|
|
|
/* dlasd1.f -- translated by f2c (version 20061008).
|
|
|
|
You must link the resulting object file with libf2c:
|
|
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
|
|
-- in that order, at the end of the command line, as in
|
|
|
|
cc *.o -lf2c -lm
|
|
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
|
|
|
|
static integer c__0 = 0;
|
|
|
|
static doublereal c_b7 = 1.;
|
|
|
|
static integer c__1 = 1;
|
|
|
|
static integer c_n1 = -1;
|
|
|
|
|
|
|
|
/* Subroutine */ int dlasd1_(integer *nl, integer *nr, integer *sqre,
|
|
|
|
doublereal *d__, doublereal *alpha, doublereal *beta, doublereal *u,
|
|
|
|
integer *ldu, doublereal *vt, integer *ldvt, integer *idxq, integer *
|
|
|
|
iwork, doublereal *work, integer *info)
|
|
|
|
{
|
|
|
|
/* System generated locals */
|
|
|
|
integer u_dim1, u_offset, vt_dim1, vt_offset, i__1;
|
|
|
|
doublereal d__1, d__2;
|
|
|
|
|
|
|
|
/* Local variables */
|
|
|
|
integer i__, k, m, n, n1, n2, iq, iz, iu2, ldq, idx, ldu2, ivt2, idxc,
|
|
|
|
idxp, ldvt2;
|
|
|
|
extern /* Subroutine */ int dlasd2_(integer *, integer *, integer *,
|
|
|
|
integer *, doublereal *, doublereal *, doublereal *, doublereal *,
|
|
|
|
doublereal *, integer *, doublereal *, integer *, doublereal *,
|
|
|
|
doublereal *, integer *, doublereal *, integer *, integer *,
|
|
|
|
integer *, integer *, integer *, integer *, integer *), dlasd3_(
|
|
|
|
integer *, integer *, integer *, integer *, doublereal *,
|
|
|
|
doublereal *, integer *, doublereal *, doublereal *, integer *,
|
|
|
|
doublereal *, integer *, doublereal *, integer *, doublereal *,
|
|
|
|
integer *, integer *, integer *, doublereal *, integer *),
|
|
|
|
dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
|
|
|
|
integer *, integer *, doublereal *, integer *, integer *),
|
|
|
|
dlamrg_(integer *, integer *, doublereal *, integer *, integer *,
|
|
|
|
integer *);
|
|
|
|
integer isigma;
|
|
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
|
|
doublereal orgnrm;
|
|
|
|
integer coltyp;
|
|
|
|
|
|
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */
|
|
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
|
|
/* November 2006 */
|
|
|
|
|
|
|
|
/* .. Scalar Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Array Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
|
|
|
|
/* Purpose */
|
|
|
|
/* ======= */
|
|
|
|
|
|
|
|
/* DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B, */
|
|
|
|
/* where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0. */
|
|
|
|
|
|
|
|
/* A related subroutine DLASD7 handles the case in which the singular */
|
|
|
|
/* values (and the singular vectors in factored form) are desired. */
|
|
|
|
|
|
|
|
/* DLASD1 computes the SVD as follows: */
|
|
|
|
|
|
|
|
/* ( D1(in) 0 0 0 ) */
|
|
|
|
/* B = U(in) * ( Z1' a Z2' b ) * VT(in) */
|
|
|
|
/* ( 0 0 D2(in) 0 ) */
|
|
|
|
|
|
|
|
/* = U(out) * ( D(out) 0) * VT(out) */
|
|
|
|
|
|
|
|
/* where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M */
|
|
|
|
/* with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros */
|
|
|
|
/* elsewhere; and the entry b is empty if SQRE = 0. */
|
|
|
|
|
|
|
|
/* The left singular vectors of the original matrix are stored in U, and */
|
|
|
|
/* the transpose of the right singular vectors are stored in VT, and the */
|
|
|
|
/* singular values are in D. The algorithm consists of three stages: */
|
|
|
|
|
|
|
|
/* The first stage consists of deflating the size of the problem */
|
|
|
|
/* when there are multiple singular values or when there are zeros in */
