Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3080 lines
104 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "op_halide.hpp"
#include "op_inf_engine.hpp"
#include "halide_scheduler.hpp"
#include <set>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <iterator>
#include <numeric>
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/core/utils/configuration.private.hpp>
#include <opencv2/core/utils/logger.hpp>
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
// this option is useful to run valgrind memory errors detection
static bool DNN_DISABLE_MEMORY_OPTIMIZATIONS = utils::getConfigurationParameterBool("OPENCV_DNN_DISABLE_MEMORY_OPTIMIZATIONS", false);
#ifdef HAVE_OPENCL
static bool DNN_OPENCL_ALLOW_ALL_DEVICES = utils::getConfigurationParameterBool("OPENCV_DNN_OPENCL_ALLOW_ALL_DEVICES", false);
#endif
static int PARAM_DNN_BACKEND_DEFAULT = (int)utils::getConfigurationParameterSizeT("OPENCV_DNN_BACKEND_DEFAULT",
#ifdef HAVE_INF_ENGINE
(size_t)DNN_BACKEND_INFERENCE_ENGINE
#else
(size_t)DNN_BACKEND_OPENCV
#endif
);
using std::vector;
using std::map;
using std::make_pair;
using std::set;
namespace
{
typedef std::vector<MatShape> ShapesVec;
struct LayerShapes
{
ShapesVec in, out, internal;
// No guarantees that layer which support in-place computations
// will be computed in-place (input.data_ptr == output.data_ptr).
// If layer said that it could work in-place and layers after it
// no longer use input blob, we'll set output = input.
bool supportInPlace;
LayerShapes() {supportInPlace = false;}
};
}
Mat blobFromImage(InputArray image, double scalefactor, const Size& size,
const Scalar& mean, bool swapRB, bool crop)
{
CV_TRACE_FUNCTION();
Mat blob;
blobFromImage(image, blob, scalefactor, size, mean, swapRB, crop);
return blob;
}
void blobFromImage(InputArray image, OutputArray blob, double scalefactor,
const Size& size, const Scalar& mean, bool swapRB, bool crop)
{
CV_TRACE_FUNCTION();
std::vector<Mat> images(1, image.getMat());
blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop);
}
Mat blobFromImages(InputArrayOfArrays images, double scalefactor, Size size,
const Scalar& mean, bool swapRB, bool crop)
{
CV_TRACE_FUNCTION();
Mat blob;
blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop);
return blob;
}
void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalefactor,
Size size, const Scalar& mean_, bool swapRB, bool crop)
{
CV_TRACE_FUNCTION();
std::vector<Mat> images;
images_.getMatVector(images);
CV_Assert(!images.empty());
for (int i = 0; i < images.size(); i++)
{
Size imgSize = images[i].size();
if (size == Size())
size = imgSize;
if (size != imgSize)
{
if(crop)
{
float resizeFactor = std::max(size.width / (float)imgSize.width,
size.height / (float)imgSize.height);
resize(images[i], images[i], Size(), resizeFactor, resizeFactor, INTER_LINEAR);
Rect crop(Point(0.5 * (images[i].cols - size.width),
0.5 * (images[i].rows - size.height)),
size);
images[i] = images[i](crop);
}
else
resize(images[i], images[i], size, 0, 0, INTER_LINEAR);
}
if(images[i].depth() == CV_8U)
images[i].convertTo(images[i], CV_32F);
Scalar mean = mean_;
if (swapRB)
std::swap(mean[0], mean[2]);
images[i] -= mean;
images[i] *= scalefactor;
}
size_t i, nimages = images.size();
Mat image0 = images[0];
int nch = image0.channels();
CV_Assert(image0.dims == 2);
Mat image;
if (nch == 3 || nch == 4)
{
int sz[] = { (int)nimages, nch, image0.rows, image0.cols };
blob_.create(4, sz, CV_32F);
Mat blob = blob_.getMat();
Mat ch[4];
for( i = 0; i < nimages; i++ )
{
image = images[i];
CV_Assert(image.depth() == CV_32F);
nch = image.channels();
CV_Assert(image.dims == 2 && (nch == 3 || nch == 4));
CV_Assert(image.size() == image0.size());
for( int j = 0; j < nch; j++ )
ch[j] = Mat(image.rows, image.cols, CV_32F, blob.ptr((int)i, j));
if(swapRB)
std::swap(ch[0], ch[2]);
split(image, ch);
}
}
else
{
CV_Assert(nch == 1);
int sz[] = { (int)nimages, 1, image0.rows, image0.cols };
blob_.create(4, sz, CV_32F);
Mat blob = blob_.getMat();
for( i = 0; i < nimages; i++ )
{
Mat image = images[i];
CV_Assert(image.depth() == CV_32F);
nch = image.channels();
CV_Assert(image.dims == 2 && (nch == 1));
CV_Assert(image.size() == image0.size());
image.copyTo(Mat(image.rows, image.cols, CV_32F, blob.ptr((int)i, 0)));
}
}
}
void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_)
{
CV_TRACE_FUNCTION();
//A blob is a 4 dimensional matrix in floating point precision
//blob_[0] = batchSize = nbOfImages
//blob_[1] = nbOfChannels
//blob_[2] = height
//blob_[3] = width
CV_Assert(blob_.depth() == CV_32F);
CV_Assert(blob_.dims == 4);
images_.create(cv::Size(1, blob_.size[0]), blob_.depth());
std::vector<Mat> vectorOfChannels(blob_.size[1]);
for (int n = 0; n < blob_.size[0]; ++n)
{
for (int c = 0; c < blob_.size[1]; ++c)
{
vectorOfChannels[c] = getPlane(blob_, n, c);
}
cv::merge(vectorOfChannels, images_.getMatRef(n));
}
}
class OpenCLBackendWrapper : public BackendWrapper
{
public:
OpenCLBackendWrapper(Mat& m) : BackendWrapper(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL)
{
m.copyTo(umat);
host = &m;
hostDirty = false;
}
OpenCLBackendWrapper(const Ptr<BackendWrapper>& baseBuffer, Mat& m)
: BackendWrapper(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL)
{
Ptr<OpenCLBackendWrapper> base = baseBuffer.dynamicCast<OpenCLBackendWrapper>();
CV_Assert(!base.empty());
host = &m;
int shape[] = {1, (int)base->umat.total()};
umat = base->umat.reshape(1, 2, &shape[0])
.colRange(0, host->total())
.reshape(1, host->dims, &host->size[0]);
hostDirty = false;
}
static Ptr<BackendWrapper> create(Mat& m)
{
return Ptr<BackendWrapper>(new OpenCLBackendWrapper(m));
}
static Ptr<BackendWrapper> create(const Ptr<BackendWrapper>& baseBuffer, Mat& m)
{
return Ptr<BackendWrapper>(new OpenCLBackendWrapper(baseBuffer, m));
}
static std::vector<UMat> getUMatVector(const std::vector<Ptr<BackendWrapper> >& wrappers)
{
const int numWrappers = wrappers.size();
std::vector<UMat> mats(wrappers.size());
for (int i = 0; i < numWrappers; ++i)
{
Ptr<OpenCLBackendWrapper> umatWrapper = wrappers[i].dynamicCast<OpenCLBackendWrapper>();
CV_Assert(!umatWrapper.empty());
umatWrapper->copyToDevice();
mats[i] = umatWrapper->umat;
}
return mats;
}
// Replaces all umats in wrappers to specific ones.
static void update(const std::vector<Ptr<BackendWrapper> >& wrappers,
const std::vector<UMat>& umats)
{
CV_Assert(wrappers.size() == umats.size());
for (int i = 0, n = umats.size(); i < n; ++i)
{
Ptr<OpenCLBackendWrapper> umatWrapper = wrappers[i].dynamicCast<OpenCLBackendWrapper>();
CV_Assert(!umatWrapper.empty());
umatWrapper->umat = umats[i];
}
}
~OpenCLBackendWrapper() {}
// Copies data from device to a host memory.
virtual void copyToHost() CV_OVERRIDE
{
umat.copyTo(*host);
}
virtual void setHostDirty() CV_OVERRIDE
{
hostDirty = true;
};
void copyToDevice()
{
if (hostDirty)
{
host->copyTo(umat);
hostDirty = false;
}
}
private:
UMat umat;
Mat* host;
bool hostDirty;
};
struct LayerPin
{
int lid;
int oid;
LayerPin(int layerId = -1, int outputId = -1)
: lid(layerId), oid(outputId) {}
bool valid() const
{
return (lid >= 0 && oid >= 0);
}
bool equal(const LayerPin &r) const
{
return (lid == r.lid && oid == r.oid);
}
bool operator<(const LayerPin &r) const
{
return lid < r.lid || lid == r.lid && oid < r.oid;
}
bool operator ==(const LayerPin &r) const
{
return lid == r.lid && oid == r.oid;
}
};
struct LayerData
{
LayerData() : id(-1), skip(false), flag(0) {}
LayerData(int _id, const String &_name, const String &_type, LayerParams &_params)
: id(_id), name(_name), type(_type), params(_params), skip(false), flag(0)
{
CV_TRACE_FUNCTION();
//add logging info
params.name = name;
params.type = type;
}
int id;
String name;
String type;
LayerParams params;
std::vector<LayerPin> inputBlobsId;
std::set<int> inputLayersId;
std::set<int> requiredOutputs;
std::vector<LayerPin> consumers;
std::vector<Ptr<BackendWrapper> > outputBlobsWrappers;
std::vector<Ptr<BackendWrapper> > inputBlobsWrappers;
std::vector<Ptr<BackendWrapper> > internalBlobsWrappers;
Ptr<Layer> layerInstance;
std::vector<Mat> outputBlobs;
std::vector<Mat*> inputBlobs;
std::vector<Mat> internals;
// Computation nodes of implemented backends (except DEFAULT).
std::map<int, Ptr<BackendNode> > backendNodes;
// Flag for skip layer computation for specific backend.
bool skip;
int flag;
Ptr<Layer> getLayerInstance()
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(type, "type", type.c_str());
if (layerInstance)
return layerInstance;
layerInstance = LayerFactory::createLayerInstance(type, params);
if (!layerInstance)
{
CV_Error(Error::StsError, "Can't create layer \"" + name + "\" of type \"" + type + "\"");
}
return layerInstance;
}
};
//fake layer containing network input blobs
struct DataLayer : public Layer
{
void finalize(const std::vector<Mat*>&, std::vector<Mat>&) CV_OVERRIDE {}
void forward(std::vector<Mat*>&, std::vector<Mat>&, std::vector<Mat> &) CV_OVERRIDE {}
void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) CV_OVERRIDE {}
int outputNameToIndex(const String& tgtName) CV_OVERRIDE
{
int idx = (int)(std::find(outNames.begin(), outNames.end(), tgtName) - outNames.begin());
return (idx < (int)outNames.size()) ? idx : -1;
}
void setNames(const std::vector<String> &names)
{
outNames.assign(names.begin(), names.end());
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() == requiredOutputs);
outputs.assign(inputs.begin(), inputs.end());
return false;
}
std::vector<String> outNames;
};
struct BlobManager
{
public:
// Increase references counter to layer output.
void addReference(const LayerPin& lp)
{
std::map<LayerPin, int>::iterator it = refCounter.find(lp);
if (it == refCounter.end())
refCounter[lp] = 1;
else
it->second += 1;
}
void addReferences(const std::vector<LayerPin>& pins)
{
for (int i = 0; i < pins.size(); i++)
{
addReference(pins[i]);
}
}
// Returns number of references to allocated memory that used in specific
// layer blob.
int numReferences(const LayerPin& lp)
{
std::map<LayerPin, LayerPin>::iterator mapIt = reuseMap.find(lp);
CV_Assert(mapIt != reuseMap.end());
LayerPin memHost = mapIt->second;
std::map<LayerPin, int>::iterator refIt = refCounter.find(memHost);
CV_Assert(refIt != refCounter.end());
return refIt->second;
}
// Reuse data allocated in <host> inside the <user> blob.
void reuse(const LayerPin& host, const LayerPin& user)
{
CV_Assert(reuseMap.find(user) == reuseMap.end());
CV_Assert(reuseMap.find(host) != reuseMap.end());
LayerPin memHost = reuseMap[host];
reuseMap[user] = memHost;
if (refCounter.find(memHost) != refCounter.end())
{
std::map<LayerPin, int>::iterator userRefIt = refCounter.find(user);
if (userRefIt != refCounter.end())
{
refCounter[memHost] += userRefIt->second;
refCounter.erase(userRefIt);
}
else
refCounter[memHost] += 1;
}
}
// Decrease references counter to allocated memory inside specific blob.
void releaseReference(const LayerPin& lp)
{
std::map<LayerPin, LayerPin>::iterator mapIt = reuseMap.find(lp);
CV_Assert(mapIt != reuseMap.end());
std::map<LayerPin, int>::iterator refIt = refCounter.find(mapIt->second);
CV_Assert(refIt != refCounter.end());
CV_Assert(refIt->second > 0);
refIt->second -= 1;
}
void releaseReferences(const std::vector<LayerPin>& pins)
{
for (int i = 0; i < pins.size(); i++)
{
releaseReference(pins[i]);
}
}
void reuseOrCreate(const MatShape& shape, const LayerPin& lp, Mat& dst, bool forceCreate, bool use_half)
{
if (!DNN_DISABLE_MEMORY_OPTIMIZATIONS && !forceCreate)
{
Mat bestBlob;
LayerPin bestBlobPin;
std::map<LayerPin, Mat>::iterator hostIt;
std::map<LayerPin, int>::iterator refIt;
const int targetTotal = total(shape);
int bestBlobTotal = INT_MAX;
for (hostIt = memHosts.begin(); hostIt != memHosts.end(); ++hostIt)
{
refIt = refCounter.find(hostIt->first);
// Use only blobs that had references before because if not,
// it might be used as output.
if (refIt != refCounter.end() && refIt->second == 0)
{
Mat& unusedBlob = hostIt->second;
if (unusedBlob.total() >= targetTotal &&
unusedBlob.total() < bestBlobTotal)
{
bestBlobPin = hostIt->first;
bestBlob = unusedBlob;
bestBlobTotal = unusedBlob.total();
}
}
}
if (!bestBlob.empty())
{
reuse(bestBlobPin, lp);
dst = bestBlob.reshape(1, 1).colRange(0, targetTotal).reshape(1, shape);
return;
}
}
{
// if dst already has been allocated with total(shape) elements,
7 years ago
// it won't be recreated and pointer of dst.data remains the same.
dst.create(shape, use_half ? CV_16S : CV_32F);
addHost(lp, dst);
}
}
void allocateBlobsForLayer(LayerData &ld, const LayerShapes& layerShapes,
std::vector<LayerPin>& pinsForInternalBlobs,
bool forceCreate = false, bool use_half = false)
{
CV_TRACE_FUNCTION();
pinsForInternalBlobs.clear();
std::vector<Mat>& outputBlobs = ld.outputBlobs,
&internalBlobs = ld.internals;
const ShapesVec& outShapes = layerShapes.out,
internalShapes = layerShapes.internal;
outputBlobs.resize(std::max((size_t)1, outShapes.size())); //layer produce at least one output blob
internalBlobs.resize(internalShapes.size());
CV_Assert(ld.requiredOutputs.size() <= outShapes.size());
// Check that layer could work in-place.
bool inPlace = false;
if (layerShapes.supportInPlace)
{
if (ld.inputBlobs.size() == 1)
{
// Get number of references to the input memory.
int numRef = numReferences(ld.inputBlobsId[0]);
// If current layer is one and only customer of this blob.
inPlace = numRef == 1;
}
}
ShapesVec shapes(outShapes);
shapes.insert(shapes.end(), internalShapes.begin(), internalShapes.end());
std::vector<Mat*> blobs;
for(int i = 0; i < outputBlobs.size(); i++)
{
blobs.push_back(&outputBlobs[i]);
}
for(int i = 0; i < internalBlobs.size(); i++)
{
blobs.push_back(&internalBlobs[i]);
if (total(internalShapes[i]))
{
pinsForInternalBlobs.push_back(LayerPin(ld.id, ld.outputBlobs.size() + i));
}
}
addReferences(pinsForInternalBlobs);
std::map<int, std::vector<int> > idxSizes;
for(int i = 0; i < shapes.size(); i++)
{
idxSizes[total(shapes[i])].push_back(i);
}
std::map<int, std::vector<int> >::reverse_iterator it;
for(it = idxSizes.rbegin(); it != idxSizes.rend(); it++)
{
for(int j = 0; j < it->second.size(); j++)
{
int index = it->second[j];
if (total(shapes[index]))
{
LayerPin blobPin(ld.id, index);
if (index < outShapes.size() && inPlace)
{
CV_Assert(ld.inputBlobs[0]->total() == total(shapes[index]));
ld.outputBlobs[index] = ld.inputBlobs[0]->reshape(1, shapes[index]);
reuse(ld.inputBlobsId[0], blobPin);
}
else
reuseOrCreate(shapes[index], blobPin, *blobs[index], forceCreate, use_half);
}
}
}
}
// Clear internal state. Calls before an every reallocation.
void reset()
{
CV_TRACE_FUNCTION();
refCounter.clear();
reuseMap.clear();
memHosts.clear();
}
private:
// Register allocated memory.
void addHost(const LayerPin& lp, const Mat& mat)
{
CV_Assert(memHosts.find(lp) == memHosts.end());
reuseMap[lp] = lp;
memHosts[lp] = mat;
}
std::map<LayerPin, int> refCounter;
// Maps pin to origin blob (for whom memory was allocated firstly).
