILON )
|
||
|
{
|
||
|
errcount++;
|
||
|
ts->printf(cvtest::TS::LOG, "SparseMat M[%s] = %g/%g/%g (while it should be %g)\n", sidx.c_str(), val1, val2, val3, val0 );
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for( i = 0; i < n; i++ )
|
||
|
{
|
||
|
double val1, val2;
|
||
|
if(i < nz0)
|
||
|
{
|
||
|
sidx = all_idxs[i];
|
||
|
string2idx(sidx, idx, dims);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for( k = 0; k < dims; k++ )
|
||
|
idx[k] = (unsigned)rng % size[k];
|
||
|
sidx = idx2string(idx, dims);
|
||
|
}
|
||
|
eraseValue(M, idx, rng);
|
||
|
eraseValue(M2, idx);
|
||
|
val1 = getValue(M, idx, rng);
|
||
|
val2 = getValue(M2, idx);
|
||
|
if( val1 != 0 || val2 != 0 )
|
||
|
{
|
||
|
errcount++;
|
||
|
ts->printf(cvtest::TS::LOG, "SparseMat: after deleting M[%s], it is =%g/%g (while it should be 0)\n", sidx.c_str(), val1, val2 );
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int nz = (int)M.nzcount();
|
||
|
if( nz != 0 )
|
||
|
{
|
||
|
errcount++;
|
||
|
ts->printf(cvtest::TS::LOG, "The number of non-zero elements after removing all the elements = %d (while it should be 0)\n", nz );
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
int idx1[MAX_DIM], idx2[MAX_DIM];
|
||
|
double val1 = 0, val2 = 0;
|
||
|
M3 = SparseMat(Md);
|
||
|
minMaxLoc(M3, &val1, &val2, idx1, idx2);
|
||
|
string s1 = idx2string(idx1, dims), s2 = idx2string(idx2, dims);
|
||
|
if( val1 != min_val || val2 != max_val || s1 != min_sidx || s2 != max_sidx )
|
||
|
{
|
||
|
errcount++;
|
||
|
ts->printf(cvtest::TS::LOG, "%d. Sparse: The value and positions of minimum/maximum elements are different from the reference values and positions:\n\t"
|
||
|
"(%g, %g, %s, %s) vs (%g, %g, %s, %s)\n", si, val1, val2, s1.c_str(), s2.c_str(),
|
||
|
min_val, max_val, min_sidx.c_str(), max_sidx.c_str());
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
minMaxLoc(Md, &val1, &val2, idx1, idx2);
|
||
|
s1 = idx2string(idx1, dims), s2 = idx2string(idx2, dims);
|
||
|
if( (min_val < 0 && (val1 != min_val || s1 != min_sidx)) ||
|
||
|
(max_val > 0 && (val2 != max_val || s2 != max_sidx)) )
|
||
|
{
|
||
|
errcount++;
|
||
|
ts->printf(cvtest::TS::LOG, "%d. Dense: The value and positions of minimum/maximum elements are different from the reference values and positions:\n\t"
|
||
|
"(%g, %g, %s, %s) vs (%g, %g, %s, %s)\n", si, val1, val2, s1.c_str(), s2.c_str(),
|
||
|
min_val, max_val, min_sidx.c_str(), max_sidx.c_str());
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ts->set_failed_test_info(errcount == 0 ? cvtest::TS::OK : cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
}
|
||
|
|
||
|
TEST(Core_PCA, accuracy) { Core_PCATest test; test.safe_run(); }
|
||
|
TEST(Core_Reduce, accuracy) { Core_ReduceTest test; test.safe_run(); }
|
||
|
TEST(Core_Array, basic_operations) { Core_ArrayOpTest test; test.safe_run(); }
|