|
|
|
|
/* the Z vector. For each such occurence the dimension of the */
|
|
|
|
/* secular equation problem is reduced by one. This stage is */
|
|
|
|
/* performed by the routine DLASD2. */
|
|
|
|
|
|
|
|
/* The second stage consists of calculating the updated */
|
|
|
|
/* singular values. This is done by finding the square roots of the */
|
|
|
|
/* roots of the secular equation via the routine DLASD4 (as called */
|
|
|
|
/* by DLASD3). This routine also calculates the singular vectors of */
|
|
|
|
/* the current problem. */
|
|
|
|
|
|
|
|
/* The final stage consists of computing the updated singular vectors */
|
|
|
|
/* directly using the updated singular values. The singular vectors */
|
|
|
|
/* for the current problem are multiplied with the singular vectors */
|
|
|
|
/* from the overall problem. */
|
|
|
|
|
|
|
|
/* Arguments */
|
|
|
|
/* ========= */
|
|
|
|
|
|
|
|
/* NL (input) INTEGER */
|
|
|
|
/* The row dimension of the upper block. NL >= 1. */
|
|
|
|
|
|
|
|
/* NR (input) INTEGER */
|
|
|
|
/* The row dimension of the lower block. NR >= 1. */
|
|
|
|
|
|
|
|
/* SQRE (input) INTEGER */
|
|
|
|
/* = 0: the lower block is an NR-by-NR square matrix. */
|
|
|
|
/* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
|
|
|
|
|
|
|
|
/* The bidiagonal matrix has row dimension N = NL + NR + 1, */
|
|
|
|
/* and column dimension M = N + SQRE. */
|
|
|
|
|
|
|
|
/* D (input/output) DOUBLE PRECISION array, */
|
|
|
|
/* dimension (N = NL+NR+1). */
|
|
|
|
/* On entry D(1:NL,1:NL) contains the singular values of the */
|
|
|
|
/* upper block; and D(NL+2:N) contains the singular values of */
|
|
|
|
/* the lower block. On exit D(1:N) contains the singular values */
|
|
|
|
/* of the modified matrix. */
|
|
|
|
|
|
|
|
/* ALPHA (input/output) DOUBLE PRECISION */
|
|
|
|
/* Contains the diagonal element associated with the added row. */
|
|
|
|
|
|
|
|
/* BETA (input/output) DOUBLE PRECISION */
|
|
|
|
/* Contains the off-diagonal element associated with the added */
|
|
|
|
/* row. */
|
|
|
|
|
|
|
|
/* U (input/output) DOUBLE PRECISION array, dimension(LDU,N) */
|
|
|
|
/* On entry U(1:NL, 1:NL) contains the left singular vectors of */
|
|
|
|
/* the upper block; U(NL+2:N, NL+2:N) contains the left singular */
|
|
|
|
/* vectors of the lower block. On exit U contains the left */
|
|
|
|
/* singular vectors of the bidiagonal matrix. */
|
|
|
|
|
|
|
|
/* LDU (input) INTEGER */
|
|
|
|
/* The leading dimension of the array U. LDU >= max( 1, N ). */
|
|
|
|
|
|
|
|
/* VT (input/output) DOUBLE PRECISION array, dimension(LDVT,M) */
|
|
|
|
/* where M = N + SQRE. */
|
|
|
|
/* On entry VT(1:NL+1, 1:NL+1)' contains the right singular */
|
|
|
|
/* vectors of the upper block; VT(NL+2:M, NL+2:M)' contains */
|
|
|
|
/* the right singular vectors of the lower block. On exit */
|
|
|
|
/* VT' contains the right singular vectors of the */
|
|
|
|
/* bidiagonal matrix. */
|
|
|
|
|
|
|
|
/* LDVT (input) INTEGER */
|
|
|
|
/* The leading dimension of the array VT. LDVT >= max( 1, M ). */
|
|
|
|
|
|
|
|
/* IDXQ (output) INTEGER array, dimension(N) */
|
|
|
|
/* This contains the permutation which will reintegrate the */
|
|
|
|
/* subproblem just solved back into sorted order, i.e. */
|
|
|
|
/* D( IDXQ( I = 1, N ) ) will be in ascending order. */
|
|
|
|
|
|
|
|
/* IWORK (workspace) INTEGER array, dimension( 4 * N ) */
|
|
|
|
|
|
|
|
/* WORK (workspace) DOUBLE PRECISION array, dimension( 3*M**2 + 2*M ) */
|
|
|
|
|
|
|
|
/* INFO (output) INTEGER */
|
|
|
|