// For origin blobs key == value.
std::map<LayerPin, LayerPin> reuseMap;
std::map<LayerPin, Mat> memHosts;
};
static Ptr<BackendWrapper> wrapMat(int backendId, int targetId, cv::Mat& m)
{
if (backendId == DNN_BACKEND_OPENCV)
{
if (targetId == DNN_TARGET_CPU)
return Ptr<BackendWrapper>();
else if (IS_DNN_OPENCL_TARGET(targetId))
return OpenCLBackendWrapper::create(m);
else
CV_Error(Error::StsNotImplemented, "Unknown target identifier");
}
else if (backendId == DNN_BACKEND_HALIDE)
{
CV_Assert(haveHalide());
#ifdef HAVE_HALIDE
return Ptr<BackendWrapper>(new HalideBackendWrapper(targetId, m));
#endif // HAVE_HALIDE
}
else if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
{
CV_Assert(haveInfEngine());
#ifdef HAVE_INF_ENGINE
return Ptr<BackendWrapper>(new InfEngineBackendWrapper(targetId, m));
#endif // HAVE_INF_ENGINE
}
else
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
return Ptr<BackendWrapper>();
}
struct Net::Impl
{
typedef std::map<int, LayerShapes> LayersShapesMap;
typedef std::map<int, LayerData> MapIdToLayerData;
Impl()
{
//allocate fake net input layer
netInputLayer = Ptr<DataLayer>(new DataLayer());
LayerData &inpl = layers.insert( make_pair(0, LayerData()) ).first->second;
inpl.id = 0;
inpl.name = "_input";
inpl.type = "__NetInputLayer__";
inpl.layerInstance = netInputLayer;
layerNameToId.insert(std::make_pair(inpl.name, inpl.id));
lastLayerId = 0;
netWasAllocated = false;
fusion = true;
preferableBackend = DNN_BACKEND_DEFAULT;
preferableTarget = DNN_TARGET_CPU;
skipInfEngineInit = false;
}
Ptr<DataLayer> netInputLayer;
std::vector<LayerPin> blobsToKeep;
MapIdToLayerData layers;
std::map<String, int> layerNameToId;
BlobManager blobManager;
int preferableBackend;
int preferableTarget;
String halideConfigFile;
bool skipInfEngineInit;
// Map host data to backend specific wrapper.
std::map<void*, Ptr<BackendWrapper> > backendWrappers;
int lastLayerId;
bool netWasAllocated;
bool fusion;
std::vector<int64> layersTimings;
Mat output_blob;
Ptr<BackendWrapper> wrap(Mat& host)
{
if (preferableBackend == DNN_BACKEND_OPENCV && preferableTarget == DNN_TARGET_CPU)
return Ptr<BackendWrapper>();
MatShape shape(host.dims);
for (int i = 0; i < host.dims; ++i)
shape[i] = host.size[i];
void* data = host.data;
if (backendWrappers.find(data) != backendWrappers.end())
{
Ptr<BackendWrapper> baseBuffer = backendWrappers[data];
if (preferableBackend == DNN_BACKEND_OPENCV)
{
CV_Assert(IS_DNN_OPENCL_TARGET(preferableTarget));
return OpenCLBackendWrapper::create(baseBuffer, host);
}
else if (preferableBackend == DNN_BACKEND_HALIDE)
{
CV_Assert(haveHalide());
#ifdef HAVE_HALIDE
return Ptr<BackendWrapper>(new HalideBackendWrapper(baseBuffer, shape));
#endif // HAVE_HALIDE
}
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE)
{
return wrapMat(preferableBackend, preferableTarget, host);
}
else
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
}
Ptr<BackendWrapper> wrapper = wrapMat(preferableBackend, preferableTarget, host);
backendWrappers[data] = wrapper;
return wrapper;
}
#ifdef HAVE_HALIDE
void compileHalide()
{
CV_TRACE_FUNCTION();
CV_Assert(preferableBackend == DNN_BACKEND_HALIDE);
HalideScheduler scheduler(halideConfigFile);
std::vector< std::reference_wrapper<LayerData> > compileList; compileList.reserve(64);
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
{
LayerData &ld = it->second;
Ptr<Layer> layer = ld.layerInstance;
if (layer->supportBackend(DNN_BACKEND_HALIDE) && !ld.skip)
{
CV_Assert(!ld.backendNodes[DNN_BACKEND_HALIDE].empty());
bool scheduled = scheduler.process(ld.backendNodes[DNN_BACKEND_HALIDE]);
if (!scheduled)
{
// Use automatic scheduling provided by layer.
layer->applyHalideScheduler(ld.backendNodes[DNN_BACKEND_HALIDE],
ld.inputBlobs, ld.outputBlobs,
preferableTarget);
}
compileList.emplace_back(ld);
}
}
std::atomic<int> progress(0);
auto fn = ([&] () -> void
{
for (;;)
{
int id = progress.fetch_add(1);
if ((size_t)id >= compileList.size())
return;
const LayerData& ld = compileList[id].get();
Ptr<BackendNode> node = ld.backendNodes.find(DNN_BACKEND_HALIDE)->second;
dnn::compileHalide(ld.outputBlobs, node, preferableTarget);
}
});
size_t num_threads = std::min(compileList.size(), (size_t)std::thread::hardware_concurrency());
num_threads = std::max((size_t)1u, std::min((size_t)8u, num_threads));
std::vector<std::thread> threads(num_threads - 1);
for (auto& t: threads) t = std::thread(fn);
fn(); // process own tasks
for (auto& t: threads) t.join();
}
#endif
void clear()
{
CV_TRACE_FUNCTION();
MapIdToLayerData::iterator it;
for (it = layers.begin(); it != layers.end(); it++)
{
if (it->second.id != 0) {
it->second.inputBlobs.clear();
it->second.outputBlobs.clear();
it->second.internals.clear();
}
it->second.skip = false;
//it->second.consumers.clear();
Ptr<Layer> currLayer = it->second.layerInstance;
if( currLayer.empty() )
continue;
currLayer->unsetAttached();
Ptr<PoolingLayer> poolingLayer = currLayer.dynamicCast<PoolingLayer>();
if( !poolingLayer.empty() )
{
poolingLayer->computeMaxIdx = true;
}
}
it = layers.find(0);
CV_Assert(it != layers.end());
it->second.skip = true;
layersTimings.clear();
}
void setUpNet(const std::vector<LayerPin>& blobsToKeep_ = std::vector<LayerPin>())
{
CV_TRACE_FUNCTION();
if (preferableBackend == DNN_BACKEND_DEFAULT)
preferableBackend = (Backend)PARAM_DNN_BACKEND_DEFAULT;
CV_Assert(preferableBackend != DNN_BACKEND_OPENCV ||
preferableTarget == DNN_TARGET_CPU ||
preferableTarget == DNN_TARGET_OPENCL ||
preferableTarget == DNN_TARGET_OPENCL_FP16);
CV_Assert(preferableBackend != DNN_BACKEND_HALIDE ||
preferableTarget == DNN_TARGET_CPU ||
preferableTarget == DNN_TARGET_OPENCL);
CV_Assert(preferableBackend != DNN_BACKEND_INFERENCE_ENGINE ||
preferableTarget == DNN_TARGET_CPU ||
preferableTarget == DNN_TARGET_OPENCL ||
preferableTarget == DNN_TARGET_OPENCL_FP16 ||
preferableTarget == DNN_TARGET_MYRIAD);
if (!netWasAllocated || this->blobsToKeep != blobsToKeep_)
{
if (preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget))
#ifndef HAVE_OPENCL
{
CV_LOG_WARNING(NULL, "DNN: OpenCL target is not available in this OpenCV build, switching to CPU.");
preferableTarget = DNN_TARGET_CPU;
}
#else
{
if (!DNN_OPENCL_ALLOW_ALL_DEVICES
&& !(ocl::Device::getDefault().isIntel() && ocl::Device::getDefault().type() == ocl::Device::TYPE_GPU) // Current implementation is only valid for Intel GPU (#11494)
)
{
CV_LOG_WARNING(NULL, "DNN: OpenCL target is not supported with current OpenCL device (tested with Intel GPUs only), switching to CPU.");
preferableTarget = DNN_TARGET_CPU;
}
}
#endif
clear();
allocateLayers(blobsToKeep_);
initBackend();
if (!netWasAllocated )
{
#ifdef HAVE_HALIDE
if (preferableBackend == DNN_BACKEND_HALIDE)
compileHalide();
#else
CV_Assert(preferableBackend != DNN_BACKEND_HALIDE);
#endif
}
netWasAllocated = true;
this->blobsToKeep = blobsToKeep_;
}
}
int getLayerId(const String &layerName)
{
std::map<String, int>::iterator it = layerNameToId.find(layerName);
return (it != layerNameToId.end()) ? it->second : -1;
}
int getLayerId(int id)
{
MapIdToLayerData::iterator it = layers.find(id);
return (it != layers.end()) ? id : -1;
}
int getLayerId(DictValue &layerDesc)
{
if (layerDesc.isInt())
return getLayerId(layerDesc.get<int>());
else if (layerDesc.isString())
return getLayerId(layerDesc.get<String>());
CV_Assert(layerDesc.isInt() || layerDesc.isString());
return -1;
}
String getLayerName(int id)
{
MapIdToLayerData::iterator it = layers.find(id);
return (it != layers.end()) ? it->second.name : "(unknown layer)";
}
LayerData& getLayerData(int id)
{
MapIdToLayerData::iterator it = layers.find(id);
if (it == layers.end())
CV_Error(Error::StsObjectNotFound, format("Layer with requested id=%d not found", id));
return it->second;
}
LayerData& getLayerData(const String &layerName)
{
int id = getLayerId(layerName);
if (id < 0)
CV_Error(Error::StsError, "Requested layer \"" + layerName + "\" not found");
return getLayerData(id);
}
LayerData& getLayerData(const DictValue &layerDesc)
{
CV_Assert(layerDesc.isInt() || layerDesc.isString());
if (layerDesc.isInt())
return getLayerData(layerDesc.get<int>());
else /*if (layerDesc.isString())*/
return getLayerData(layerDesc.get<String>());
}
static void addLayerInput(LayerData &ld, int inNum, LayerPin from)
{
if ((int)ld.inputBlobsId.size() <= inNum)
{
ld.inputBlobsId.resize(inNum + 1);
}
else
{
LayerPin storedFrom = ld.inputBlobsId[inNum];
if (storedFrom.valid() && !storedFrom.equal(from))
CV_Error(Error::StsError, format("Input #%d of layer \"%s\" already was connected",
inNum, ld.name.c_str()));
}
ld.inputBlobsId[inNum] = from;
}
static void splitPin(const String &pinAlias, String &layerName, String &outName)
{
size_t delimPos = pinAlias.find('.');
layerName = pinAlias.substr(0, delimPos);
outName = (delimPos == String::npos) ? String() : pinAlias.substr(delimPos + 1);
}
int resolvePinOutputName(LayerData &ld, const String &outName)
{
if (outName.empty())
return 0;
if (std::isdigit(outName[0]))
{
char *lastChar;
long inum = std::strtol(outName.c_str(), &lastChar, 10);
if (*lastChar == 0)
{
CV_Assert(inum == (int)inum);
return (int)inum;
}
}
return ld.getLayerInstance()->outputNameToIndex(outName);
}
LayerPin getPinByAlias(const String &pinAlias)
{
LayerPin pin;
String layerName, outName;
splitPin(pinAlias, layerName, outName);
pin.lid = (layerName.empty()) ? 0 : getLayerId(layerName);
if (pin.lid >= 0)
pin.oid = resolvePinOutputName(getLayerData(pin.lid), outName);
return pin;
}
std::vector<LayerPin> getLayerOutPins(const String &pinAlias)
{
String layerName, outName;
splitPin(pinAlias, layerName, outName);
int lid = (layerName.empty()) ? 0 : getLayerId(layerName);
std::vector<LayerPin> pins;
for (int i = 0; i < layers[lid].outputBlobs.size(); i++)
{
pins.push_back(LayerPin(lid, i));
}
return pins;
}
void connect(int outLayerId, int outNum, int inLayerId, int inNum)
{
CV_Assert(outLayerId < inLayerId);
LayerData &ldOut = getLayerData(outLayerId);
LayerData &ldInp = getLayerData(inLayerId);
addLayerInput(ldInp, inNum, LayerPin(outLayerId, outNum));
ldOut.requiredOutputs.insert(outNum);
ldOut.consumers.push_back(LayerPin(inLayerId, outNum));
}
void initBackend()
{
CV_TRACE_FUNCTION();
if (preferableBackend == DNN_BACKEND_OPENCV)
CV_Assert(preferableTarget == DNN_TARGET_CPU || IS_DNN_OPENCL_TARGET(preferableTarget));
else if (preferableBackend == DNN_BACKEND_HALIDE)
initHalideBackend();
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE)
initInfEngineBackend();
else
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
}
void initHalideBackend()
{
CV_TRACE_FUNCTION();
CV_Assert(preferableBackend == DNN_BACKEND_HALIDE, haveHalide());
// Iterator to current layer.
MapIdToLayerData::iterator it = layers.begin();
// Iterator to base layer for fusion. In example, in case of conv+bn+relu
// it'll be a conv layer.
MapIdToLayerData::iterator baseIt = layers.begin();
for (; it != layers.end(); it++)
{
LayerData &ldTop = it->second;
Ptr<Layer> layerTop = ldTop.layerInstance;
if (!layerTop->supportBackend(preferableBackend))
{
// Move base iterator to layer that don't support preferable
// backend to prevent fusion over layer of different backend.
baseIt = it;
continue;
}
// Try to do layers fusion.
LayerData &ldBot = baseIt->second;
Ptr<Layer> layerBot = ldBot.layerInstance;
// 1. Check that bottom and top from the same backends.
if (it != layers.begin() && layerBot->supportBackend(preferableBackend))
{
// 2. Check that current layer works in-place.
bool inPlace = ldTop.inputBlobs.size() == 1 &&
ldBot.outputBlobs.size() == 1 &&
ldTop.inputBlobs[0]->data ==
ldBot.outputBlobs[0].data;
if (inPlace)
{
// 3. Try to attach node.
CV_Assert(!ldBot.backendNodes[preferableBackend].empty());
Ptr<BackendNode> fusedNode =
layerTop->tryAttach(ldBot.backendNodes[preferableBackend]);
if (!fusedNode.empty())
{
ldTop.skip = true;
ldBot.backendNodes[preferableBackend] = fusedNode;
ldBot.outputBlobsWrappers = ldTop.outputBlobsWrappers;
continue;
}
}
}
// No layers fusion.
ldTop.skip = false;
ldTop.backendNodes[DNN_BACKEND_HALIDE] =
layerTop->initHalide(ldTop.inputBlobsWrappers);
baseIt = it;
}
}
#ifdef HAVE_INF_ENGINE
// Before launching Inference Engine graph we need to specify output blobs.
// This function requests output blobs based on inputs references of
// layers from default backend or layers from different graphs.
void addInfEngineNetOutputs(LayerData &ld)
{
Ptr<InfEngineBackendNet> layerNet;
if (ld.backendNodes.find(preferableBackend) != ld.backendNodes.end())
{
Ptr<BackendNode> node = ld.backendNodes[preferableBackend];
if (!node.empty())
{
Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
CV_Assert(!ieNode.empty(), !ieNode->net.empty());
layerNet = ieNode->net;
}
}
// For an every input reference we check that it belongs to one of
// the Inference Engine backend graphs. Request an output blob if it is.
// Do nothing if layer's input is from the same graph.
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
{
LayerData &inpLd = layers[ld.inputBlobsId[i].lid];
Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
if (!inpNode.empty())
{
Ptr<InfEngineBackendNode> ieInpNode = inpNode.dynamicCast<InfEngineBackendNode>();
CV_Assert(!ieInpNode.empty(), !ieInpNode->net.empty());
if (layerNet != ieInpNode->net)
{
// layerNet is empty or nodes are from different graphs.
ieInpNode->net->addOutput(ieInpNode->layer->name);
}
}
}
}
#endif // HAVE_INF_ENGINE
void initInfEngineBackend()
{
CV_TRACE_FUNCTION();
CV_Assert(preferableBackend == DNN_BACKEND_INFERENCE_ENGINE, haveInfEngine());
#ifdef HAVE_INF_ENGINE
MapIdToLayerData::iterator it;
Ptr<InfEngineBackendNet> net;
if (skipInfEngineInit)
{
Ptr<BackendNode> node = layers[lastLayerId].backendNodes[preferableBackend];
CV_Assert(!node.empty());
Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
CV_Assert(!ieNode.empty());
for (it = layers.begin(); it != layers.end(); ++it)
{
LayerData &ld = it->second;
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
InferenceEngine::DataPtr dataPtr = infEngineDataNode(ld.outputBlobsWrappers[i]);
dataPtr->name = ld.id == 0 ? netInputLayer->outNames[i] : ld.name;
}
ieNode->net->addBlobs(ld.inputBlobsWrappers);
ieNode->net->addBlobs(ld.outputBlobsWrappers);
ld.skip = true;
}
layers[lastLayerId].skip = false;
ieNode->net->init(preferableTarget);
return;
}
// Build Inference Engine networks from sets of layers that support this
// backend. Split a whole model on several Inference Engine networks if
// some of layers is not implemented.
// Set of all input and output blobs wrappers for current network.
std::map<int, Ptr<BackendWrapper> > netBlobsWrappers;
for (it = layers.begin(); it != layers.end(); ++it)
{
LayerData &ld = it->second;
if (ld.id == 0)
continue;
bool fused = ld.skip;
Ptr<Layer> layer = ld.layerInstance;
if (!layer->supportBackend(preferableBackend))
{
addInfEngineNetOutputs(ld);
net = Ptr<InfEngineBackendNet>();
netBlobsWrappers.clear();
continue;
}
ld.skip = true; // Initially skip all Inference Engine supported layers.
// Create a new network if one of inputs from different Inference Engine graph.
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
{
LayerData &inpLd = layers[ld.inputBlobsId[i].lid];
Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
if (!inpNode.empty())
{
Ptr<InfEngineBackendNode> ieInpNode = inpNode.dynamicCast<InfEngineBackendNode>();
CV_Assert(!ieInpNode.empty(), !ieInpNode->net.empty());
if (ieInpNode->net != net)
{
net = Ptr<InfEngineBackendNet>();
netBlobsWrappers.clear();
break;
}
}
}
// The same blobs wrappers cannot be shared between two Inference Engine
// networks because of explicit references between layers and blobs.
// So we need to rewrap all the external blobs.
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
{
int lid = ld.inputBlobsId[i].lid;
LayerData &inpLd = layers[lid];
auto it = netBlobsWrappers.find(lid);
if (it == netBlobsWrappers.end())
{
ld.inputBlobsWrappers[i] = wrap(*ld.inputBlobs[i]);
auto dataPtr = infEngineDataNode(ld.inputBlobsWrappers[i]);
dataPtr->name = inpLd.name;
netBlobsWrappers[lid] = ld.inputBlobsWrappers[i];
}
else
ld.inputBlobsWrappers[i] = it->second;
}
netBlobsWrappers[ld.id] = ld.outputBlobsWrappers[0];
Ptr<BackendNode> node;
if (!net.empty())
{
if (fused)
{
bool inPlace = ld.inputBlobsId.size() == 1 && ld.outputBlobs.size() == 1 &&
ld.inputBlobs[0]->data == ld.outputBlobs[0].data;
CV_Assert(inPlace);
node = layers[ld.inputBlobsId[0].lid].backendNodes[preferableBackend];
ld.inputBlobsWrappers = layers[ld.inputBlobsId[0].lid].inputBlobsWrappers;
}
}
else
net = Ptr<InfEngineBackendNet>(new InfEngineBackendNet());
if (!fused)
{
node = layer->initInfEngine(ld.inputBlobsWrappers);
}
CV_Assert(!node.empty());
ld.backendNodes[preferableBackend] = node;
Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
CV_Assert(!ieNode.empty());
ieNode->net = net;
if ((preferableTarget == DNN_TARGET_OPENCL_FP16 || preferableTarget == DNN_TARGET_MYRIAD) && !fused)
{
ieNode->layer->precision = InferenceEngine::Precision::FP16;
auto weightableLayer = std::dynamic_pointer_cast<InferenceEngine::WeightableLayer>(ieNode->layer);
if (weightableLayer)
{
if (weightableLayer->_weights)
weightableLayer->_weights = convertFp16(weightableLayer->_weights);
if (weightableLayer->_biases)
weightableLayer->_biases = convertFp16(weightableLayer->_biases);
}
else
{
for (const auto& weights : {"weights", "biases"})
{
auto it = ieNode->layer->blobs.find(weights);
if (it != ieNode->layer->blobs.end())
it->second = convertFp16(it->second);
}
}
}
ieNode->connect(ld.inputBlobsWrappers, ld.outputBlobsWrappers);
net->addBlobs(ld.inputBlobsWrappers);
net->addBlobs(ld.outputBlobsWrappers);
if (!fused)
net->addLayer(ieNode->layer);
addInfEngineNetOutputs(ld);
}
// Initialize all networks.
std::set<InfEngineBackendNet> initializedNets;
for (MapIdToLayerData::reverse_iterator it = layers.rbegin(); it != layers.rend(); ++it)
{
LayerData &ld = it->second;
if (ld.backendNodes.find(preferableBackend) == ld.backendNodes.end())
continue;
Ptr<BackendNode> node = ld.backendNodes[preferableBackend];
if (node.empty())
continue;
Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
if (ieNode.empty())
continue;
CV_Assert(!ieNode->net.empty());
if (!ieNode->net->isInitialized())
{
ieNode->net->init(preferableTarget);
ld.skip = false;
}
}
#endif // HAVE_INF_ENGINE
}
void allocateLayer(int lid, const LayersShapesMap& layersShapes)
{
CV_TRACE_FUNCTION();
LayerData &ld = layers[lid];
//already allocated
if (ld.flag)
return;
size_t ninputs = ld.inputBlobsId.size();
#if 0
printf("layer %s:", ld.name.c_str());
for (size_t i = 0; i < ninputs; i++)
{
int inp_lid = ld.inputBlobsId[i].lid;
LayerData &inp_ld = layers[inp_lid];
int inp_outputs = (int)inp_ld.outputBlobs.size();
std::cout << " " << inp_ld.name << "(" << inp_outputs;
for( int j = 0; j < inp_outputs; j++ )
{
std::cout << (j == 0 ? ": " : ", ") << inp_ld.outputBlobs[j].size;
}
std::cout << ")";
}
printf("\n");
#endif
//determine parent layers
for (size_t i = 0; i < ninputs; i++)
ld.inputLayersId.insert(ld.inputBlobsId[i].lid);
//allocate parents
for (set<int>::iterator i = ld.inputLayersId.begin(); i != ld.inputLayersId.end(); i++)
allocateLayer(*i, layersShapes);
//bind inputs
ld.inputBlobs.resize(ninputs);
ld.inputBlobsWrappers.resize(ninputs);
for (size_t i = 0; i < ninputs; i++)
{
LayerPin from = ld.inputBlobsId[i];
CV_Assert(from.valid());
CV_DbgAssert(layers.count(from.lid) && (int)layers[from.lid].outputBlobs.size() > from.oid);
ld.inputBlobs[i] = &layers[from.lid].outputBlobs[from.oid];
ld.inputBlobsWrappers[i] = layers[from.lid].outputBlobsWrappers[from.oid];
}
LayersShapesMap::const_iterator layerShapesIt = layersShapes.find(lid);
CV_Assert(layerShapesIt != layersShapes.end());
std::vector<LayerPin> pinsForInternalBlobs;
blobManager.allocateBlobsForLayer(ld, layerShapesIt->second, pinsForInternalBlobs,
preferableBackend == DNN_BACKEND_INFERENCE_ENGINE,
preferableBackend == DNN_BACKEND_OPENCV &&
preferableTarget == DNN_TARGET_OPENCL_FP16);
ld.outputBlobsWrappers.resize(ld.outputBlobs.size());
for (int i = 0; i < ld.outputBlobs.size(); ++i)
{
ld.outputBlobsWrappers[i] = wrap(ld.outputBlobs[i]);
}
ld.internalBlobsWrappers.resize(ld.internals.size());
for (int i = 0; i < ld.internals.size(); ++i)
{
ld.internalBlobsWrappers[i] = wrap(ld.internals[i]);
}
Ptr<Layer> layerPtr = ld.getLayerInstance();
{
layerPtr->finalize(ld.inputBlobs, ld.outputBlobs);
Merge pull request #9114 from pengli:dnn_rebase add libdnn acceleration to dnn module (#9114) * import libdnn code Signed-off-by: Li Peng <peng.li@intel.com> * add convolution layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add pooling layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add softmax layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add lrn layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add innerproduct layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add HAVE_OPENCL macro Signed-off-by: Li Peng <peng.li@intel.com> * fix for convolution ocl Signed-off-by: Li Peng <peng.li@intel.com> * enable getUMat() for multi-dimension Mat Signed-off-by: Li Peng <peng.li@intel.com> * use getUMat for ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * use CV_OCL_RUN macro Signed-off-by: Li Peng <peng.li@intel.com> * set OPENCL target when it is available and disable fuseLayer for OCL target for the time being Signed-off-by: Li Peng <peng.li@intel.com> * fix innerproduct accuracy test Signed-off-by: Li Peng <peng.li@intel.com> * remove trailing space Signed-off-by: Li Peng <peng.li@intel.com> * Fixed tensorflow demo bug. Root cause is that tensorflow has different algorithm with libdnn to calculate convolution output dimension. libdnn don't calculate output dimension anymore and just use one passed in by config. * split gemm ocl file split it into gemm_buffer.cl and gemm_image.cl Signed-off-by: Li Peng <peng.li@intel.com> * Fix compile failure Signed-off-by: Li Peng <peng.li@intel.com> * check env flag for auto tuning Signed-off-by: Li Peng <peng.li@intel.com> * switch to new ocl kernels for softmax layer Signed-off-by: Li Peng <peng.li@intel.com> * update softmax layer on some platform subgroup extension may not work well, fallback to non subgroup ocl acceleration. Signed-off-by: Li Peng <peng.li@intel.com> * fallback to cpu path for fc layer with multi output Signed-off-by: Li Peng <peng.li@intel.com> * update output message Signed-off-by: Li Peng <peng.li@intel.com> * update fully connected layer fallback to gemm API if libdnn return false Signed-off-by: Li Peng <peng.li@intel.com> * Add ReLU OCL implementation * disable layer fusion for now Signed-off-by: Li Peng <peng.li@intel.com> * Add OCL implementation for concat layer Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com> * libdnn: update license and copyrights Also refine libdnn coding style Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com> Signed-off-by: Li Peng <peng.li@intel.com> * DNN: Don't link OpenCL library explicitly * DNN: Make default preferableTarget to DNN_TARGET_CPU User should set it to DNN_TARGET_OPENCL explicitly if want to use OpenCL acceleration. Also don't fusion when using DNN_TARGET_OPENCL * DNN: refine coding style * Add getOpenCLErrorString * DNN: Use int32_t/uint32_t instread of alias * Use namespace ocl4dnn to include libdnn things * remove extra copyTo in softmax ocl path Signed-off-by: Li Peng <peng.li@intel.com> * update ReLU layer ocl path Signed-off-by: Li Peng <peng.li@intel.com> * Add prefer target property for layer class It is used to indicate the target for layer forwarding, either the default CPU target or OCL target. Signed-off-by: Li Peng <peng.li@intel.com> * Add cl_event based timer for cv::ocl * Rename libdnn to ocl4dnn Signed-off-by: Li Peng <peng.li@intel.com> Signed-off-by: wzw <zhiwen.wu@intel.com> * use UMat for ocl4dnn internal buffer Remove allocateMemory which use clCreateBuffer directly Signed-off-by: Li Peng <peng.li@intel.com> Signed-off-by: wzw <zhiwen.wu@intel.com> * enable buffer gemm in ocl4dnn innerproduct Signed-off-by: Li Peng <peng.li@intel.com> * replace int_tp globally for ocl4dnn kernels. Signed-off-by: wzw <zhiwen.wu@intel.com> Signed-off-by: Li Peng <peng.li@intel.com> * create UMat for layer params Signed-off-by: Li Peng <peng.li@intel.com> * update sign ocl kernel Signed-off-by: Li Peng <peng.li@intel.com> * update image based gemm of inner product layer Signed-off-by: Li Peng <peng.li@intel.com> * remove buffer gemm of inner product layer call cv::gemm API instead Signed-off-by: Li Peng <peng.li@intel.com> * change ocl4dnn forward parameter to UMat Signed-off-by: Li Peng <peng.li@intel.com> * Refine auto-tuning mechanism. - Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory for fine-tuned kernel configuration. e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp, the cache directory will be /home/tmp/spatialkernels/ on Linux. - Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable auto-tuning. - OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling for OpenCL command queue. This fix basic kernel get wrong running time, i.e. 0ms. - If creating cache directory failed, disable auto-tuning. * Detect and create cache dir on windows Signed-off-by: Li Peng <peng.li@intel.com> * Refine gemm like convolution kernel. Signed-off-by: Li Peng <peng.li@intel.com> * Fix redundant swizzleWeights calling when use cached kernel config. * Fix "out of resource" bug when auto-tuning too many kernels. * replace cl_mem with UMat in ocl4dnnConvSpatial class * OCL4DNN: reduce the tuning kernel candidate. This patch could reduce 75% of the tuning candidates with less than 2% performance impact for the final result. Signed-off-by: Zhigang Gong <zhigang.gong@intel.com> * replace cl_mem with umat in ocl4dnn convolution Signed-off-by: Li Peng <peng.li@intel.com> * remove weight_image_ of ocl4dnn inner product Actually it is unused in the computation Signed-off-by: Li Peng <peng.li@intel.com> * Various fixes for ocl4dnn 1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()) 2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp 3. Code comments cleanup 4. ignore check on OCL cpu device Signed-off-by: Li Peng <peng.li@intel.com> * add build option for log softmax Signed-off-by: Li Peng <peng.li@intel.com> * remove unused ocl kernels in ocl4dnn Signed-off-by: Li Peng <peng.li@intel.com> * replace ocl4dnnSet with opencv setTo Signed-off-by: Li Peng <peng.li@intel.com> * replace ALIGN with cv::alignSize Signed-off-by: Li Peng <peng.li@intel.com> * check kernel build options Signed-off-by: Li Peng <peng.li@intel.com> * Handle program compilation fail properly. * Use std::numeric_limits<float>::infinity() for large float number * check ocl4dnn kernel compilation result Signed-off-by: Li Peng <peng.li@intel.com> * remove unused ctx_id Signed-off-by: Li Peng <peng.li@intel.com> * change clEnqueueNDRangeKernel to kernel.run() Signed-off-by: Li Peng <peng.li@intel.com> * change cl_mem to UMat in image based gemm Signed-off-by: Li Peng <peng.li@intel.com> * check intel subgroup support for lrn and pooling layer Signed-off-by: Li Peng <peng.li@intel.com> * Fix convolution bug if group is greater than 1 Signed-off-by: Li Peng <peng.li@intel.com> * Set default layer preferableTarget to be DNN_TARGET_CPU Signed-off-by: Li Peng <peng.li@intel.com> * Add ocl perf test for convolution Signed-off-by: Li Peng <peng.li@intel.com> * Add more ocl accuracy test Signed-off-by: Li Peng <peng.li@intel.com> * replace cl_image with ocl::Image2D Signed-off-by: Li Peng <peng.li@intel.com> * Fix build failure in elementwise layer Signed-off-by: Li Peng <peng.li@intel.com> * use getUMat() to get blob data Signed-off-by: Li Peng <peng.li@intel.com> * replace cl_mem handle with ocl::KernelArg Signed-off-by: Li Peng <peng.li@intel.com> * dnn(build): don't use C++11, OPENCL_LIBRARIES fix * dnn(ocl4dnn): remove unused OpenCL kernels * dnn(ocl4dnn): extract OpenCL code into .cl files * dnn(ocl4dnn): refine auto-tuning Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING environment variable to enable it. Use a set of pre-tuned configs as default config if auto-tuning is disabled. These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet, AlexNet, ResNet-50 If default config is not suitable, use the first available kernel config from the candidates. Candidate priority from high to low is gemm like kernel, IDLF kernel, basick kernel. * dnn(ocl4dnn): pooling doesn't use OpenCL subgroups * dnn(ocl4dnn): fix perf test OpenCV has default 3sec time limit for each performance test. Warmup OpenCL backend outside of perf measurement loop. * use ocl::KernelArg as much as possible Signed-off-by: Li Peng <peng.li@intel.com> * dnn(ocl4dnn): fix bias bug for gemm like kernel * dnn(ocl4dnn): wrap cl_mem into UMat Signed-off-by: Li Peng <peng.li@intel.com> * dnn(ocl4dnn): Refine signature of kernel config - Use more readable string as signture of kernel config - Don't count device name and vendor in signature string - Default kernel configurations are tuned for Intel GPU with 24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model. * dnn(ocl4dnn): swap width/height in configuration * dnn(ocl4dnn): enable configs for Intel OpenCL runtime only * core: make configuration helper functions accessible from non-core modules * dnn(ocl4dnn): update kernel auto-tuning behavior Avoid unwanted creation of directories * dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash * dnn(ocl4dnn): remove redundant code * dnn(ocl4dnn): Add more clear message for simd size dismatch. * dnn(ocl4dnn): add const to const argument Signed-off-by: Li Peng <peng.li@intel.com> * dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel * dnn(ocl4dnn): drop unused tuneLocalSize() * dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method * dnn(ocl4dnn): sanitize file names used for cache * dnn(perf): enable Network tests with OpenCL * dnn(ocl4dnn/conv): drop computeGlobalSize() * dnn(ocl4dnn/conv): drop unused fields * dnn(ocl4dnn/conv): simplify ctor * dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL * dnn(ocl4dnn/conv): drop unsupported double / untested half types * dnn(ocl4dnn/conv): drop unused variable * dnn(ocl4dnn/conv): alignSize/divUp * dnn(ocl4dnn/conv): use enum values * dnn(ocl4dnn): drop unused innerproduct variable Signed-off-by: Li Peng <peng.li@intel.com> * dnn(ocl4dnn): add an generic function to check cl option support * dnn(ocl4dnn): run softmax subgroup version kernel first Signed-off-by: Li Peng <peng.li@intel.com>
7 years ago
layerPtr->preferableTarget = preferableTarget;
#if 0
std::cout << "\toutputs:";
size_t noutputs = ld.outputBlobs.size();
for (size_t j = 0; j < noutputs; j++)
{
std::cout << (j == 0 ? " " : ", ") << ld.outputBlobs[j].size;
}
std::cout << "\n";
#endif
}
// After allocation of layer, we decrease counters to it's input blobs.
blobManager.releaseReferences(ld.inputBlobsId);
blobManager.releaseReferences(pinsForInternalBlobs);
ld.flag = 1;
}
#if 0
#define printf_(args) printf args
#else
#define printf_(args)
#endif
void fuseLayers(const std::vector<LayerPin>& blobsToKeep_)
{
if( !fusion || preferableBackend != DNN_BACKEND_OPENCV &&
preferableBackend != DNN_BACKEND_INFERENCE_ENGINE)
return;
CV_TRACE_FUNCTION();
// scan through all the layers. If there is convolution layer followed by the activation layer,
// we try to embed this activation into the convolution and disable separate execution of the activation
std::set<LayerPin> pinsToKeep(blobsToKeep_.begin(),
blobsToKeep_.end());
MapIdToLayerData::iterator it;
for (it = layers.begin(); it != layers.end(); it++)
{
int lid = it->first;
LayerData& ld = layers[lid];
if( ld.skip )
{
printf_(("skipped %s: %s\n", ld.layerInstance->name.c_str(), ld.layerInstance->type.c_str()));
continue;
}
printf_(("analyzing %s: %s\n", ld.layerInstance->name.c_str(), ld.layerInstance->type.c_str()));
// the optimization #1. try to fuse batch norm, scaling and/or activation layers
// with the current layer if they follow it. Normally, the are fused with the convolution layer,
// but some of them (like activation) may be fused with fully-connected, elemwise (+) and
// some other layers.
// TODO: OpenCL target support more fusion styles.
if ( preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget) &&
(!cv::ocl::useOpenCL() || (ld.layerInstance->type != "Convolution" &&
ld.layerInstance->type != "MVN")) )
continue;
Ptr<Layer>& currLayer = ld.layerInstance;
if( ld.consumers.size() == 1 && pinsToKeep.count(LayerPin(lid, 0)) == 0 )
{
LayerData* nextData = &layers[ld.consumers[0].lid];
LayerPin lpNext(ld.consumers[0].lid, 0);
while (nextData)
{
Ptr<Layer> nextLayer = nextData->layerInstance;
if (currLayer->tryFuse(nextLayer))
{
printf_(("\tfused with %s\n", nextLayer->name.c_str()));
nextData->skip = true;
ld.outputBlobs = layers[lpNext.lid].outputBlobs;
ld.outputBlobsWrappers = layers[lpNext.lid].outputBlobsWrappers;
if (nextData->consumers.size() == 1)
{
int nextLayerId = nextData->consumers[0].lid;
nextData = &layers[nextLayerId];
lpNext = LayerPin(nextLayerId, 0);
}
else
{
nextData = 0;
break;
}
}
else
break;
}
if (preferableBackend != DNN_BACKEND_OPENCV)
continue; // Go to the next layer.
// For now, OpenCL target support fusion with activation of ReLU/ChannelsPReLU/Power/Tanh
if ( !IS_DNN_OPENCL_TARGET(preferableTarget) ||
(IS_DNN_OPENCL_TARGET(preferableTarget) &&
nextData &&
((nextData->type == "ReLU") ||
(nextData->type == "ChannelsPReLU") ||
(nextData->type == "ReLU6") ||
(nextData->type == "TanH") ||
(nextData->type == "Power"))) )
{
Ptr<ActivationLayer> nextActivLayer;
if( nextData )
nextActivLayer = nextData->layerInstance.dynamicCast<ActivationLayer>();
if( !nextActivLayer.empty() && pinsToKeep.count(lpNext) == 0
&& currLayer->setActivation(nextActivLayer) )
{
LayerData *activData = nextData;
printf_(("\tfused with %s\n", nextActivLayer->name.c_str()));
activData->skip = true;
ld.outputBlobs = layers[lpNext.lid].outputBlobs;
ld.outputBlobsWrappers = layers[lpNext.lid].outputBlobsWrappers;
if ( IS_DNN_OPENCL_TARGET(preferableTarget) )
{
if ( !activData->consumers.empty() )
{
nextData = &layers[activData->consumers[0].lid];
lpNext = LayerPin(activData->consumers[0].lid, 0);
}
}
}
}
7 years ago
// fuse convolution layer followed by eltwise + relu
if ( IS_DNN_OPENCL_TARGET(preferableTarget) )
{
Ptr<EltwiseLayer> nextEltwiseLayer;
if( nextData )
nextEltwiseLayer = nextData->layerInstance.dynamicCast<EltwiseLayer>();
if( !nextEltwiseLayer.empty() && pinsToKeep.count(lpNext) == 0 )
{
LayerData *eltwiseData = nextData;
// go down from the second input and find the first non-skipped layer.
LayerData *downLayerData = &layers[eltwiseData->inputBlobsId[1].lid];
CV_Assert(downLayerData);
while (downLayerData->skip)
{
downLayerData = &layers[downLayerData->inputBlobsId[0].lid];
}
CV_Assert(downLayerData);
// second input layer is current layer.
if ( ld.id == downLayerData->id )
{
// go down from the first input and find the first non-skipped layer
downLayerData = &layers[eltwiseData->inputBlobsId[0].lid];
while (downLayerData->skip)
{
if ( !downLayerData->type.compare("Eltwise") )
downLayerData = &layers[downLayerData->inputBlobsId[1].lid];
else
downLayerData = &layers[downLayerData->inputBlobsId[0].lid];
}
Ptr<ConvolutionLayer> convLayer = downLayerData->layerInstance.dynamicCast<ConvolutionLayer>();
// first input layer is convolution layer
if( !convLayer.empty() && eltwiseData->consumers.size() == 1 )
{
// fuse eltwise + activation layer
LayerData *firstConvLayerData = downLayerData;
{
nextData = &layers[eltwiseData->consumers[0].lid];
lpNext = LayerPin(eltwiseData->consumers[0].lid, 0);
Ptr<ActivationLayer> nextActivLayer;
if( nextData )
nextActivLayer = nextData->layerInstance.dynamicCast<ActivationLayer>();
if( !nextActivLayer.empty() && pinsToKeep.count(lpNext) == 0 &&
(!nextData->type.compare("ReLU") ||
!nextData->type.compare("ChannelsPReLU") ||
!nextData->type.compare("Power")) &&
currLayer->setActivation(nextActivLayer) )
{
CV_Assert(firstConvLayerData->outputBlobsWrappers.size() == 1 && ld.inputBlobsWrappers.size() == 1);
ld.inputBlobsWrappers.push_back(firstConvLayerData->outputBlobsWrappers[0]);
printf_(("\tfused with %s\n", nextEltwiseLayer->name.c_str()));
printf_(("\tfused with %s\n", nextActivLayer->name.c_str()));
eltwiseData->skip = true;
nextData->skip = true;
// This optimization for cases like
// some_layer conv
// | |
// +-- eltwise --+
// |
// activ
// This way all the element-wise computations
// (i.e. some_layer+conv or some_layer*conv)
// would be done at [conv] layer. So we need to
// replace [conv]'s output blob to [eltwise]'s one
// considering that [activ] is an in-place layer.
// Also we need to move all the consumers' references.
// To prevent memory collisions (i.e. when input of
// [conv] and output of [eltwise] is the same blob)
// we allocate a new blob.
CV_Assert(ld.outputBlobs.size() == 1, ld.outputBlobsWrappers.size() == 1);
ld.outputBlobs[0] = ld.outputBlobs[0].clone();
ld.outputBlobsWrappers[0] = wrap(ld.outputBlobs[0]);
eltwiseData->outputBlobs = ld.outputBlobs;
nextData->outputBlobs = ld.outputBlobs;
eltwiseData->outputBlobsWrappers = ld.outputBlobsWrappers;
nextData->outputBlobsWrappers = ld.outputBlobsWrappers;
// Move references of [activ] layer consumers to the newly allocated blob.
for (int i = 0; i < nextData->consumers.size(); ++i)
{
LayerData& consumer = layers[nextData->consumers[i].lid];
for (int j = 0; j < consumer.inputBlobsId.size(); ++j)
{
if (consumer.inputBlobsId[j].lid == lpNext.lid)
{
consumer.inputBlobs[j] = &ld.outputBlobs[0];
consumer.inputBlobsWrappers[j] = ld.outputBlobsWrappers[0];
break;
}
}
}
}
}
}
}
}
}
}
if (preferableBackend != DNN_BACKEND_OPENCV)
continue; // Go to the next layer.
// the optimization #2. if there is no layer that takes max pooling layer's computed
// max indices (and only some semantical segmentation networks might need this;
// many others only take the maximum values), then we switch the max pooling
// layer to the faster operating mode.
Ptr<PoolingLayer> poolingLayer = ld.layerInstance.dynamicCast<PoolingLayer>();
if( !poolingLayer.empty() && !ld.consumers.empty() )
{
size_t i = 0, nconsumers = ld.consumers.size();
for( ; i < nconsumers; i++ )
if( ld.consumers[i].oid > 0 )
break;
// if there is no layer that takes the second output pin of the pooling layer
// on input then we don't need to compute the indices
if( i >= nconsumers )
{
poolingLayer->computeMaxIdx = false;
printf_(("\tsimplified pooling layer %s\n", poolingLayer->name.c_str()));
}
}
// the optimization #3. if there is concat layer that concatenates channels
// from the inputs together (i.e. axis == 1) then we make the inputs of
7 years ago
// the concat layer to write to the concatenation output buffer
// (and so we eliminate the concatenation layer, because the channels
// are concatenated implicitly).