/* = 0: successful exit. */
|
|
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
|
|
/* > 0: if INFO = 1, an singular value did not converge */
|
|
|
|
|
|
|
|
/* Further Details */
|
|
|
|
/* =============== */
|
|
|
|
|
|
|
|
/* Based on contributions by */
|
|
|
|
/* Ming Gu and Huan Ren, Computer Science Division, University of */
|
|
|
|
/* California at Berkeley, USA */
|
|
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
|
|
/* .. Parameters .. */
|
|
|
|
|
|
|
|
/* .. */
|
|
|
|
/* .. Local Scalars .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. External Subroutines .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Intrinsic Functions .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Executable Statements .. */
|
|
|
|
|
|
|
|
/* Test the input parameters. */
|
|
|
|
|
|
|
|
/* Parameter adjustments */
|
|
|
|
--d__;
|
|
|
|
u_dim1 = *ldu;
|
|
|
|
u_offset = 1 + u_dim1;
|
|
|
|
u -= u_offset;
|
|
|
|
vt_dim1 = *ldvt;
|
|
|
|
vt_offset = 1 + vt_dim1;
|
|
|
|
vt -= vt_offset;
|
|
|
|
--idxq;
|
|
|
|
--iwork;
|
|
|
|
--work;
|
|
|
|
|
|
|
|
/* Function Body */
|
|
|
|
*info = 0;
|
|
|
|
|
|
|
|
if (*nl < 1) {
|
|
|
|
*info = -1;
|
|
|
|
} else if (*nr < 1) {
|
|
|
|
*info = -2;
|
|
|
|
} else if (*sqre < 0 || *sqre > 1) {
|
|
|
|
*info = -3;
|
|
|
|
}
|
|
|
|
if (*info != 0) {
|
|
|
|
i__1 = -(*info);
|
|
|
|
xerbla_("DLASD1", &i__1);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
n = *nl + *nr + 1;
|
|
|
|
m = n + *sqre;
|
|
|
|
|
|
|
|
/* The following values are for bookkeeping purposes only. They are */
|
|
|
|
/* integer pointers which indicate the portion of the workspace */
|
|
|
|
/* used by a particular array in DLASD2 and DLASD3. */
|
|
|
|
|
|
|
|
ldu2 = n;
|
|
|
|
ldvt2 = m;
|
|
|
|
|
|
|
|
iz = 1;
|
|
|
|
isigma = iz + m;
|
|
|
|
iu2 = isigma + n;
|
|
|
|
ivt2 = iu2 + ldu2 * n;
|
|
|
|
iq = ivt2 + ldvt2 * m;
|
|
|
|
|
|
|
|
idx = 1;
|
|
|
|
idxc = idx + n;
|
|
|
|
coltyp = idxc + n;
|
|
|
|
idxp = coltyp + n;
|
|
|
|
|
|
|
|
/* Scale. */
|
|
|
|
|
|
|
|
/* Computing MAX */
|
|
|
|
d__1 = abs(*alpha), d__2 = abs(*beta);
|
|
|
|
orgnrm = max(d__1,d__2);
|
|
|
|
d__[*nl + 1] = 0.;
|
|
|
|
i__1 = n;
|
|
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
if ((d__1 = d__[i__], abs(d__1)) > orgnrm) {
|
|
|
|
orgnrm = (d__1 = d__[i__], abs(d__1));
|
|
|
|
}
|
|
|
|
/* L10: */
|
|
|
|
}
|
|
|
|
dlascl_("G", &c__0, &c__0, &orgnrm, &c_b7, &n, &c__1, &d__[1], &n, info);
|
|
|
|
*alpha /= orgnrm;
|
|
|
|
*beta /= orgnrm;
|
|
|
|
|
|
|
|
/* Deflate singular values. */
|
|
|
|
|
|
|
|
dlasd2_(nl, nr, sqre, &k, &d__[1], &work[iz], alpha, beta, &u[u_offset],
|
|
|
|
ldu, &vt[vt_offset], ldvt, &work[isigma], &work[iu2], &ldu2, &
|
|
|
|
work[ivt2], &ldvt2, &iwork[idxp], &iwork[idx], &iwork[idxc], &
|
|
|
|
idxq[1], &iwork[coltyp], info);
|
|
|
|
|
|
|
|
/* Solve Secular Equation and update singular vectors. */
|
|
|
|
|
|
|
|
ldq = k;
|
|
|
|
dlasd3_(nl, nr, sqre, &k, &d__[1], &work[iq], &ldq, &work[isigma], &u[
|
|
|
|
u_offset], ldu, &work[iu2], &ldu2, &vt[vt_offset], ldvt, &work[
|
|
|
|
ivt2], &ldvt2, &iwork[idxc], &iwork[coltyp], &work[iz], info);
|
|
|
|
if (*info != 0) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Unscale. */
|
|
|
|
|
|
|
|
dlascl_("G", &c__0, &c__0, &c_b7, &orgnrm, &n, &c__1, &d__[1], &n, info);
|
|
|
|
|
|
|
|
/* Prepare the IDXQ sorting permutation. */
|
|
|
|
|
|
|
|
n1 = k;
|
|
|
|
n2 = n - k;
|
|
|
|
dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* End of DLASD1 */
|
|
|
|
|
|
|
|
} /* dlasd1_ */
|