Ptr<ConcatLayer> concatLayer = ld.layerInstance.dynamicCast<ConcatLayer>();
if( !concatLayer.empty() && concatLayer->axis == 1 && !concatLayer->padding &&
ld.outputBlobs.size() == 1 )
{
Mat& output = ld.outputBlobs[0];
// TODO: in general, this optimization can always be done, but
// many layers currently check that the input/output blobs are
// continuous arrays. Unfortunately, this is not true when
// the concatenation optimization is applied with batch_size > 1.
// so, for now, we only apply this optimization in the most popular
// case batch_size == 1.
if( output.dims == 4 && output.size[0] == 1 )
{
size_t i, ninputs = ld.inputBlobsId.size();
std::vector<LayerPin> realinputs(ninputs);
for( i = 0; i < ninputs; i++ )
{
LayerPin pin = ld.inputBlobsId[i];
LayerData* inp_i_data = &layers[pin.lid];
while(inp_i_data->skip &&
inp_i_data->inputBlobsId.size() == 1 &&
inp_i_data->consumers.size() == 1)
{
pin = inp_i_data->inputBlobsId[0];
inp_i_data = &layers[pin.lid];
}
printf_(("\treal input for %s is %s\n",
layers[ld.inputBlobsId[i].lid].getLayerInstance()->name.c_str(),
inp_i_data->getLayerInstance()->name.c_str()));
if(inp_i_data->skip || inp_i_data->consumers.size() != 1)
break;
realinputs[i] = pin;
}
if( i >= ninputs )
{
// Allocate new memory to prevent collisions during memory
// reusing (see https://github.com/opencv/opencv/pull/10456).
output = output.clone();
Range chrange[] = { Range::all(), Range::all(), Range::all(), Range::all() };
int ofs = 0;
for( i = 0; i < ninputs; i++ )
{
LayerPin pin = realinputs[i];
LayerData* inp_i_data = &layers[pin.lid];
int channels_i = ld.inputBlobs[i]->size[1];
chrange[1] = Range(ofs, ofs + channels_i);
printf_(("\toutput %s(%d) to channels (%d, %d)\n", inp_i_data->layerInstance->name.c_str(),
pin.oid, ofs, ofs + channels_i));
ofs += channels_i;
Mat output_slice = output(chrange);
Mat& curr_output = inp_i_data->outputBlobs[pin.oid];
CV_Assert(output_slice.isContinuous() && output_slice.size == curr_output.size);
Mat* oldPtr = &curr_output;
curr_output = output_slice;
// Layers that refer old input Mat will refer to the
// new data but the same Mat object.
CV_Assert(curr_output.data == output_slice.data, oldPtr == &curr_output);
}
ld.skip = true;
printf_(("\toptimized out Concat layer %s\n", concatLayer->name.c_str()));
}
}
}
}
}
void allocateLayers(const std::vector<LayerPin>& blobsToKeep_)
{
CV_TRACE_FUNCTION();
MapIdToLayerData::iterator it;
for (it = layers.begin(); it != layers.end(); it++)
it->second.flag = 0;
CV_Assert(!layers[0].outputBlobs.empty());
ShapesVec inputShapes;
for(int i = 0; i < layers[0].outputBlobs.size(); i++)
{
CV_Assert(layers[0].outputBlobs[i].total());
if (layers[0].outputBlobs[i].depth() == CV_32F &&
preferableBackend == DNN_BACKEND_OPENCV &&
preferableTarget == DNN_TARGET_OPENCL_FP16)
{
Mat mat = layers[0].outputBlobs[i].clone();
convertFp16(mat, layers[0].outputBlobs[i]);
}
inputShapes.push_back(shape(layers[0].outputBlobs[i]));
}
LayersShapesMap layersShapes;
getLayersShapes(inputShapes, layersShapes);
blobManager.reset();
backendWrappers.clear();
// Fake references to input blobs.
for (int i = 0; i < layers[0].outputBlobs.size(); ++i)
blobManager.addReference(LayerPin(0, i));
for (it = layers.begin(); it != layers.end(); ++it)
{
const LayerData& ld = it->second;
blobManager.addReferences(ld.inputBlobsId);
}
for (int i = 0; i < blobsToKeep_.size(); i++)
{
blobManager.addReference(blobsToKeep_[i]);
}
for (it = layers.begin(); it != layers.end(); it++)
{
int lid = it->first;
allocateLayer(lid, layersShapes);
}
layersTimings.resize(lastLayerId + 1, 0);
fuseLayers(blobsToKeep_);
}
void forwardLayer(LayerData &ld)
{
CV_TRACE_FUNCTION();
Ptr<Layer> layer = ld.layerInstance;
TickMeter tm;
tm.start();
if (preferableBackend == DNN_BACKEND_OPENCV ||
!layer->supportBackend(preferableBackend))
{
if( !ld.skip )
{
if (preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget))
{
std::vector<UMat> umat_outputBlobs = OpenCLBackendWrapper::getUMatVector(ld.outputBlobsWrappers);
layer->forward(OpenCLBackendWrapper::getUMatVector(ld.inputBlobsWrappers),
umat_outputBlobs,
OpenCLBackendWrapper::getUMatVector(ld.internalBlobsWrappers));
OpenCLBackendWrapper::update(ld.outputBlobsWrappers, umat_outputBlobs);
}
else
{
for (int i = 0, n = ld.inputBlobsWrappers.size(); i < n; ++i)
{
if (!ld.inputBlobsWrappers[i].empty())
ld.inputBlobsWrappers[i]->copyToHost();
}
layer->forward(ld.inputBlobs, ld.outputBlobs, ld.internals);
for (int i = 0, n = ld.outputBlobsWrappers.size(); i < n; ++i)
{
if (!ld.outputBlobsWrappers[i].empty())
ld.outputBlobsWrappers[i]->setHostDirty();
}
}
}
else
tm.reset();
}
else if (!ld.skip)
{
Ptr<BackendNode> node = ld.backendNodes[preferableBackend];
if (preferableBackend == DNN_BACKEND_HALIDE)
{
forwardHalide(ld.outputBlobsWrappers, node);
}
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE)
{
forwardInfEngine(node);
}
else
{
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
}
}
tm.stop();
layersTimings[ld.id] = tm.getTimeTicks();
ld.flag = 1;
}
void forwardToLayer(LayerData &ld, bool clearFlags = true)
{
CV_TRACE_FUNCTION();
if (clearFlags)
{
MapIdToLayerData::iterator it;
for (it = layers.begin(); it != layers.end(); it++)
it->second.flag = 0;
}
//already was forwarded
if (ld.flag)
return;
//forward parents
MapIdToLayerData::iterator it;
for (it = layers.begin(); it != layers.end() && (it->second.id < ld.id); ++it)
{
LayerData &ld = it->second;
if (ld.flag)
continue;
forwardLayer(ld);
}
//forward itself
forwardLayer(ld);
}
void forwardAll()
{
CV_TRACE_FUNCTION();
MapIdToLayerData::reverse_iterator last_layer = layers.rbegin();
CV_Assert(last_layer != layers.rend());
forwardToLayer(last_layer->second, true);
}
void getLayerShapesRecursively(int id, LayersShapesMap& inOutShapes)
{
std::vector<LayerPin>& inputLayerIds = layers[id].inputBlobsId;
if (inOutShapes[id].in.empty())
{
for(int i = 0; i < inputLayerIds.size(); i++)
{
int layerId = inputLayerIds[i].lid;
LayersShapesMap::iterator it =
inOutShapes.find(layerId);
if(it == inOutShapes.end() ||
it->second.out.empty())
{
getLayerShapesRecursively(layerId, inOutShapes);
}
const MatShape& shape = inOutShapes[layerId].out[inputLayerIds[i].oid];
inOutShapes[id].in.push_back(shape);
}
}
const ShapesVec& is = inOutShapes[id].in;
ShapesVec& os = inOutShapes[id].out;
ShapesVec& ints = inOutShapes[id].internal;
int requiredOutputs = layers[id].requiredOutputs.size();
inOutShapes[id].supportInPlace =
layers[id].getLayerInstance()->getMemoryShapes(is, requiredOutputs, os, ints);
}
void getLayersShapes(const ShapesVec& netInputShapes,
LayersShapesMap& inOutShapes)
{
inOutShapes.clear();
inOutShapes[0].in = netInputShapes; //insert shape for first input layer
for (MapIdToLayerData::iterator it = layers.begin();
it != layers.end(); it++)
{
getLayerShapesRecursively(it->first, inOutShapes);
}
}
void getLayerShapes(const ShapesVec& netInputShapes,
const int layerId,
LayerShapes& shapes)
{
LayersShapesMap inOutShapes;
inOutShapes[0].in = netInputShapes; //insert shape for first input layer
getLayerShapesRecursively(layerId, inOutShapes);
shapes = inOutShapes[layerId];
}
LayerPin getLatestLayerPin(const std::vector<LayerPin>& pins)
{
return *std::max_element(pins.begin(), pins.end());
}
Mat getBlob(const LayerPin& pin)
{
CV_TRACE_FUNCTION();
if (!pin.valid())
CV_Error(Error::StsObjectNotFound, "Requested blob not found");
LayerData &ld = layers[pin.lid];
if ((size_t)pin.oid >= ld.outputBlobs.size())
{
CV_Error(Error::StsOutOfRange, format("Layer \"%s\" produce only %d outputs, "
"the #%d was requested", ld.name.c_str(),
ld.outputBlobs.size(), pin.oid));
}
if (preferableTarget != DNN_TARGET_CPU)
{
CV_Assert(!ld.outputBlobsWrappers.empty() && !ld.outputBlobsWrappers[pin.oid].empty());
// Transfer data to CPU if it's require.
ld.outputBlobsWrappers[pin.oid]->copyToHost();
}
if (ld.outputBlobs[pin.oid].depth() == CV_16S)
{
convertFp16(ld.outputBlobs[pin.oid], output_blob);
return output_blob;
}
else
return ld.outputBlobs[pin.oid];
}
Mat getBlob(String outputName)
{
return getBlob(getPinByAlias(outputName));
}
};
Net::Net() : impl(new Net::Impl)
{
}
Net Net::readFromModelOptimizer(const String& xml, const String& bin)
{
#ifndef HAVE_INF_ENGINE
CV_Error(Error::StsError, "Build OpenCV with Inference Engine to enable loading models from Model Optimizer.");
#else
InferenceEngine::CNNNetReader reader;
reader.ReadNetwork(xml);
reader.ReadWeights(bin);
InferenceEngine::CNNNetwork ieNet = reader.getNetwork();
std::vector<String> inputsNames;
for (auto& it : ieNet.getInputsInfo())
{
inputsNames.push_back(it.first);
}
Net cvNet;
cvNet.setInputsNames(inputsNames);
Ptr<InfEngineBackendNode> backendNode(new InfEngineBackendNode(0));
backendNode->net = Ptr<InfEngineBackendNet>(new InfEngineBackendNet(ieNet));
for (auto& it : ieNet.getOutputsInfo())
{
LayerParams lp;
int lid = cvNet.addLayer(it.first, "", lp);
LayerData& ld = cvNet.impl->layers[lid];
ld.layerInstance = Ptr<Layer>(new InfEngineBackendLayer(it.second));
ld.backendNodes[DNN_BACKEND_INFERENCE_ENGINE] = backendNode;
for (int i = 0; i < inputsNames.size(); ++i)
cvNet.connect(0, i, lid, i);
}
cvNet.setPreferableBackend(DNN_BACKEND_INFERENCE_ENGINE);
cvNet.impl->skipInfEngineInit = true;
return cvNet;
#endif // HAVE_INF_ENGINE
}
Net::~Net()
{
}
int Net::addLayer(const String &name, const String &type, LayerParams &params)
{
CV_TRACE_FUNCTION();
if (name.find('.') != String::npos)
{
CV_Error(Error::StsBadArg, "Added layer name \"" + name + "\" must not contain dot symbol");
return -1;
}
if (impl->getLayerId(name) >= 0)
{
CV_Error(Error::StsBadArg, "Layer \"" + name + "\" already into net");
return -1;
}
int id = ++impl->lastLayerId;
impl->layerNameToId.insert(std::make_pair(name, id));
impl->layers.insert(std::make_pair(id, LayerData(id, name, type, params)));
return id;
}
int Net::addLayerToPrev(const String &name, const String &type, LayerParams &params)
{
CV_TRACE_FUNCTION();
int prvLid = impl->lastLayerId;
int newLid = this->addLayer(name, type, params);
this->connect(prvLid, 0, newLid, 0);
return newLid;
}
void Net::connect(int outLayerId, int outNum, int inpLayerId, int inpNum)
{
CV_TRACE_FUNCTION();
impl->connect(outLayerId, outNum, inpLayerId, inpNum);
}
void Net::connect(String _outPin, String _inPin)
{
CV_TRACE_FUNCTION();
LayerPin outPin = impl->getPinByAlias(_outPin);
LayerPin inpPin = impl->getPinByAlias(_inPin);
CV_Assert(outPin.valid() && inpPin.valid());
impl->connect(outPin.lid, outPin.oid, inpPin.lid, inpPin.oid);
}
Mat Net::forward(const String& outputName)
{
CV_TRACE_FUNCTION();
String layerName = outputName;
if (layerName.empty())
layerName = getLayerNames().back();
impl->setUpNet();
impl->forwardToLayer(impl->getLayerData(layerName));
return impl->getBlob(layerName);
}
void Net::forward(OutputArrayOfArrays outputBlobs, const String& outputName)
{
CV_TRACE_FUNCTION();
impl->setUpNet();
String layerName = outputName;
if (layerName.empty())
layerName = getLayerNames().back();
impl->forwardToLayer(impl->getLayerData(layerName));
LayerPin pin = impl->getPinByAlias(layerName);
LayerData &ld = impl->layers[pin.lid];
if (outputBlobs.isUMat())
{
outputBlobs.assign(impl->getBlob(layerName).getUMat(ACCESS_RW));
}
else if (outputBlobs.isMat())
{
outputBlobs.assign(impl->getBlob(layerName));
}
else if (outputBlobs.isMatVector())
{
if (impl->preferableTarget != DNN_TARGET_CPU)
{
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
CV_Assert(!ld.outputBlobsWrappers[i].empty());
ld.outputBlobsWrappers[i]->copyToHost();
}
}
if (ld.outputBlobs[0].depth() == CV_32F)
{
std::vector<Mat> & outputvec = *(std::vector<Mat> *)outputBlobs.getObj();
outputvec = ld.outputBlobs;
} else {
std::vector<Mat> & outputvec = *(std::vector<Mat> *)outputBlobs.getObj();
outputvec.resize(ld.outputBlobs.size());
for (int i = 0; i < outputvec.size(); i++)
convertFp16(ld.outputBlobs[i], outputvec[i]);
}
}
else if (outputBlobs.isUMatVector())
{
std::vector<UMat> & outputvec = *(std::vector<UMat> *)outputBlobs.getObj();
if (impl->preferableBackend == DNN_BACKEND_OPENCV &&
IS_DNN_OPENCL_TARGET(impl->preferableTarget))
{
if (impl->preferableTarget == DNN_TARGET_OPENCL)
outputvec = OpenCLBackendWrapper::getUMatVector(ld.outputBlobsWrappers);
else if (impl->preferableTarget == DNN_TARGET_OPENCL_FP16)
{
std::vector<UMat> out_vec = OpenCLBackendWrapper::getUMatVector(ld.outputBlobsWrappers);
outputvec.resize(out_vec.size());
for (int i = 0; i < out_vec.size(); i++)
convertFp16(out_vec[i], outputvec[i]);
}
}
else
{
outputvec.resize(ld.outputBlobs.size());
for (int i = 0; i < outputvec.size(); ++i)
outputvec[i] = ld.outputBlobs[i].getUMat(ACCESS_RW);
}
}
}
void Net::forward(OutputArrayOfArrays outputBlobs,
const std::vector<String>& outBlobNames)
{
CV_TRACE_FUNCTION();
std::vector<LayerPin> pins;
for (int i = 0; i < outBlobNames.size(); i++)
{
pins.push_back(impl->getPinByAlias(outBlobNames[i]));
}
impl->setUpNet(pins);
LayerPin out = impl->getLatestLayerPin(pins);
impl->forwardToLayer(impl->getLayerData(out.lid));
std::vector<Mat> matvec;
for (int i = 0; i < pins.size(); i++)
{
matvec.push_back(impl->getBlob(pins[i]));
}
std::vector<Mat> & outputvec = *(std::vector<Mat> *)outputBlobs.getObj();
outputvec = matvec;
}
void Net::forward(std::vector<std::vector<Mat> >& outputBlobs,
const std::vector<String>& outBlobNames)
{
CV_TRACE_FUNCTION();
std::vector<LayerPin> pins;
for (int i = 0; i < outBlobNames.size(); i++)
{
std::vector<LayerPin> lp = impl->getLayerOutPins(outBlobNames[i]);
pins.insert(pins.end(), lp.begin(), lp.end());
}
impl->setUpNet(pins);
LayerPin out = impl->getLatestLayerPin(pins);
impl->forwardToLayer(impl->getLayerData(out.lid));
outputBlobs.resize(outBlobNames.size());
for (int i = 0; i < outBlobNames.size(); i++)
{
std::vector<LayerPin> lp = impl->getLayerOutPins(outBlobNames[i]);
for (int i = 0; i < lp.size(); i++)
{
outputBlobs[i].push_back(impl->getBlob(lp[i]));
}
}
}
void Net::setPreferableBackend(int backendId)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG(backendId);
if( impl->preferableBackend != backendId )
{
impl->preferableBackend = backendId;
impl->netWasAllocated = false;
impl->clear();
}
}
void Net::setPreferableTarget(int targetId)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG(targetId);
if( impl->preferableTarget != targetId )
{
impl->preferableTarget = targetId;
if (IS_DNN_OPENCL_TARGET(targetId))
{
#ifndef HAVE_OPENCL
#ifdef HAVE_INF_ENGINE
if (impl->preferableBackend == DNN_BACKEND_OPENCV)
#else
if (impl->preferableBackend == DNN_BACKEND_DEFAULT ||
impl->preferableBackend == DNN_BACKEND_OPENCV)
#endif // HAVE_INF_ENGINE
impl->preferableTarget = DNN_TARGET_CPU;
#else
bool fp16 = ocl::Device::getDefault().isExtensionSupported("cl_khr_fp16");
if (!fp16 && targetId == DNN_TARGET_OPENCL_FP16)
impl->preferableTarget = DNN_TARGET_OPENCL;
#endif
}
impl->netWasAllocated = false;
impl->clear();
}
}
void Net::setInputsNames(const std::vector<String> &inputBlobNames)
{
CV_TRACE_FUNCTION();
impl->netInputLayer->setNames(inputBlobNames);
}
void Net::setInput(InputArray blob, const String& name)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
LayerPin pin;
pin.lid = 0;
pin.oid = impl->resolvePinOutputName(impl->getLayerData(pin.lid), name);
if (!pin.valid())
CV_Error(Error::StsObjectNotFound, "Requested blob \"" + name + "\" not found");
LayerData &ld = impl->layers[pin.lid];
ld.outputBlobs.resize( std::max(pin.oid+1, (int)ld.requiredOutputs.size()) );
ld.outputBlobsWrappers.resize(ld.outputBlobs.size());
MatShape prevShape = shape(ld.outputBlobs[pin.oid]);
Mat blob_;
if (impl->preferableBackend == DNN_BACKEND_OPENCV &&
impl->preferableTarget == DNN_TARGET_OPENCL_FP16)
{
Mat blob_mat = blob.getMat();
convertFp16(blob_mat, blob_);
}
else
{
blob_ = blob.getMat();
}
bool oldShape = prevShape == shape(blob_);
if (oldShape)
{
blob_.copyTo(ld.outputBlobs[pin.oid]);
}
else
{
ld.outputBlobs[pin.oid] = blob_.clone();
}
if (!ld.outputBlobsWrappers[pin.oid].empty())
{
ld.outputBlobsWrappers[pin.oid]->setHostDirty();
}
impl->netWasAllocated = impl->netWasAllocated && oldShape;
}
Mat Net::getParam(LayerId layer, int numParam)
{
LayerData &ld = impl->getLayerData(layer);
std::vector<Mat> &layerBlobs = ld.layerInstance->blobs;
CV_Assert(numParam < (int)layerBlobs.size());
return layerBlobs[numParam];
}
void Net::setParam(LayerId layer, int numParam, const Mat &blob)
{
LayerData &ld = impl->getLayerData(layer);
std::vector<Mat> &layerBlobs = ld.layerInstance->blobs;
CV_Assert(numParam < (int)layerBlobs.size());
//we don't make strong checks, use this function carefully
layerBlobs[numParam] = blob;
}
int Net::getLayerId(const String &layer)
{
return impl->getLayerId(layer);
}
void Net::deleteLayer(LayerId)
{
CV_Error(Error::StsNotImplemented, "");
}
Ptr<Layer> Net::getLayer(LayerId layerId)
{
LayerData &ld = impl->getLayerData(layerId);
return ld.getLayerInstance();
}
std::vector<Ptr<Layer> > Net::getLayerInputs(LayerId layerId)
{
LayerData &ld = impl->getLayerData(layerId);
if (!ld.layerInstance)
CV_Error(Error::StsNullPtr, format("Requested layer \"%s\" was not initialized", ld.name.c_str()));
std::vector<Ptr<Layer> > inputLayers;
inputLayers.reserve(ld.inputLayersId.size());
std::set<int>::iterator it;
for (it = ld.inputLayersId.begin(); it != ld.inputLayersId.end(); ++it) {
inputLayers.push_back(getLayer(*it));
}
return inputLayers;
}
std::vector<String> Net::getLayerNames() const
{
std::vector<String> res;
res.reserve(impl->layers.size());
Impl::MapIdToLayerData::iterator it;
for (it = impl->layers.begin(); it != impl->layers.end(); it++)
{
if (it->second.id) //skip Data layer
res.push_back(it->second.name);
}
return res;
}
bool Net::empty() const
{
return impl->layers.size() <= 1; //first layer is default Data layer
}
std::vector<int> Net::getUnconnectedOutLayers() const
{
std::vector<int> layersIds;
Impl::MapIdToLayerData::iterator it;
for (it = impl->layers.begin(); it != impl->layers.end(); it++)
{
int lid = it->first;
LayerData &ld = it->second;
if (ld.requiredOutputs.size() == 0)
layersIds.push_back(lid);
}
return layersIds;
}
void Net::getLayersShapes(const ShapesVec& netInputShapes,
std::vector<int>& layersIds,
std::vector<ShapesVec>& inLayersShapes,
std::vector<ShapesVec>& outLayersShapes) const
{
layersIds.clear();
inLayersShapes.clear();
outLayersShapes.clear();
Impl::LayersShapesMap inOutShapes;
impl->getLayersShapes(netInputShapes, inOutShapes);
for(Impl::LayersShapesMap::const_iterator it = inOutShapes.begin();
it != inOutShapes.end(); it++)
{
layersIds.push_back(it->first);
inLayersShapes.push_back(it->second.in);
outLayersShapes.push_back(it->second.out);
}
}
void Net::getLayersShapes(const MatShape& netInputShape,
std::vector<int>& layerIds,
std::vector<ShapesVec>& inLayersShapes,
std::vector<ShapesVec>& outLayersShapes) const
{
getLayersShapes(ShapesVec(1, netInputShape),
layerIds, inLayersShapes, outLayersShapes);
}
void Net::getLayerShapes(const MatShape& netInputShape,
const int layerId,
ShapesVec& inLayerShapes,
ShapesVec& outLayerShapes) const
{
getLayerShapes(ShapesVec(1, netInputShape),
layerId, inLayerShapes, outLayerShapes);
}
void Net::getLayerShapes(const ShapesVec& netInputShapes,
const int layerId,
ShapesVec& inLayerShapes,
ShapesVec& outLayerShapes) const
{
LayerShapes shapes;
impl->getLayerShapes(netInputShapes, layerId, shapes);
inLayerShapes = shapes.in;
outLayerShapes = shapes.out;
}
int64 Net::getFLOPS(const std::vector<MatShape>& netInputShapes) const
{
CV_TRACE_FUNCTION();
int64 flops = 0;
std::vector<int> ids;
std::vector<std::vector<MatShape> > inShapes, outShapes;
getLayersShapes(netInputShapes, ids, inShapes, outShapes);
CV_Assert(inShapes.size() == outShapes.size());
CV_Assert(inShapes.size() == ids.size());
for(int i = 0; i < ids.size(); i++)
{
flops += impl->layers[ids[i]].getLayerInstance()->getFLOPS(inShapes[i],
outShapes[i]);
}
return flops;
}
int64 Net::getFLOPS(const MatShape& netInputShape) const
{
return getFLOPS(std::vector<MatShape>(1, netInputShape));
}
int64 Net::getFLOPS(const int layerId,
const std::vector<MatShape>& netInputShapes) const
{
Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerId);
CV_Assert(layer != impl->layers.end());
LayerShapes shapes;
impl->getLayerShapes(netInputShapes, layerId, shapes);
return layer->second.getLayerInstance()->getFLOPS(shapes.in, shapes.out);
}
int64 Net::getFLOPS(const int layerId,
const MatShape& netInputShape) const
{
return getFLOPS(layerId, std::vector<MatShape>(1, netInputShape));
}
void Net::getLayerTypes(std::vector<String>& layersTypes) const
{
layersTypes.clear();
std::map<String, int> layers;
for (Impl::MapIdToLayerData::iterator it = impl->layers.begin();
it != impl->layers.end(); it++)
{
if (layers.find(it->second.type) == layers.end())
layers[it->second.type] = 0;
layers[it->second.type]++;
}
for (std::map<String, int>::iterator it = layers.begin();
it != layers.end(); it++)
{
layersTypes.push_back(it->first);
}
}
int Net::getLayersCount(const String& layerType) const
{
int count = 0;
for (Impl::MapIdToLayerData::iterator it = impl->layers.begin();
it != impl->layers.end(); it++)
{
if (it->second.type == layerType)
count++;
}
return count;
}
void Net::getMemoryConsumption(const int layerId,
const std::vector<MatShape>& netInputShapes,
size_t& weights, size_t& blobs) const
{
CV_TRACE_FUNCTION();
Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerId);
CV_Assert(layer != impl->layers.end());
weights = blobs = 0;
for(int i = 0; i < layer->second.params.blobs.size(); i++)
{
const Mat& weightsBlob = layer->second.params.blobs[i];
weights += weightsBlob.total()*weightsBlob.elemSize();
}
ShapesVec inLayerShapes, outLayerShapes;
getLayerShapes(netInputShapes, layerId, inLayerShapes, outLayerShapes);
for(int i = 0; i < outLayerShapes.size(); i++)
{
blobs += total(outLayerShapes[i]) * sizeof(float);
}
}
void Net::getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
size_t& weights, size_t& blobs) const
{
CV_TRACE_FUNCTION();
std::vector<int> layerIds;
std::vector<size_t> w, b;
getMemoryConsumption(netInputShapes, layerIds, w, b);
weights = blobs = 0;
for(int i = 0; i < layerIds.size(); i++)
{
weights += w[i];
blobs += b[i];
}
}
void Net::getMemoryConsumption(const int layerId,
const MatShape& netInputShape,
size_t& weights, size_t& blobs) const
{
getMemoryConsumption(layerId, std::vector<MatShape>(1, netInputShape),
weights, blobs);
}
void Net::getMemoryConsumption(const MatShape& netInputShape,
size_t& weights, size_t& blobs) const
{
getMemoryConsumption(std::vector<MatShape>(1, netInputShape),
weights, blobs);
}
void Net::getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
std::vector<int>& layerIds, std::vector<size_t>& weights,
std::vector<size_t>& blobs) const
{
CV_TRACE_FUNCTION();
layerIds.clear();
weights.clear();
blobs.clear();
std::vector<std::vector<MatShape> > inLayerShapes, outLayerShapes;
getLayersShapes(netInputShapes, layerIds, inLayerShapes, outLayerShapes);
for(int i = 0; i < layerIds.size(); i++)
{
int w = 0, b = 0;
Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerIds[i]);
CV_Assert(layer != impl->layers.end());
for(int j = 0; j < layer->second.params.blobs.size(); j++)
{
const Mat& weightsBlob = layer->second.params.blobs[j];
w += weightsBlob.total()*weightsBlob.elemSize();
}
for(int j = 0; j < outLayerShapes[i].size(); j++)
{
b += total(outLayerShapes[i][j]) * sizeof(float);
}
weights.push_back(w);
blobs.push_back(b);
}
}
void Net::getMemoryConsumption(const MatShape& netInputShape, std::vector<int>& layerIds,
std::vector<size_t>& weights, std::vector<size_t>& blobs) const
{
getMemoryConsumption(std::vector<MatShape>(1, netInputShape), layerIds,
weights, blobs);
}
void Net::enableFusion(bool fusion)
{
if( impl->fusion != fusion )
{
impl->fusion = fusion;
impl->netWasAllocated = false;
impl->clear();
}
}
void Net::setHalideScheduler(const String& scheduler)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(scheduler, "scheduler", scheduler.c_str());
impl->halideConfigFile = scheduler;
}
int64 Net::getPerfProfile(std::vector<double>& timings)
{
timings = std::vector<double>(impl->layersTimings.begin() + 1, impl->layersTimings.end());
int64 total = std::accumulate(timings.begin(), timings.end(), 0);
return total;
}
//////////////////////////////////////////////////////////////////////////
Merge pull request #9114 from pengli:dnn_rebase add libdnn acceleration to dnn module (#9114) * import libdnn code Signed-off-by: Li Peng <peng.li@intel.com> * add convolution layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add pooling layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add softmax layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add lrn layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add innerproduct layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add HAVE_OPENCL macro Signed-off-by: Li Peng <peng.li@intel.com> * fix for convolution ocl Signed-off-by: Li Peng <peng.li@intel.com> * enable getUMat() for multi-dimension Mat Signed-off-by: Li Peng <peng.li@intel.com> * use getUMat for ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * use CV_OCL_RUN macro Signed-off-by: Li Peng <peng.li@intel.com> * set OPENCL target when it is available and disable fuseLayer for OCL target for the time being Signed-off-by: Li Peng <peng.li@intel.com> * fix innerproduct accuracy test Signed-off-by: Li Peng <peng.li@intel.com> * remove trailing space Signed-off-by: Li Peng <peng.li@intel.com> * Fixed tensorflow demo bug. Root cause is that tensorflow has different algorithm with libdnn to calculate convolution output dimension. libdnn don't calculate output dimension anymore and just use one passed in by config. * split gemm ocl file split it into gemm_buffer.cl and gemm_image.cl Signed-off-by: Li Peng <peng.li@intel.com> * Fix compile failure Signed-off-by: Li Peng <peng.li@intel.com> * check env flag for auto tuning Signed-off-by: Li Peng <peng.li@intel.com> * switch to new ocl kernels for softmax layer Signed-off-by: Li Peng <peng.li@intel.com> * update softmax layer on some platform subgroup extension may not work well, fallback to non subgroup ocl acceleration. Signed-off-by: Li Peng <peng.li@intel.com> * fallback to cpu path for fc layer with multi output Signed-off-by: Li Peng <peng.li@intel.com> * update output message Signed-off-by: Li Peng <peng.li@intel.com> * update fully connected layer fallback to gemm API if libdnn return false Signed-off-by: Li Peng <peng.li@intel.com> * Add ReLU OCL implementation * disable layer fusion for now Signed-off-by: Li Peng <peng.li@intel.com> * Add OCL implementation for concat layer Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com> * libdnn: update license and copyrights Also refine libdnn coding style Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com> Signed-off-by: Li Peng <peng.li@intel.com> * DNN: Don't link OpenCL library explicitly * DNN: Make default preferableTarget to DNN_TARGET_CPU User should set it to DNN_TARGET_OPENCL explicitly if want to use OpenCL acceleration. Also don't fusion when using DNN_TARGET_OPENCL * DNN: refine coding style * Add getOpenCLErrorString * DNN: Use int32_t/uint32_t instread of alias * Use namespace ocl4dnn to include libdnn things * remove extra copyTo in softmax ocl path Signed-off-by: Li Peng <peng.li@intel.com> * update ReLU layer ocl path Signed-off-by: Li Peng <peng.li@intel.com> * Add prefer target property for layer class It is used to indicate the target for layer forwarding, either the default CPU target or OCL target. Signed-off-by: Li Peng <peng.li@intel.com> * Add cl_event based timer for cv::ocl * Rename libdnn to ocl4dnn Signed-off-by: Li Peng <peng.li@intel.com> Signed-off-by: wzw <zhiwen.wu@intel.com> * use UMat for ocl4dnn internal buffer Remove allocateMemory which use clCreateBuffer directly Signed-off-by: Li Peng <peng.li@intel.com> Signed-off-by: wzw <zhiwen.wu@intel.com> * enable buffer gemm in ocl4dnn innerproduct Signed-off-by: Li Peng <peng.li@intel.com> * replace int_tp globally for ocl4dnn kernels. Signed-off-by: wzw <zhiwen.wu@intel.com> Signed-off-by: Li Peng <peng.li@intel.com> * create UMat for layer params Signed-off-by: Li Peng <peng.li@intel.com> * update sign ocl kernel Signed-off-by: Li Peng <peng.li@intel.com> * update image based gemm of inner product layer Signed-off-by: Li Peng <peng.li@intel.com> * remove buffer gemm of inner product layer call cv::gemm API instead Signed-off-by: Li Peng <peng.li@intel.com> * change ocl4dnn forward parameter to UMat Signed-off-by: Li Peng <peng.li@intel.com> * Refine auto-tuning mechanism. - Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory for fine-tuned kernel configuration. e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp, the cache directory will be /home/tmp/spatialkernels/ on Linux. - Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable auto-tuning. - OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling for OpenCL command queue. This fix basic kernel get wrong running time, i.e. 0ms. - If creating cache directory failed, disable auto-tuning. * Detect and create cache dir on windows Signed-off-by: Li Peng <peng.li@intel.com> * Refine gemm like convolution kernel. Signed-off-by: Li Peng <peng.li@intel.com> * Fix redundant swizzleWeights calling when use cached kernel config. * Fix "out of resource" bug when auto-tuning too many kernels. * replace cl_mem with UMat in ocl4dnnConvSpatial class * OCL4DNN: reduce the tuning kernel candidate. This patch could reduce 75% of the tuning candidates with less than 2% performance impact for the final result. Signed-off-by: Zhigang Gong <zhigang.gong@intel.com> * replace cl_mem with umat in ocl4dnn convolution Signed-off-by: Li Peng <peng.li@intel.com> * remove weight_image_ of ocl4dnn inner product Actually it is unused in the computation Signed-off-by: Li Peng <peng.li@intel.com> * Various fixes for ocl4dnn 1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()) 2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp 3. Code comments cleanup 4. ignore check on OCL cpu device Signed-off-by: Li Peng <peng.li@intel.com> * add build option for log softmax Signed-off-by: Li Peng <peng.li@intel.com> * remove unused ocl kernels in ocl4dnn Signed-off-by: Li Peng <peng.li@intel.com> * replace ocl4dnnSet with opencv setTo Signed-off-by: Li Peng <peng.li@intel.com> * replace ALIGN with cv::alignSize Signed-off-by: Li Peng <peng.li@intel.com> * check kernel build options Signed-off-by: Li Peng <peng.li@intel.com> * Handle program compilation fail properly. * Use std::numeric_limits<float>::infinity() for large float number * check ocl4dnn kernel compilation result Signed-off-by: Li Peng <peng.li@intel.com> * remove unused ctx_id Signed-off-by: Li Peng <peng.li@intel.com> * change clEnqueueNDRangeKernel to kernel.run() Signed-off-by: Li Peng <peng.li@intel.com> * change cl_mem to UMat in image based gemm Signed-off-by: Li Peng <peng.li@intel.com> * check intel subgroup support for lrn and pooling layer Signed-off-by: Li Peng <peng.li@intel.com> * Fix convolution bug if group is greater than 1 Signed-off-by: Li Peng <peng.li@intel.com> * Set default layer preferableTarget to be DNN_TARGET_CPU Signed-off-by: Li Peng <peng.li@intel.com> * Add ocl perf test for convolution Signed-off-by: Li Peng <peng.li@intel.com> * Add more ocl accuracy test Signed-off-by: Li Peng <peng.li@intel.com> * replace cl_image with ocl::Image2D Signed-off-by: Li Peng <peng.li@intel.com> * Fix build failure in elementwise layer Signed-off-by: Li Peng <peng.li@intel.com> * use getUMat() to get blob data Signed-off-by: Li Peng <peng.li@intel.com> * replace cl_mem handle with ocl::KernelArg Signed-off-by: Li Peng <peng.li@intel.com> * dnn(build): don't use C++11, OPENCL_LIBRARIES fix * dnn(ocl4dnn): remove unused OpenCL kernels * dnn(ocl4dnn): extract OpenCL code into .cl files * dnn(ocl4dnn): refine auto-tuning Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING environment variable to enable it. Use a set of pre-tuned configs as default config if auto-tuning is disabled. These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet, AlexNet, ResNet-50 If default config is not suitable, use the first available kernel config from the candidates. Candidate priority from high to low is gemm like kernel, IDLF kernel, basick kernel. * dnn(ocl4dnn): pooling doesn't use OpenCL subgroups * dnn(ocl4dnn): fix perf test OpenCV has default 3sec time limit for each performance test. Warmup OpenCL backend outside of perf measurement loop. * use ocl::KernelArg as much as possible Signed-off-by: Li Peng <peng.li@intel.com> * dnn(ocl4dnn): fix bias bug for gemm like kernel * dnn(ocl4dnn): wrap cl_mem into UMat Signed-off-by: Li Peng <peng.li@intel.com> * dnn(ocl4dnn): Refine signature of kernel config - Use more readable string as signture of kernel config - Don't count device name and vendor in signature string - Default kernel configurations are tuned for Intel GPU with 24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model. * dnn(ocl4dnn): swap width/height in configuration * dnn(ocl4dnn): enable configs for Intel OpenCL runtime only * core: make configuration helper functions accessible from non-core modules * dnn(ocl4dnn): update kernel auto-tuning behavior Avoid unwanted creation of directories * dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash * dnn(ocl4dnn): remove redundant code * dnn(ocl4dnn): Add more clear message for simd size dismatch. * dnn(ocl4dnn): add const to const argument Signed-off-by: Li Peng <peng.li@intel.com> * dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel * dnn(ocl4dnn): drop unused tuneLocalSize() * dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method * dnn(ocl4dnn): sanitize file names used for cache * dnn(perf): enable Network tests with OpenCL * dnn(ocl4dnn/conv): drop computeGlobalSize() * dnn(ocl4dnn/conv): drop unused fields * dnn(ocl4dnn/conv): simplify ctor * dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL * dnn(ocl4dnn/conv): drop unsupported double / untested half types * dnn(ocl4dnn/conv): drop unused variable * dnn(ocl4dnn/conv): alignSize/divUp * dnn(ocl4dnn/conv): use enum values * dnn(ocl4dnn): drop unused innerproduct variable Signed-off-by: Li Peng <peng.li@intel.com> * dnn(ocl4dnn): add an generic function to check cl option support * dnn(ocl4dnn): run softmax subgroup version kernel first Signed-off-by: Li Peng <peng.li@intel.com>
7 years ago
Layer::Layer() { preferableTarget = DNN_TARGET_CPU; }
Layer::Layer(const LayerParams &params)
: blobs(params.blobs), name(params.name), type(params.type)
{
Merge pull request #9114 from pengli:dnn_rebase add libdnn acceleration to dnn module (#9114) * import libdnn code Signed-off-by: Li Peng <peng.li@intel.com> * add convolution layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add pooling layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add softmax layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add lrn layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add innerproduct layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add HAVE_OPENCL macro Signed-off-by: Li Peng <peng.li@intel.com> * fix for convolution ocl Signed-off-by: Li Peng <peng.li@intel.com> * enable getUMat() for multi-dimension Mat Signed-off-by: Li Peng <peng.li@intel.com> * use getUMat for ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * use CV_OCL_RUN macro Signed-off-by: Li Peng <peng.li@intel.com> * set OPENCL target when it is available and disable fuseLayer for OCL target for the time being Signed-off-by: Li Peng <peng.li@intel.com> * fix innerproduct accuracy test Signed-off-by: Li Peng <peng.li@intel.com> * remove trailing space Signed-off-by: Li Peng <peng.li@intel.com> * Fixed tensorflow demo bug. Root cause is that tensorflow has different algorithm with libdnn to calculate convolution output dimension. libdnn don't calculate output dimension anymore and just use one passed in by config. * split gemm ocl file split it into gemm_buffer.cl and gemm_image.cl Signed-off-by: Li Peng <peng.li@intel.com> * Fix compile failure Signed-off-by: Li Peng <peng.li@intel.com> * check env flag for auto tuning Signed-off-by: Li Peng <peng.li@intel.com> * switch to new ocl kernels for softmax layer Signed-off-by: Li Peng <peng.li@intel.com> * update softmax layer on some platform subgroup extension may not work well, fallback to non subgroup ocl acceleration. Signed-off-by: Li Peng <peng.li@intel.com> * fallback to cpu path for fc layer with multi output Signed-off-by: Li Peng <peng.li@intel.com> * update output message Signed-off-by: Li Peng <peng.li@intel.com> * update fully connected layer fallback to gemm API if libdnn return false Signed-off-by: Li Peng <peng.li@intel.com> * Add ReLU OCL implementation * disable layer fusion for now Signed-off-by: Li Peng <peng.li@intel.com> * Add OCL implementation for concat layer Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com> * libdnn: update license and copyrights Also refine libdnn coding style Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com> Signed-off-by: Li Peng <peng.li@intel.com> * DNN: Don't link OpenCL library explicitly * DNN: Make default preferableTarget to DNN_TARGET_CPU User should set it to DNN_TARGET_OPENCL explicitly if want to use OpenCL acceleration. Also don't fusion when using DNN_TARGET_OPENCL * DNN: refine coding style * Add getOpenCLErrorString * DNN: Use int32_t/uint32_t instread of alias * Use namespace ocl4dnn to include libdnn things * remove extra copyTo in softmax ocl path Signed-off-by: Li Peng <peng.li@intel.com> * update ReLU layer ocl path Signed-off-by: Li Peng <peng.li@intel.com> * Add prefer target property for layer class It is used to indicate the target for layer forwarding, either the default CPU target or OCL target. Signed-off-by: Li Peng <peng.li@intel.com> * Add cl_event based timer for cv::ocl * Rename libdnn to ocl4dnn Signed-off-by: Li Peng <peng.li@intel.com> Signed-off-by: wzw <zhiwen.wu@intel.com> * use UMat for ocl4dnn internal buffer Remove allocateMemory which use clCreateBuffer directly Signed-off-by: Li Peng <peng.li@intel.com> Signed-off-by: wzw <zhiwen.wu@intel.com> * enable buffer gemm in ocl4dnn innerproduct Signed-off-by: Li Peng <peng.li@intel.com> * replace int_tp globally for ocl4dnn kernels. Signed-off-by: wzw <zhiwen.wu@intel.com> Signed-off-by: Li Peng <peng.li@intel.com> * create UMat for layer params Signed-off-by: Li Peng <peng.li@intel.com> * update sign ocl kernel Signed-off-by: Li Peng <peng.li@intel.com> * update image based gemm of inner product layer Signed-off-by: Li Peng <peng.li@intel.com> * remove buffer gemm of inner product layer call cv::gemm API instead Signed-off-by: Li Peng <peng.li@intel.com> * change ocl4dnn forward parameter to UMat Signed-off-by: Li Peng <peng.li@intel.com> * Refine auto-tuning mechanism. - Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory for fine-tuned kernel configuration. e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp, the cache directory will be /home/tmp/spatialkernels/ on Linux. - Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable auto-tuning. - OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling for OpenCL command queue. This fix basic kernel get wrong running time, i.e. 0ms. - If creating cache directory failed, disable auto-tuning. * Detect and create cache dir on windows Signed-off-by: Li Peng <peng.li@intel.com> * Refine gemm like convolution kernel. Signed-off-by: Li Peng <peng.li@intel.com> * Fix redundant swizzleWeights calling when use cached kernel config. * Fix "out of resource" bug when auto-tuning too many kernels. * replace cl_mem with UMat in ocl4dnnConvSpatial class * OCL4DNN: reduce the tuning kernel candidate. This patch could reduce 75% of the tuning candidates with less than 2% performance impact for the final result. Signed-off-by: Zhigang Gong <zhigang.gong@intel.com> * replace cl_mem with umat in ocl4dnn convolution Signed-off-by: Li Peng <peng.li@intel.com> * remove weight_image_ of ocl4dnn inner product Actually it is unused in the computation Signed-off-by: Li Peng <peng.li@intel.com> * Various fixes for ocl4dnn 1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()) 2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp 3. Code comments cleanup 4. ignore check on OCL cpu device Signed-off-by: Li Peng <peng.li@intel.com> * add build option for log softmax Signed-off-by: Li Peng <peng.li@intel.com> * remove unused ocl kernels in ocl4dnn Signed-off-by: Li Peng <peng.li@intel.com> * replace ocl4dnnSet with opencv setTo Signed-off-by: Li Peng <peng.li@intel.com> * replace ALIGN with cv::alignSize Signed-off-by: Li Peng <peng.li@intel.com> * check kernel build options Signed-off-by: Li Peng <peng.li@intel.com> * Handle program compilation fail properly. * Use std::numeric_limits<float>::infinity() for large float number * check ocl4dnn kernel compilation result Signed-off-by: Li Peng <peng.li@intel.com> * remove unused ctx_id Signed-off-by: Li Peng <peng.li@intel.com> * change clEnqueueNDRangeKernel to kernel.run() Signed-off-by: Li Peng <peng.li@intel.com> * change cl_mem to UMat in image based gemm Signed-off-by: Li Peng <peng.li@intel.com> * check intel subgroup support for lrn and pooling layer Signed-off-by: Li Peng <peng.li@intel.com> * Fix convolution bug if group is greater than 1 Signed-off-by: Li Peng <peng.li@intel.com> * Set default layer preferableTarget to be DNN_TARGET_CPU Signed-off-by: Li Peng <peng.li@intel.com> * Add ocl perf test for convolution Signed-off-by: Li Peng <peng.li@intel.com> * Add more ocl accuracy test Signed-off-by: Li Peng <peng.li@intel.com> * replace cl_image with ocl::Image2D Signed-off-by: Li Peng <peng.li@intel.com> * Fix build failure in elementwise layer Signed-off-by: Li Peng <peng.li@intel.com> * use getUMat() to get blob data Signed-off-by: Li Peng <peng.li@intel.com> * replace cl_mem handle with ocl::KernelArg Signed-off-by: Li Peng <peng.li@intel.com> * dnn(build): don't use C++11, OPENCL_LIBRARIES fix * dnn(ocl4dnn): remove unused OpenCL kernels * dnn(ocl4dnn): extract OpenCL code into .cl files * dnn(ocl4dnn): refine auto-tuning Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING environment variable to enable it. Use a set of pre-tuned configs as default config if auto-tuning is disabled. These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet, AlexNet, ResNet-50 If default config is not suitable, use the first available kernel config from the candidates. Candidate priority from high to low is gemm like kernel, IDLF kernel, basick kernel. * dnn(ocl4dnn): pooling doesn't use OpenCL subgroups * dnn(ocl4dnn): fix perf test OpenCV has default 3sec time limit for each performance test. Warmup OpenCL backend outside of perf measurement loop. * use ocl::KernelArg as much as possible Signed-off-by: Li Peng <peng.li@intel.com> * dnn(ocl4dnn): fix bias bug for gemm like kernel * dnn(ocl4dnn): wrap cl_mem into UMat Signed-off-by: Li Peng <peng.li@intel.com> * dnn(ocl4dnn): Refine signature of kernel config - Use more readable string as signture of kernel config - Don't count device name and vendor in signature string - Default kernel configurations are tuned for Intel GPU with 24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model. * dnn(ocl4dnn): swap width/height in configuration * dnn(ocl4dnn): enable configs for Intel OpenCL runtime only * core: make configuration helper functions accessible from non-core modules * dnn(ocl4dnn): update kernel auto-tuning behavior Avoid unwanted creation of directories * dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash * dnn(ocl4dnn): remove redundant code * dnn(ocl4dnn): Add more clear message for simd size dismatch. * dnn(ocl4dnn): add const to const argument Signed-off-by: Li Peng <peng.li@intel.com> * dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel * dnn(ocl4dnn): drop unused tuneLocalSize() * dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method * dnn(ocl4dnn): sanitize file names used for cache * dnn(perf): enable Network tests with OpenCL * dnn(ocl4dnn/conv): drop computeGlobalSize() * dnn(ocl4dnn/conv): drop unused fields * dnn(ocl4dnn/conv): simplify ctor * dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL * dnn(ocl4dnn/conv): drop unsupported double / untested half types * dnn(ocl4dnn/conv): drop unused variable * dnn(ocl4dnn/conv): alignSize/divUp * dnn(ocl4dnn/conv): use enum values * dnn(ocl4dnn): drop unused innerproduct variable Signed-off-by: Li Peng <peng.li@intel.com> * dnn(ocl4dnn): add an generic function to check cl option support * dnn(ocl4dnn): run softmax subgroup version kernel first Signed-off-by: Li Peng <peng.li@intel.com>
7 years ago
preferableTarget = DNN_TARGET_CPU;
}
void Layer::setParamsFrom(const LayerParams &params)
{
blobs = params.blobs;
name = params.name;
type = params.type;
}
int Layer::inputNameToIndex(String)
{
return -1;
}
int Layer::outputNameToIndex(const String&)
{
return -1;
}
bool Layer::supportBackend(int backendId)
{
return backendId == DNN_BACKEND_OPENCV;
}
Ptr<BackendNode> Layer::initHalide(const std::vector<Ptr<BackendWrapper> > &)
{
CV_Error(Error::StsNotImplemented, "Halide pipeline of " + type +
" layers is not defined.");
return Ptr<BackendNode>();
}
Ptr<BackendNode> Layer::initInfEngine(const std::vector<Ptr<BackendWrapper> > &)
{
CV_Error(Error::StsNotImplemented, "Inference Engine pipeline of " + type +
" layers is not defined.");
return Ptr<BackendNode>();
}
void Layer::applyHalideScheduler(Ptr<BackendNode>& node, const std::vector<Mat*> &inputs,
const std::vector<Mat> &outputs, int targetId) const
{
#ifdef HAVE_HALIDE
CV_TRACE_FUNCTION();
Halide::Var x("x"), y("y"), c("c"), n("n"), co("co"), ci("ci"),
xo("xo"), xi("xi"), yo("yo"), yi("yi"), tile("tile");
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs.back();
int outW, outH, outC, outN;
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);
if (targetId == DNN_TARGET_CPU)
{
if (outW == 1 && outH == 1)
{
if (outC + outN == 1)
return;
if (outC > 8)
top.split(c, co, ci, 8)
.fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile)
.parallel(tile)
.vectorize(ci, 8);
else
top.fuse(x, y, tile).fuse(c, tile, tile).fuse(n, tile, tile)
.parallel(tile);
}
else
{
if (outH > 2)
{
top.reorder(x, c, y)
.split(y, yo, yi, 2)
.fuse(yo, n, tile)
.parallel(tile)
.unroll(yi)
.vectorize(x, outW >= 16 ? 16 : outW);
}
}
}
else if (targetId == DNN_TARGET_OPENCL)
{
int c_split = outC > 8 ? (outC > 16 ? 8 : 4) : outC;
if (outW == 1 && outH == 1)
{
top.split(c, co, ci, c_split)
.fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile)
.gpu_blocks(tile)
.gpu_threads(ci);
}
else
{
int x_split = outW > 8 ? (outW >= 32 ? 16 : 8) : outW;
int y_split = outH > 8 ? (outH >= 32 ? 16 : 8) : outH;
top.split(x, xo, xi, x_split).split(y, yo, yi, y_split)
.split(c, co, ci, c_split)
.gpu_blocks(xo, yo, co)
.gpu_threads(xi, yi)
.reorder(xi, yi, ci, xo, yo, co)
.vectorize(ci);
}
}
else
CV_Error(Error::StsNotImplemented, "Unknown target identifier");
#endif // HAVE_HALIDE
}
Ptr<BackendNode> Layer::tryAttach(const Ptr<BackendNode>& node)
{
return Ptr<BackendNode>();
}
bool Layer::setActivation(const Ptr<ActivationLayer>&) { return false; }
bool Layer::tryFuse(Ptr<Layer>&) { return false; }
void Layer::getScaleShift(Mat& scale, Mat& shift) const
{
scale = Mat();
shift = Mat();
}
void Layer::unsetAttached()
{
setActivation(Ptr<ActivationLayer>());
}
template <typename T>
static void vecToPVec(const std::vector<T> &v, std::vector<T*> &pv)
{
pv.resize(v.size());
for (size_t i = 0; i < v.size(); i++)
pv[i] = const_cast<T*>(&v[i]);
}
void Layer::finalize(const std::vector<Mat> &inputs, std::vector<Mat> &outputs)
{
CV_TRACE_FUNCTION();
std::vector<Mat*> inputsp;
vecToPVec(inputs, inputsp);
this->finalize(inputsp, outputs);
}
void Layer::finalize(const std::vector<Mat*> &input, std::vector<Mat> &output)
{
(void)input;(void)output;
}
std::vector<Mat> Layer::finalize(const std::vector<Mat> &inputs)
{
CV_TRACE_FUNCTION();
std::vector<Mat> outputs;
this->finalize(inputs, outputs);
return outputs;
}
void Layer::forward_fallback(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
if (preferableTarget == DNN_TARGET_OPENCL_FP16 && inputs_arr.depth() == CV_16S)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
std::vector<UMat> internals;
std::vector<UMat> orig_inputs;
std::vector<UMat> orig_outputs;
std::vector<UMat> orig_internals;
inputs_arr.getUMatVector(orig_inputs);
outputs_arr.getUMatVector(orig_outputs);
internals_arr.getUMatVector(orig_internals);
inputs.resize(orig_inputs.size());
for (size_t i = 0; i < orig_inputs.size(); i++)
convertFp16(orig_inputs[i], inputs[i]);
outputs.resize(orig_outputs.size());
for (size_t i = 0; i < orig_outputs.size(); i++)
outputs[i].create(shape(orig_outputs[i]), CV_32F);
internals.resize(orig_internals.size());
for (size_t i = 0; i < orig_internals.size(); i++)
internals[i].create(shape(orig_internals[i]), CV_32F);
forward(inputs, outputs, internals);
for (size_t i = 0; i < outputs.size(); i++)
convertFp16(outputs[i], orig_outputs[i]);
// sync results back
outputs_arr.assign(orig_outputs);
internals_arr.assign(orig_internals);
return;
}
std::vector<Mat> inpvec;
std::vector<Mat> outputs;
std::vector<Mat> internals;
inputs_arr.getMatVector(inpvec);
outputs_arr.getMatVector(outputs);
internals_arr.getMatVector(internals);
std::vector<Mat*> inputs(inpvec.size());
for (int i = 0; i < inpvec.size(); i++)
inputs[i] = &inpvec[i];
this->forward(inputs, outputs, internals);
// sync results back
outputs_arr.assign(outputs);
internals_arr.assign(internals);
}
void Layer::run(const std::vector<Mat> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
CV_TRACE_FUNCTION();
std::vector<Mat*> inputsp;
vecToPVec(inputs, inputsp);
this->finalize(inputsp, outputs);
this->forward(inputsp, outputs, internals);
}
Layer::~Layer() {}
bool Layer::getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
CV_Assert(inputs.size());
outputs.assign(std::max(requiredOutputs, (int)inputs.size()), inputs[0]);
return false;
}
//////////////////////////////////////////////////////////////////////////
static Mutex& getLayerFactoryMutex()
{
static Mutex* volatile instance = NULL;
if (instance == NULL)
{
cv::AutoLock lock(getInitializationMutex());
if (instance == NULL)
instance = new Mutex();
}
return *instance;
}
typedef std::map<String, std::vector<LayerFactory::Constructor> > LayerFactory_Impl;
static LayerFactory_Impl& getLayerFactoryImpl_()
{
static LayerFactory_Impl impl;
return impl;
}
static LayerFactory_Impl& getLayerFactoryImpl()
{
static LayerFactory_Impl* volatile instance = NULL;
if (instance == NULL)
{
cv::AutoLock lock(getLayerFactoryMutex());
if (instance == NULL)
{
instance = &getLayerFactoryImpl_();
initializeLayerFactory();
}
}
return *instance;
}
void LayerFactory::registerLayer(const String &type, Constructor constructor)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(type, "type", type.c_str());
cv::AutoLock lock(getLayerFactoryMutex());
String type_ = type.toLowerCase();
LayerFactory_Impl::iterator it = getLayerFactoryImpl().find(type_);
if (it != getLayerFactoryImpl().end())
{
if (it->second.back() == constructor)
CV_Error(cv::Error::StsBadArg, "Layer \"" + type_ + "\" already was registered");
it->second.push_back(constructor);
}
getLayerFactoryImpl().insert(std::make_pair(type_, std::vector<Constructor>(1, constructor)));
}
void LayerFactory::unregisterLayer(const String &type)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(type, "type", type.c_str());
cv::AutoLock lock(getLayerFactoryMutex());
String type_ = type.toLowerCase();
LayerFactory_Impl::iterator it = getLayerFactoryImpl().find(type_);
if (it != getLayerFactoryImpl().end())
{
if (it->second.size() > 1)
it->second.pop_back();
else
getLayerFactoryImpl().erase(it);
}
}
Ptr<Layer> LayerFactory::createLayerInstance(const String &type, LayerParams& params)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(type, "type", type.c_str());
cv::AutoLock lock(getLayerFactoryMutex());
String type_ = type.toLowerCase();
LayerFactory_Impl::const_iterator it = getLayerFactoryImpl().find(type_);
if (it != getLayerFactoryImpl().end())
{
CV_Assert(!it->second.empty());
return it->second.back()(params);
}
else
{
return Ptr<Layer>(); //NULL
}
}
BackendNode::BackendNode(int backendId) : backendId(backendId) {}
BackendNode::~BackendNode() {};
BackendWrapper::BackendWrapper(int backendId, int targetId)
: backendId(backendId), targetId(targetId) {}
BackendWrapper::BackendWrapper(int targetId, const cv::Mat& m)
{
CV_Error(Error::StsNotImplemented,
"Constructor of backend wrapper must be implemented");
}
BackendWrapper::BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape)
{
CV_Error(Error::StsNotImplemented,
"Constructor of backend wrapper must be implemented");
}
BackendWrapper::~BackendWrapper() {}
Net readNet(const String& _model, const String& _config, const String& _framework)
{
String framework = _framework.toLowerCase();
String model = _model;
String config = _config;
const std::string modelExt = model.substr(model.rfind('.') + 1);
const std::string configExt = config.substr(config.rfind('.') + 1);
if (framework == "caffe" || modelExt == "caffemodel" || configExt == "caffemodel" ||
modelExt == "prototxt" || configExt == "prototxt")
{
if (modelExt == "prototxt" || configExt == "caffemodel")
std::swap(model, config);
return readNetFromCaffe(config, model);
}
if (framework == "tensorflow" || modelExt == "pb" || configExt == "pb" ||
modelExt == "pbtxt" || configExt == "pbtxt")
{
if (modelExt == "pbtxt" || configExt == "pb")
std::swap(model, config);
return readNetFromTensorflow(model, config);
}
if (framework == "torch" || modelExt == "t7" || modelExt == "net" ||
configExt == "t7" || configExt == "net")
{
return readNetFromTorch(model.empty() ? config : model);
}
if (framework == "darknet" || modelExt == "weights" || configExt == "weights" ||
modelExt == "cfg" || configExt == "cfg")
{
if (modelExt == "cfg" || configExt == "weights")
std::swap(model, config);
return readNetFromDarknet(config, model);
}
if (framework == "dldt" || modelExt == "bin" || configExt == "bin" ||
modelExt == "xml" || configExt == "xml")
{
if (modelExt == "xml" || configExt == "bin")
std::swap(model, config);
return readNetFromModelOptimizer(config, model);
}
CV_Error(Error::StsError, "Cannot determine an origin framework of files: " +
model + (config.empty() ? "" : ", " + config));
}
Net readNetFromModelOptimizer(const String &xml, const String &bin)
{
return Net::readFromModelOptimizer(xml, bin);
}
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace