|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include "opencv2/imgproc/imgproc_c.h"
|
|
|
|
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
|
|
|
|
class CV_DefaultNewCameraMatrixTest : public cvtest::ArrayTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_DefaultNewCameraMatrixTest();
|
|
|
|
protected:
|
|
|
|
int prepare_test_case (int test_case_idx);
|
|
|
|
void prepare_to_validation( int test_case_idx );
|
|
|
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
|
|
|
void run_func();
|
|
|
|
|
|
|
|
private:
|
|
|
|
cv::Size img_size;
|
|
|
|
cv::Mat camera_mat;
|
|
|
|
cv::Mat new_camera_mat;
|
|
|
|
|
|
|
|
int matrix_type;
|
|
|
|
|
|
|
|
bool center_principal_point;
|
|
|
|
|
|
|
|
static const int MAX_X = 2048;
|
|
|
|
static const int MAX_Y = 2048;
|
|
|
|
//static const int MAX_VAL = 10000;
|
|
|
|
};
|
|
|
|
|
|
|
|
CV_DefaultNewCameraMatrixTest::CV_DefaultNewCameraMatrixTest()
|
|
|
|
{
|
|
|
|
test_array[INPUT].push_back(NULL);
|
|
|
|
test_array[OUTPUT].push_back(NULL);
|
|
|
|
test_array[REF_OUTPUT].push_back(NULL);
|
|
|
|
|
|
|
|
matrix_type = 0;
|
|
|
|
center_principal_point = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_DefaultNewCameraMatrixTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
|
|
|
{
|
|
|
|
cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx,sizes,types);
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
matrix_type = types[INPUT][0] = types[OUTPUT][0]= types[REF_OUTPUT][0] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
|
|
|
|
sizes[INPUT][0] = sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(3,3);
|
|
|
|
}
|
|
|
|
|
|
|
|
int CV_DefaultNewCameraMatrixTest::prepare_test_case(int test_case_idx)
|
|
|
|
{
|
|
|
|
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
|
|
|
|
|
|
|
|
if (code <= 0)
|
|
|
|
return code;
|
|
|
|
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
|
|
|
|
img_size.width = cvtest::randInt(rng) % MAX_X + 1;
|
|
|
|
img_size.height = cvtest::randInt(rng) % MAX_Y + 1;
|
|
|
|
|
|
|
|
center_principal_point = ((cvtest::randInt(rng) % 2)!=0);
|
|
|
|
|
|
|
|
// Generating camera_mat matrix
|
|
|
|
double sz = MAX(img_size.width, img_size.height);
|
|
|
|
double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7;
|
|
|
|
double a[9] = {0,0,0,0,0,0,0,0,1};
|
|
|
|
Mat _a(3,3,CV_64F,a);
|
|
|
|
a[2] = (img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
|
|
|
|
a[5] = (img_size.height - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
|
|
|
|
a[0] = sz/(0.9 - cvtest::randReal(rng)*0.6);
|
|
|
|
a[4] = aspect_ratio*a[0];
|
|
|
|
|
|
|
|
Mat& _a0 = test_mat[INPUT][0];
|
|
|
|
cvtest::convert(_a, _a0, _a0.type());
|
|
|
|
camera_mat = _a0;
|
|
|
|
|
|
|
|
return code;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_DefaultNewCameraMatrixTest::run_func()
|
|
|
|
{
|
|
|
|
new_camera_mat = cv::getDefaultNewCameraMatrix(camera_mat,img_size,center_principal_point);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_DefaultNewCameraMatrixTest::prepare_to_validation( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
const Mat& src = test_mat[INPUT][0];
|
|
|
|
Mat& dst = test_mat[REF_OUTPUT][0];
|
|
|
|
Mat& test_output = test_mat[OUTPUT][0];
|
|
|
|
Mat& output = new_camera_mat;
|
|
|
|
cvtest::convert( output, test_output, test_output.type() );
|
|
|
|
if (!center_principal_point)
|
|
|
|
{
|
|
|
|
cvtest::copy(src, dst);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
double a[9] = {0,0,0,0,0,0,0,0,1};
|
|
|
|
Mat _a(3,3,CV_64F,a);
|
|
|
|
if (matrix_type == CV_64F)
|
|
|
|
{
|
|
|
|
a[0] = src.at<double>(0,0);
|
|
|
|
a[4] = src.at<double>(1,1);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
a[0] = src.at<float>(0,0);
|
|
|
|
a[4] = src.at<float>(1,1);
|
|
|
|
}
|
|
|
|
a[2] = (img_size.width - 1)*0.5;
|
|
|
|
a[5] = (img_size.height - 1)*0.5;
|
|
|
|
cvtest::convert( _a, dst, dst.type() );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//---------
|
|
|
|
|
|
|
|
class CV_UndistortPointsTest : public cvtest::ArrayTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_UndistortPointsTest();
|
|
|
|
protected:
|
|
|
|
int prepare_test_case (int test_case_idx);
|
|
|
|
void prepare_to_validation( int test_case_idx );
|
|
|
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
|
|
|
double get_success_error_level( int test_case_idx, int i, int j );
|
|
|
|
void run_func();
|
|
|
|
void distortPoints(const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix,
|
|
|
|
const CvMat* _distCoeffs, const CvMat* matR, const CvMat* matP);
|
|
|
|
|
|
|
|
private:
|
|
|
|
bool useDstMat;
|
|
|
|
static const int N_POINTS = 10;
|
|
|
|
static const int MAX_X = 2048;
|
|
|
|
static const int MAX_Y = 2048;
|
|
|
|
|
|
|
|
bool zero_new_cam;
|
|
|
|
bool zero_distortion;
|
|
|
|
bool zero_R;
|
|
|
|
|
|
|
|
cv::Size img_size;
|
|
|
|
cv::Mat dst_points_mat;
|
|
|
|
|
|
|
|
cv::Mat camera_mat;
|
|
|
|
cv::Mat R;
|
|
|
|
cv::Mat P;
|
|
|
|
cv::Mat distortion_coeffs;
|
|
|
|
cv::Mat src_points;
|
|
|
|
std::vector<cv::Point2f> dst_points;
|
|
|
|
};
|
|
|
|
|
|
|
|
CV_UndistortPointsTest::CV_UndistortPointsTest()
|
|
|
|
{
|
|
|
|
test_array[INPUT].push_back(NULL); // points matrix
|
|
|
|
test_array[INPUT].push_back(NULL); // camera matrix
|
|
|
|
test_array[INPUT].push_back(NULL); // distortion coeffs
|
|
|
|
test_array[INPUT].push_back(NULL); // R matrix
|
|
|
|
test_array[INPUT].push_back(NULL); // P matrix
|
|
|
|
test_array[OUTPUT].push_back(NULL); // distorted dst points
|
|
|
|
test_array[TEMP].push_back(NULL); // dst points
|
|
|
|
test_array[REF_OUTPUT].push_back(NULL);
|
|
|
|
|
|
|
|
useDstMat = false;
|
|
|
|
zero_new_cam = zero_distortion = zero_R = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_UndistortPointsTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
|
|
|
{
|
|
|
|
cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx,sizes,types);
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
//rng.next();
|
|
|
|
types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = types[TEMP][0]= CV_32FC2;
|
|
|
|
types[INPUT][1] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
|
|
|
|
types[INPUT][2] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
|
|
|
|
types[INPUT][3] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
|
|
|
|
types[INPUT][4] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
|
|
|
|
|
|
|
|
sizes[INPUT][0] = sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = sizes[TEMP][0]= cvtest::randInt(rng)%2 ? cvSize(1,N_POINTS) : cvSize(N_POINTS,1);
|
|
|
|
sizes[INPUT][1] = sizes[INPUT][3] = cvSize(3,3);
|
|
|
|
sizes[INPUT][4] = cvtest::randInt(rng)%2 ? cvSize(3,3) : cvSize(4,3);
|
|
|
|
|
|
|
|
if (cvtest::randInt(rng)%2)
|
|
|
|
{
|
|
|
|
if (cvtest::randInt(rng)%2)
|
|
|
|
{
|
|
|
|
sizes[INPUT][2] = cvSize(1,4);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
sizes[INPUT][2] = cvSize(1,5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (cvtest::randInt(rng)%2)
|
|
|
|
{
|
|
|
|
sizes[INPUT][2] = cvSize(4,1);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
sizes[INPUT][2] = cvSize(5,1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int CV_UndistortPointsTest::prepare_test_case(int test_case_idx)
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
|
|
|
|
|
|
|
|
if (code <= 0)
|
|
|
|
return code;
|
|
|
|
|
|
|
|
useDstMat = (cvtest::randInt(rng) % 2) == 0;
|
|
|
|
|
|
|
|
img_size.width = cvtest::randInt(rng) % MAX_X + 1;
|
|
|
|
img_size.height = cvtest::randInt(rng) % MAX_Y + 1;
|
|
|
|
int dist_size = test_mat[INPUT][2].cols > test_mat[INPUT][2].rows ? test_mat[INPUT][2].cols : test_mat[INPUT][2].rows;
|
|
|
|
double cam[9] = {0,0,0,0,0,0,0,0,1};
|
|
|
|
vector<double> dist(dist_size);
|
|
|
|
vector<double> proj(test_mat[INPUT][4].cols * test_mat[INPUT][4].rows);
|
|
|
|
vector<Point2d> points(N_POINTS);
|
|
|
|
|
|
|
|
Mat _camera(3,3,CV_64F,cam);
|
|
|
|
Mat _distort(test_mat[INPUT][2].rows,test_mat[INPUT][2].cols,CV_64F,&dist[0]);
|
|
|
|
Mat _proj(test_mat[INPUT][4].size(), CV_64F, &proj[0]);
|
|
|
|
Mat _points(test_mat[INPUT][0].size(), CV_64FC2, &points[0]);
|
|
|
|
|
|
|
|
_proj = Scalar::all(0);
|
|
|
|
|
|
|
|
//Generating points
|
|
|
|
for( int i = 0; i < N_POINTS; i++ )
|
|
|
|
{
|
|
|
|
points[i].x = cvtest::randReal(rng)*img_size.width;
|
|
|
|
points[i].y = cvtest::randReal(rng)*img_size.height;
|
|
|
|
}
|
|
|
|
|
|
|
|
//Generating camera matrix
|
|
|
|
double sz = MAX(img_size.width,img_size.height);
|
|
|
|
double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7;
|
|
|
|
cam[2] = (img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
|
|
|
|
cam[5] = (img_size.height - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
|
|
|
|
cam[0] = sz/(0.9 - cvtest::randReal(rng)*0.6);
|
|
|
|
cam[4] = aspect_ratio*cam[0];
|
|
|
|
|
|
|
|
//Generating distortion coeffs
|
|
|
|
dist[0] = cvtest::randReal(rng)*0.06 - 0.03;
|
|
|
|
dist[1] = cvtest::randReal(rng)*0.06 - 0.03;
|
|
|
|
if( dist[0]*dist[1] > 0 )
|
|
|
|
dist[1] = -dist[1];
|
|
|
|
if( cvtest::randInt(rng)%4 != 0 )
|
|
|
|
{
|
|
|
|
dist[2] = cvtest::randReal(rng)*0.004 - 0.002;
|
|
|
|
dist[3] = cvtest::randReal(rng)*0.004 - 0.002;
|
|
|
|
if (dist_size > 4)
|
|
|
|
dist[4] = cvtest::randReal(rng)*0.004 - 0.002;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
dist[2] = dist[3] = 0;
|
|
|
|
if (dist_size > 4)
|
|
|
|
dist[4] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
//Generating P matrix (projection)
|
|
|
|
if( test_mat[INPUT][4].cols != 4 )
|
|
|
|
{
|
|
|
|
proj[8] = 1;
|
|
|
|
if (cvtest::randInt(rng)%2 == 0) // use identity new camera matrix
|
|
|
|
{
|
|
|
|
proj[0] = 1;
|
|
|
|
proj[4] = 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
proj[0] = cam[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[0]; //10%
|
|
|
|
proj[4] = cam[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[4]; //10%
|
|
|
|
proj[2] = cam[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.width; //15%
|
|
|
|
proj[5] = cam[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.height; //15%
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
proj[10] = 1;
|
|
|
|
proj[0] = cam[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[0]; //10%
|
|
|
|
proj[5] = cam[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[4]; //10%
|
|
|
|
proj[2] = cam[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.width; //15%
|
|
|
|
proj[6] = cam[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.height; //15%
|
|
|
|
|
|
|
|
proj[3] = (img_size.height + img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
|
|
|
|
proj[7] = (img_size.height + img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
|
|
|
|
proj[11] = (img_size.height + img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
|
|
|
|
}
|
|
|
|
|
|
|
|
//Generating R matrix
|
|
|
|
Mat _rot(3,3,CV_64F);
|
|
|
|
Mat rotation(1,3,CV_64F);
|
|
|
|
rotation.at<double>(0) = CV_PI*(cvtest::randReal(rng) - (double)0.5); // phi
|
|
|
|
rotation.at<double>(1) = CV_PI*(cvtest::randReal(rng) - (double)0.5); // ksi
|
|
|
|
rotation.at<double>(2) = CV_PI*(cvtest::randReal(rng) - (double)0.5); //khi
|
|
|
|
cvtest::Rodrigues(rotation, _rot);
|
|
|
|
|
|
|
|
//copying data
|
|
|
|
//src_points = &_points;
|
|
|
|
_points.convertTo(test_mat[INPUT][0], test_mat[INPUT][0].type());
|
|
|
|
_camera.convertTo(test_mat[INPUT][1], test_mat[INPUT][1].type());
|
|
|
|
_distort.convertTo(test_mat[INPUT][2], test_mat[INPUT][2].type());
|
|
|
|
_rot.convertTo(test_mat[INPUT][3], test_mat[INPUT][3].type());
|
|
|
|
_proj.convertTo(test_mat[INPUT][4], test_mat[INPUT][4].type());
|
|
|
|
|
|
|
|
zero_distortion = (cvtest::randInt(rng)%2) == 0 ? false : true;
|
|
|
|
zero_new_cam = (cvtest::randInt(rng)%2) == 0 ? false : true;
|
|
|
|
zero_R = (cvtest::randInt(rng)%2) == 0 ? false : true;
|
|
|
|
|
|
|
|
_points.convertTo(src_points, CV_32F);
|
|
|
|
|
|
|
|
camera_mat = test_mat[INPUT][1];
|
|
|
|
distortion_coeffs = test_mat[INPUT][2];
|
|
|
|
R = test_mat[INPUT][3];
|
|
|
|
P = test_mat[INPUT][4];
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_UndistortPointsTest::prepare_to_validation(int /*test_case_idx*/)
|
|
|
|
{
|
|
|
|
int dist_size = test_mat[INPUT][2].cols > test_mat[INPUT][2].rows ? test_mat[INPUT][2].cols : test_mat[INPUT][2].rows;
|
|
|
|
double cam[9] = {0,0,0,0,0,0,0,0,1};
|
|
|
|
double rot[9] = {1,0,0,0,1,0,0,0,1};
|
|
|
|
|
|
|
|
double* dist = new double[dist_size ];
|
|
|
|
double* proj = new double[test_mat[INPUT][4].cols * test_mat[INPUT][4].rows];
|
|
|
|
double* points = new double[N_POINTS*2];
|
|
|
|
double* r_points = new double[N_POINTS*2];
|
|
|
|
//Run reference calculations
|
|
|
|
CvMat ref_points= cvMat(test_mat[INPUT][0].rows,test_mat[INPUT][0].cols,CV_64FC2,r_points);
|
|
|
|
CvMat _camera = cvMat(3,3,CV_64F,cam);
|
|
|
|
CvMat _rot = cvMat(3,3,CV_64F,rot);
|
|
|
|
CvMat _distort = cvMat(test_mat[INPUT][2].rows,test_mat[INPUT][2].cols,CV_64F,dist);
|
|
|
|
CvMat _proj = cvMat(test_mat[INPUT][4].rows,test_mat[INPUT][4].cols,CV_64F,proj);
|
|
|
|
CvMat _points= cvMat(test_mat[TEMP][0].rows,test_mat[TEMP][0].cols,CV_64FC2,points);
|
|
|
|
|
|
|
|
Mat __camera = cvarrToMat(&_camera);
|
|
|
|
Mat __distort = cvarrToMat(&_distort);
|
|
|
|
Mat __rot = cvarrToMat(&_rot);
|
|
|
|
Mat __proj = cvarrToMat(&_proj);
|
|
|
|
Mat __points = cvarrToMat(&_points);
|
|
|
|
Mat _ref_points = cvarrToMat(&ref_points);
|
|
|
|
|
|
|
|
cvtest::convert(test_mat[INPUT][1], __camera, __camera.type());
|
|
|
|
cvtest::convert(test_mat[INPUT][2], __distort, __distort.type());
|
|
|
|
cvtest::convert(test_mat[INPUT][3], __rot, __rot.type());
|
|
|
|
cvtest::convert(test_mat[INPUT][4], __proj, __proj.type());
|
|
|
|
|
|
|
|
if (useDstMat)
|
|
|
|
{
|
|
|
|
CvMat temp = cvMat(dst_points_mat);
|
|
|
|
for (int i=0;i<N_POINTS*2;i++)
|
|
|
|
{
|
|
|
|
points[i] = temp.data.fl[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for (int i=0;i<N_POINTS;i++)
|
|
|
|
{
|
|
|
|
points[2*i] = dst_points[i].x;
|
|
|
|
points[2*i+1] = dst_points[i].y;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
CvMat* input2 = zero_distortion ? 0 : &_distort;
|
|
|
|
CvMat* input3 = zero_R ? 0 : &_rot;
|
|
|
|
CvMat* input4 = zero_new_cam ? 0 : &_proj;
|
|
|
|
distortPoints(&_points,&ref_points,&_camera,input2,input3,input4);
|
|
|
|
|
|
|
|
Mat& dst = test_mat[REF_OUTPUT][0];
|
|
|
|
cvtest::convert(_ref_points, dst, dst.type());
|
|
|
|
|
|
|
|
cvtest::copy(test_mat[INPUT][0], test_mat[OUTPUT][0]);
|
|
|
|
|
|
|
|
delete[] dist;
|
|
|
|
delete[] proj;
|
|
|
|
delete[] points;
|
|
|
|
delete[] r_points;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_UndistortPointsTest::run_func()
|
|
|
|
{
|
|
|
|
cv::Mat input2,input3,input4;
|
|
|
|
input2 = zero_distortion ? cv::Mat() : cv::Mat(test_mat[INPUT][2]);
|
|
|
|
input3 = zero_R ? cv::Mat() : cv::Mat(test_mat[INPUT][3]);
|
|
|
|
input4 = zero_new_cam ? cv::Mat() : cv::Mat(test_mat[INPUT][4]);
|
|
|
|
|
|
|
|
if (useDstMat)
|
|
|
|
{
|
|
|
|
//cv::undistortPoints(src_points,dst_points_mat,camera_mat,distortion_coeffs,R,P);
|
|
|
|
cv::undistortPoints(src_points,dst_points_mat,camera_mat,input2,input3,input4);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
//cv::undistortPoints(src_points,dst_points,camera_mat,distortion_coeffs,R,P);
|
|
|
|
cv::undistortPoints(src_points,dst_points,camera_mat,input2,input3,input4);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_UndistortPointsTest::distortPoints(const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix,
|
|
|
|
const CvMat* _distCoeffs,
|
|
|
|
const CvMat* matR, const CvMat* matP)
|
|
|
|
{
|
|
|
|
double a[9];
|
|
|
|
|
|
|
|
CvMat* __P;
|
|
|
|
if ((!matP)||(matP->cols == 3))
|
|
|
|
__P = cvCreateMat(3,3,CV_64F);
|
|
|
|
else
|
|
|
|
__P = cvCreateMat(3,4,CV_64F);
|
|
|
|
if (matP)
|
|
|
|
{
|
|
|
|
cvtest::convert(cvarrToMat(matP), cvarrToMat(__P), -1);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cvZero(__P);
|
|
|
|
__P->data.db[0] = 1;
|
|
|
|
__P->data.db[4] = 1;
|
|
|
|
__P->data.db[8] = 1;
|
|
|
|
}
|
|
|
|
CvMat* __R = cvCreateMat(3,3,CV_64F);
|
|
|
|
if (matR)
|
|
|
|
{
|
|
|
|
cvCopy(matR,__R);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cvZero(__R);
|
|
|
|
__R->data.db[0] = 1;
|
|
|
|
__R->data.db[4] = 1;
|
|
|
|
__R->data.db[8] = 1;
|
|
|
|
}
|
|
|
|
for (int i=0;i<N_POINTS;i++)
|
|
|
|
{
|
|
|
|
int movement = __P->cols > 3 ? 1 : 0;
|
|
|
|
double x = (_src->data.db[2*i]-__P->data.db[2])/__P->data.db[0];
|
|
|
|
double y = (_src->data.db[2*i+1]-__P->data.db[5+movement])/__P->data.db[4+movement];
|
|
|
|
CvMat inverse = cvMat(3,3,CV_64F,a);
|
|
|
|
cvInvert(__R,&inverse);
|
|
|
|
double w1 = x*inverse.data.db[6]+y*inverse.data.db[7]+inverse.data.db[8];
|
|
|
|
double _x = (x*inverse.data.db[0]+y*inverse.data.db[1]+inverse.data.db[2])/w1;
|
|
|
|
double _y = (x*inverse.data.db[3]+y*inverse.data.db[4]+inverse.data.db[5])/w1;
|
|
|
|
|
|
|
|
//Distortions
|
|
|
|
|
|
|
|
double __x = _x;
|
|
|
|
double __y = _y;
|
|
|
|
if (_distCoeffs)
|
|
|
|
{
|
|
|
|
double r2 = _x*_x+_y*_y;
|
|
|
|
|
|
|
|
__x = _x*(1+_distCoeffs->data.db[0]*r2+_distCoeffs->data.db[1]*r2*r2)+
|
|
|
|
2*_distCoeffs->data.db[2]*_x*_y+_distCoeffs->data.db[3]*(r2+2*_x*_x);
|
|
|
|
__y = _y*(1+_distCoeffs->data.db[0]*r2+_distCoeffs->data.db[1]*r2*r2)+
|
|
|
|
2*_distCoeffs->data.db[3]*_x*_y+_distCoeffs->data.db[2]*(r2+2*_y*_y);
|
|
|
|
if ((_distCoeffs->cols > 4) || (_distCoeffs->rows > 4))
|
|
|
|
{
|
|
|
|
__x+=_x*_distCoeffs->data.db[4]*r2*r2*r2;
|
|
|
|
__y+=_y*_distCoeffs->data.db[4]*r2*r2*r2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
_dst->data.db[2*i] = __x*_cameraMatrix->data.db[0]+_cameraMatrix->data.db[2];
|
|
|
|
_dst->data.db[2*i+1] = __y*_cameraMatrix->data.db[4]+_cameraMatrix->data.db[5];
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
cvReleaseMat(&__R);
|
|
|
|
cvReleaseMat(&__P);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double CV_UndistortPointsTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
|
|
|
{
|
|
|
|
return 5e-2;
|
|
|
|
}
|
|
|
|
|
|
|
|
//------------------------------------------------------
|
|
|
|
|
|
|
|
class CV_InitUndistortRectifyMapTest : public cvtest::ArrayTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_InitUndistortRectifyMapTest();
|
|
|
|
protected:
|
|
|
|
int prepare_test_case (int test_case_idx);
|
|
|
|
void prepare_to_validation( int test_case_idx );
|
|
|
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
|
|
|
double get_success_error_level( int test_case_idx, int i, int j );
|
|
|
|
void run_func();
|
|
|
|
|
|
|
|
private:
|
|
|
|
static const int MAX_X = 1024;
|
|
|
|
static const int MAX_Y = 1024;
|
|
|
|
bool zero_new_cam;
|
|
|
|
bool zero_distortion;
|
|
|
|
bool zero_R;
|
|
|
|
|
|
|
|
cv::Size img_size;
|
|
|
|
int map_type;
|
|
|
|
};
|
|
|
|
|
|
|
|
CV_InitUndistortRectifyMapTest::CV_InitUndistortRectifyMapTest()
|
|
|
|
{
|
|
|
|
test_array[INPUT].push_back(NULL); // camera matrix
|
|
|
|
test_array[INPUT].push_back(NULL); // distortion coeffs
|
|
|
|
test_array[INPUT].push_back(NULL); // R matrix
|
|
|
|
test_array[INPUT].push_back(NULL); // new camera matrix
|
|
|
|
test_array[OUTPUT].push_back(NULL); // distorted mapx
|
|
|
|
test_array[OUTPUT].push_back(NULL); // distorted mapy
|
|
|
|
test_array[REF_OUTPUT].push_back(NULL);
|
|
|
|
test_array[REF_OUTPUT].push_back(NULL);
|
|
|
|
|
|
|
|
zero_distortion = zero_new_cam = zero_R = false;
|
|
|
|
map_type = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_InitUndistortRectifyMapTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
|
|
|
{
|
|
|
|
cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx,sizes,types);
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
//rng.next();
|
|
|
|
|
|
|
|
map_type = CV_32F;
|
|
|
|
types[OUTPUT][0] = types[OUTPUT][1] = types[REF_OUTPUT][0] = types[REF_OUTPUT][1] = map_type;
|
|
|
|
|
|
|
|
img_size.width = cvtest::randInt(rng) % MAX_X + 1;
|
|
|
|
img_size.height = cvtest::randInt(rng) % MAX_Y + 1;
|
|
|
|
|
|
|
|
types[INPUT][0] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
|
|
|
|
types[INPUT][1] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
|
|
|
|
types[INPUT][2] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
|
|
|
|
types[INPUT][3] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
|
|
|
|
|
|
|
|
sizes[OUTPUT][0] = sizes[OUTPUT][1] = sizes[REF_OUTPUT][0] = sizes[REF_OUTPUT][1] = img_size;
|
|
|
|
sizes[INPUT][0] = sizes[INPUT][2] = sizes[INPUT][3] = cvSize(3,3);
|
|
|
|
|
|
|
|
Size dsize;
|
|
|
|
|
|
|
|
if (cvtest::randInt(rng)%2)
|
|
|
|
{
|
|
|
|
if (cvtest::randInt(rng)%2)
|
|
|
|
{
|
|
|
|
dsize = Size(1,4);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
dsize = Size(1,5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (cvtest::randInt(rng)%2)
|
|
|
|
{
|
|
|
|
dsize = Size(4,1);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
dsize = Size(5,1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sizes[INPUT][1] = dsize;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_InitUndistortRectifyMapTest::prepare_test_case(int test_case_idx)
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
|
|
|
|
|
|
|
|
if (code <= 0)
|
|
|
|
return code;
|
|
|
|
|
|
|
|
int dist_size = test_mat[INPUT][1].cols > test_mat[INPUT][1].rows ? test_mat[INPUT][1].cols : test_mat[INPUT][1].rows;
|
|
|
|
double cam[9] = {0,0,0,0,0,0,0,0,1};
|
|
|
|
vector<double> dist(dist_size);
|
|
|
|
vector<double> new_cam(test_mat[INPUT][3].cols * test_mat[INPUT][3].rows);
|
|
|
|
|
|
|
|
Mat _camera(3,3,CV_64F,cam);
|
|
|
|
Mat _distort(test_mat[INPUT][1].size(),CV_64F,&dist[0]);
|
|
|
|
Mat _new_cam(test_mat[INPUT][3].size(),CV_64F,&new_cam[0]);
|
|
|
|
|
|
|
|
//Generating camera matrix
|
|
|
|
double sz = MAX(img_size.width,img_size.height);
|
|
|
|
double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7;
|
|
|
|
cam[2] = (img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
|
|
|
|
cam[5] = (img_size.height - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
|
|
|
|
cam[0] = sz/(0.9 - cvtest::randReal(rng)*0.6);
|
|
|
|
cam[4] = aspect_ratio*cam[0];
|
|
|
|
|
|
|
|
//Generating distortion coeffs
|
|
|
|
dist[0] = cvtest::randReal(rng)*0.06 - 0.03;
|
|
|
|
dist[1] = cvtest::randReal(rng)*0.06 - 0.03;
|
|
|
|
if( dist[0]*dist[1] > 0 )
|
|
|
|
dist[1] = -dist[1];
|
|
|
|
if( cvtest::randInt(rng)%4 != 0 )
|
|
|
|
{
|
|
|
|
dist[2] = cvtest::randReal(rng)*0.004 - 0.002;
|
|
|
|
dist[3] = cvtest::randReal(rng)*0.004 - 0.002;
|
|
|
|
if (dist_size > 4)
|
|
|
|
dist[4] = cvtest::randReal(rng)*0.004 - 0.002;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
dist[2] = dist[3] = 0;
|
|
|
|
if (dist_size > 4)
|
|
|
|
dist[4] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
//Generating new camera matrix
|
|
|
|
_new_cam = Scalar::all(0);
|
|
|
|
new_cam[8] = 1;
|
|
|
|
|
|
|
|
//new_cam[0] = cam[0];
|
|
|
|
//new_cam[4] = cam[4];
|
|
|
|
//new_cam[2] = cam[2];
|
|
|
|
//new_cam[5] = cam[5];
|
|
|
|
|
|
|
|
new_cam[0] = cam[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[0]; //10%
|
|
|
|
new_cam[4] = cam[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[4]; //10%
|
|
|
|
new_cam[2] = cam[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.width; //15%
|
|
|
|
new_cam[5] = cam[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.height; //15%
|
|
|
|
|
|
|
|
//Generating R matrix
|
|
|
|
Mat _rot(3,3,CV_64F);
|
|
|
|
Mat rotation(1,3,CV_64F);
|
|
|
|
rotation.at<double>(0) = CV_PI/8*(cvtest::randReal(rng) - (double)0.5); // phi
|
|
|
|
rotation.at<double>(1) = CV_PI/8*(cvtest::randReal(rng) - (double)0.5); // ksi
|
|
|
|
rotation.at<double>(2) = CV_PI/3*(cvtest::randReal(rng) - (double)0.5); //khi
|
|
|
|
cvtest::Rodrigues(rotation, _rot);
|
|
|
|
|
|
|
|
//cvSetIdentity(_rot);
|
|
|
|
//copying data
|
|
|
|
cvtest::convert( _camera, test_mat[INPUT][0], test_mat[INPUT][0].type());
|
|
|
|
cvtest::convert( _distort, test_mat[INPUT][1], test_mat[INPUT][1].type());
|
|
|
|
cvtest::convert( _rot, test_mat[INPUT][2], test_mat[INPUT][2].type());
|
|
|
|
cvtest::convert( _new_cam, test_mat[INPUT][3], test_mat[INPUT][3].type());
|
|
|
|
|
|
|
|
zero_distortion = (cvtest::randInt(rng)%2) == 0 ? false : true;
|
|
|
|
zero_new_cam = (cvtest::randInt(rng)%2) == 0 ? false : true;
|
|
|
|
zero_R = (cvtest::randInt(rng)%2) == 0 ? false : true;
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_InitUndistortRectifyMapTest::prepare_to_validation(int/* test_case_idx*/)
|
|
|
|
{
|
|
|
|
cvtest::initUndistortMap(test_mat[INPUT][0],
|
|
|
|
zero_distortion ? cv::Mat() : test_mat[INPUT][1],
|
|
|
|
zero_R ? cv::Mat() : test_mat[INPUT][2],
|
|
|
|
zero_new_cam ? test_mat[INPUT][0] : test_mat[INPUT][3],
|
|
|
|
img_size, test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][1],
|
|
|
|
test_mat[REF_OUTPUT][0].type());
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_InitUndistortRectifyMapTest::run_func()
|
|
|
|
{
|
|
|
|
cv::Mat camera_mat = test_mat[INPUT][0];
|
|
|
|
cv::Mat dist = zero_distortion ? cv::Mat() : test_mat[INPUT][1];
|
|
|
|
cv::Mat R = zero_R ? cv::Mat() : test_mat[INPUT][2];
|
|
|
|
cv::Mat new_cam = zero_new_cam ? cv::Mat() : test_mat[INPUT][3];
|
|
|
|
cv::Mat& mapx = test_mat[OUTPUT][0], &mapy = test_mat[OUTPUT][1];
|
|
|
|
cv::initUndistortRectifyMap(camera_mat,dist,R,new_cam,img_size,map_type,mapx,mapy);
|
|
|
|
}
|
|
|
|
|
|
|
|
double CV_InitUndistortRectifyMapTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
|
|
|
{
|
|
|
|
return 8;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
TEST(Calib3d_DefaultNewCameraMatrix, accuracy) { CV_DefaultNewCameraMatrixTest test; test.safe_run(); }
|
|
|
|
TEST(Calib3d_UndistortPoints, accuracy) { CV_UndistortPointsTest test; test.safe_run(); }
|
|
|
|
TEST(Calib3d_InitUndistortRectifyMap, accuracy) { CV_InitUndistortRectifyMapTest test; test.safe_run(); }
|
|
|
|
|
|
|
|
////////////////////////////// undistort /////////////////////////////////
|
|
|
|
|
|
|
|
static void test_remap( const Mat& src, Mat& dst, const Mat& mapx, const Mat& mapy,
|
|
|
|
Mat* mask=0, int interpolation=CV_INTER_LINEAR )
|
|
|
|
{
|
|
|
|
int x, y, k;
|
|
|
|
int drows = dst.rows, dcols = dst.cols;
|
|
|
|
int srows = src.rows, scols = src.cols;
|
|
|
|
const uchar* sptr0 = src.ptr();
|
|
|
|
int depth = src.depth(), cn = src.channels();
|
|
|
|
int elem_size = (int)src.elemSize();
|
|
|
|
int step = (int)(src.step / CV_ELEM_SIZE(depth));
|
|
|
|
int delta;
|
|
|
|
|
|
|
|
if( interpolation != CV_INTER_CUBIC )
|
|
|
|
{
|
|
|
|
delta = 0;
|
|
|
|
scols -= 1; srows -= 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
delta = 1;
|
|
|
|
scols = MAX(scols - 3, 0);
|
|
|
|
srows = MAX(srows - 3, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
int scols1 = MAX(scols - 2, 0);
|
|
|
|
int srows1 = MAX(srows - 2, 0);
|
|
|
|
|
|
|
|
if( mask )
|
|
|
|
*mask = Scalar::all(0);
|
|
|
|
|
|
|
|
for( y = 0; y < drows; y++ )
|
|
|
|
{
|
|
|
|
uchar* dptr = dst.ptr(y);
|
|
|
|
const float* mx = mapx.ptr<float>(y);
|
|
|
|
const float* my = mapy.ptr<float>(y);
|
|
|
|
uchar* m = mask ? mask->ptr(y) : 0;
|
|
|
|
|
|
|
|
for( x = 0; x < dcols; x++, dptr += elem_size )
|
|
|
|
{
|
|
|
|
float xs = mx[x];
|
|
|
|
float ys = my[x];
|
|
|
|
int ixs = cvFloor(xs);
|
|
|
|
int iys = cvFloor(ys);
|
|
|
|
|
|
|
|
if( (unsigned)(ixs - delta - 1) >= (unsigned)scols1 ||
|
|
|
|
(unsigned)(iys - delta - 1) >= (unsigned)srows1 )
|
|
|
|
{
|
|
|
|
if( m )
|
|
|
|
m[x] = 1;
|
|
|
|
if( (unsigned)(ixs - delta) >= (unsigned)scols ||
|
|
|
|
(unsigned)(iys - delta) >= (unsigned)srows )
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
xs -= ixs;
|
|
|
|
ys -= iys;
|
|
|
|
|
|
|
|
switch( depth )
|
|
|
|
{
|
|
|
|
case CV_8U:
|
|
|
|
{
|
|
|
|
const uchar* sptr = sptr0 + iys*step + ixs*cn;
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
{
|
|
|
|
float v00 = sptr[k];
|
|
|
|
float v01 = sptr[cn + k];
|
|
|
|
float v10 = sptr[step + k];
|
|
|
|
float v11 = sptr[step + cn + k];
|
|
|
|
|
|
|
|
v00 = v00 + xs*(v01 - v00);
|
|
|
|
v10 = v10 + xs*(v11 - v10);
|
|
|
|
v00 = v00 + ys*(v10 - v00);
|
|
|
|
dptr[k] = (uchar)cvRound(v00);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case CV_16U:
|
|
|
|
{
|
|
|
|
const ushort* sptr = (const ushort*)sptr0 + iys*step + ixs*cn;
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
{
|
|
|
|
float v00 = sptr[k];
|
|
|
|
float v01 = sptr[cn + k];
|
|
|
|
float v10 = sptr[step + k];
|
|
|
|
float v11 = sptr[step + cn + k];
|
|
|
|
|
|
|
|
v00 = v00 + xs*(v01 - v00);
|
|
|
|
v10 = v10 + xs*(v11 - v10);
|
|
|
|
v00 = v00 + ys*(v10 - v00);
|
|
|
|
((ushort*)dptr)[k] = (ushort)cvRound(v00);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case CV_32F:
|
|
|
|
{
|
|
|
|
const float* sptr = (const float*)sptr0 + iys*step + ixs*cn;
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
{
|
|
|
|
float v00 = sptr[k];
|
|
|
|
float v01 = sptr[cn + k];
|
|
|
|
float v10 = sptr[step + k];
|
|
|
|
float v11 = sptr[step + cn + k];
|
|
|
|
|
|
|
|
v00 = v00 + xs*(v01 - v00);
|
|
|
|
v10 = v10 + xs*(v11 - v10);
|
|
|
|
v00 = v00 + ys*(v10 - v00);
|
|
|
|
((float*)dptr)[k] = (float)v00;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
assert(0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
class CV_ImgWarpBaseTest : public cvtest::ArrayTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_ImgWarpBaseTest( bool warp_matrix );
|
|
|
|
|
|
|
|
protected:
|
|
|
|
int read_params( const cv::FileStorage& fs );
|
|
|
|
int prepare_test_case( int test_case_idx );
|
|
|
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
|
|
|
void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
|
|
|
|
void fill_array( int test_case_idx, int i, int j, Mat& arr );
|
|
|
|
|
|
|
|
int interpolation;
|
|
|
|
int max_interpolation;
|
|
|
|
double spatial_scale_zoom, spatial_scale_decimate;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
CV_ImgWarpBaseTest::CV_ImgWarpBaseTest( bool warp_matrix )
|
|
|
|
{
|
|
|
|
test_array[INPUT].push_back(NULL);
|
|
|
|
if( warp_matrix )
|
|
|
|
test_array[INPUT].push_back(NULL);
|
|
|
|
test_array[INPUT_OUTPUT].push_back(NULL);
|
|
|
|
test_array[REF_INPUT_OUTPUT].push_back(NULL);
|
|
|
|
max_interpolation = 5;
|
|
|
|
interpolation = 0;
|
|
|
|
element_wise_relative_error = false;
|
|
|
|
spatial_scale_zoom = 0.01;
|
|
|
|
spatial_scale_decimate = 0.005;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_ImgWarpBaseTest::read_params( const cv::FileStorage& fs )
|
|
|
|
{
|
|
|
|
int code = cvtest::ArrayTest::read_params( fs );
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_ImgWarpBaseTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
|
|
|
|
{
|
|
|
|
cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
|
|
|
|
if( CV_MAT_DEPTH(type) == CV_32F )
|
|
|
|
{
|
|
|
|
low = Scalar::all(-10.);
|
|
|
|
high = Scalar::all(10);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_ImgWarpBaseTest::get_test_array_types_and_sizes( int test_case_idx,
|
|
|
|
vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
int depth = cvtest::randInt(rng) % 3;
|
|
|
|
int cn = cvtest::randInt(rng) % 3 + 1;
|
|
|
|
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
|
|
|
depth = depth == 0 ? CV_8U : depth == 1 ? CV_16U : CV_32F;
|
|
|
|
cn += cn == 2;
|
|
|
|
|
|
|
|
types[INPUT][0] = types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(depth, cn);
|
|
|
|
if( test_array[INPUT].size() > 1 )
|
|
|
|
types[INPUT][1] = cvtest::randInt(rng) & 1 ? CV_32FC1 : CV_64FC1;
|
|
|
|
|
|
|
|
interpolation = cvtest::randInt(rng) % max_interpolation;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_ImgWarpBaseTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
|
|
|
|
{
|
|
|
|
if( i != INPUT || j != 0 )
|
|
|
|
cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr );
|
|
|
|
}
|
|
|
|
|
|
|
|
int CV_ImgWarpBaseTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
|
|
|
|
Mat& img = test_mat[INPUT][0];
|
|
|
|
int i, j, cols = img.cols;
|
|
|
|
int type = img.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
|
|
double scale = depth == CV_16U ? 1000. : 255.*0.5;
|
|
|
|
double space_scale = spatial_scale_decimate;
|
|
|
|
vector<float> buffer(img.cols*cn);
|
|
|
|
|
|
|
|
if( code <= 0 )
|
|
|
|
return code;
|
|
|
|
|
|
|
|
if( test_mat[INPUT_OUTPUT][0].cols >= img.cols &&
|
|
|
|
test_mat[INPUT_OUTPUT][0].rows >= img.rows )
|
|
|
|
space_scale = spatial_scale_zoom;
|
|
|
|
|
|
|
|
for( i = 0; i < img.rows; i++ )
|
|
|
|
{
|
|
|
|
uchar* ptr = img.ptr(i);
|
|
|
|
switch( cn )
|
|
|
|
{
|
|
|
|
case 1:
|
|
|
|
for( j = 0; j < cols; j++ )
|
|
|
|
buffer[j] = (float)((sin((i+1)*space_scale)*sin((j+1)*space_scale)+1.)*scale);
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
for( j = 0; j < cols; j++ )
|
|
|
|
{
|
|
|
|
buffer[j*2] = (float)((sin((i+1)*space_scale)+1.)*scale);
|
|
|
|
buffer[j*2+1] = (float)((sin((i+j)*space_scale)+1.)*scale);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
for( j = 0; j < cols; j++ )
|
|
|
|
{
|
|
|
|
buffer[j*3] = (float)((sin((i+1)*space_scale)+1.)*scale);
|
|
|
|
buffer[j*3+1] = (float)((sin(j*space_scale)+1.)*scale);
|
|
|
|
buffer[j*3+2] = (float)((sin((i+j)*space_scale)+1.)*scale);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
for( j = 0; j < cols; j++ )
|
|
|
|
{
|
|
|
|
buffer[j*4] = (float)((sin((i+1)*space_scale)+1.)*scale);
|
|
|
|
buffer[j*4+1] = (float)((sin(j*space_scale)+1.)*scale);
|
|
|
|
buffer[j*4+2] = (float)((sin((i+j)*space_scale)+1.)*scale);
|
|
|
|
buffer[j*4+3] = (float)((sin((i-j)*space_scale)+1.)*scale);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
assert(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*switch( depth )
|
|
|
|
{
|
|
|
|
case CV_8U:
|
|
|
|
for( j = 0; j < cols*cn; j++ )
|
|
|
|
ptr[j] = (uchar)cvRound(buffer[j]);
|
|
|
|
break;
|
|
|
|
case CV_16U:
|
|
|
|
for( j = 0; j < cols*cn; j++ )
|
|
|
|
((ushort*)ptr)[j] = (ushort)cvRound(buffer[j]);
|
|
|
|
break;
|
|
|
|
case CV_32F:
|
|
|
|
for( j = 0; j < cols*cn; j++ )
|
|
|
|
((float*)ptr)[j] = (float)buffer[j];
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
assert(0);
|
|
|
|
}*/
|
|
|
|
cv::Mat src(1, cols*cn, CV_32F, &buffer[0]);
|
|
|
|
cv::Mat dst(1, cols*cn, depth, ptr);
|
|
|
|
src.convertTo(dst, dst.type());
|
|
|
|
}
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class CV_UndistortTest : public CV_ImgWarpBaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_UndistortTest();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
|
|
|
void run_func();
|
|
|
|
int prepare_test_case( int test_case_idx );
|
|
|
|
void prepare_to_validation( int /*test_case_idx*/ );
|
|
|
|
double get_success_error_level( int test_case_idx, int i, int j );
|
|
|
|
void fill_array( int test_case_idx, int i, int j, Mat& arr );
|
|
|
|
|
|
|
|
private:
|
|
|
|
cv::Mat input0;
|
|
|
|
cv::Mat input1;
|
|
|
|
cv::Mat input2;
|
|
|
|
cv::Mat input_new_cam;
|
|
|
|
cv::Mat input_output;
|
|
|
|
|
|
|
|
bool zero_new_cam;
|
|
|
|
bool zero_distortion;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
CV_UndistortTest::CV_UndistortTest() : CV_ImgWarpBaseTest( false )
|
|
|
|
{
|
|
|
|
//spatial_scale_zoom = spatial_scale_decimate;
|
|
|
|
test_array[INPUT].push_back(NULL);
|
|
|
|
test_array[INPUT].push_back(NULL);
|
|
|
|
test_array[INPUT].push_back(NULL);
|
|
|
|
|
|
|
|
spatial_scale_decimate = spatial_scale_zoom;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_UndistortTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
|
|
|
int type = types[INPUT][0];
|
|
|
|
type = CV_MAKETYPE( CV_8U, CV_MAT_CN(type) );
|
|
|
|
types[INPUT][0] = types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = type;
|
|
|
|
types[INPUT][1] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
|
|
|
|
types[INPUT][2] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
|
|
|
|
sizes[INPUT][1] = cvSize(3,3);
|
|
|
|
sizes[INPUT][2] = cvtest::randInt(rng)%2 ? cvSize(4,1) : cvSize(1,4);
|
|
|
|
types[INPUT][3] = types[INPUT][1];
|
|
|
|
sizes[INPUT][3] = sizes[INPUT][1];
|
|
|
|
interpolation = CV_INTER_LINEAR;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_UndistortTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
|
|
|
|
{
|
|
|
|
if( i != INPUT )
|
|
|
|
CV_ImgWarpBaseTest::fill_array( test_case_idx, i, j, arr );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_UndistortTest::run_func()
|
|
|
|
{
|
|
|
|
if (zero_distortion)
|
|
|
|
{
|
|
|
|
cv::undistort(input0,input_output,input1,cv::Mat());
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cv::undistort(input0,input_output,input1,input2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double CV_UndistortTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
|
|
|
{
|
|
|
|
int depth = test_mat[INPUT][0].depth();
|
|
|
|
return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 5e-2;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_UndistortTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
|
|
|
|
|
|
|
|
const Mat& src = test_mat[INPUT][0];
|
|
|
|
double k[4], a[9] = {0,0,0,0,0,0,0,0,1};
|
|
|
|
double new_cam[9] = {0,0,0,0,0,0,0,0,1};
|
|
|
|
double sz = MAX(src.rows, src.cols);
|
|
|
|
|
|
|
|
Mat& _new_cam0 = test_mat[INPUT][3];
|
|
|
|
Mat _new_cam(test_mat[INPUT][3].rows,test_mat[INPUT][3].cols,CV_64F,new_cam);
|
|
|
|
Mat& _a0 = test_mat[INPUT][1];
|
|
|
|
Mat _a(3,3,CV_64F,a);
|
|
|
|
Mat& _k0 = test_mat[INPUT][2];
|
|
|
|
Mat _k(_k0.rows,_k0.cols, CV_MAKETYPE(CV_64F,_k0.channels()),k);
|
|
|
|
|
|
|
|
if( code <= 0 )
|
|
|
|
return code;
|
|
|
|
|
|
|
|
double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7;
|
|
|
|
a[2] = (src.cols - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
|
|
|
|
a[5] = (src.rows - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
|
|
|
|
a[0] = sz/(0.9 - cvtest::randReal(rng)*0.6);
|
|
|
|
a[4] = aspect_ratio*a[0];
|
|
|
|
k[0] = cvtest::randReal(rng)*0.06 - 0.03;
|
|
|
|
k[1] = cvtest::randReal(rng)*0.06 - 0.03;
|
|
|
|
if( k[0]*k[1] > 0 )
|
|
|
|
k[1] = -k[1];
|
|
|
|
if( cvtest::randInt(rng)%4 != 0 )
|
|
|
|
{
|
|
|
|
k[2] = cvtest::randReal(rng)*0.004 - 0.002;
|
|
|
|
k[3] = cvtest::randReal(rng)*0.004 - 0.002;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
k[2] = k[3] = 0;
|
|
|
|
|
|
|
|
new_cam[0] = a[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*a[0]; //10%
|
|
|
|
new_cam[4] = a[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*a[4]; //10%
|
|
|
|
new_cam[2] = a[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*test_mat[INPUT][0].rows; //15%
|
|
|
|
new_cam[5] = a[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*test_mat[INPUT][0].cols; //15%
|
|
|
|
|
|
|
|
_a.convertTo(_a0, _a0.depth());
|
|
|
|
|
|
|
|
zero_distortion = (cvtest::randInt(rng)%2) == 0 ? false : true;
|
|
|
|
_k.convertTo(_k0, _k0.depth());
|
|
|
|
|
|
|
|
zero_new_cam = (cvtest::randInt(rng)%2) == 0 ? false : true;
|
|
|
|
_new_cam.convertTo(_new_cam0, _new_cam0.depth());
|
|
|
|
|
|
|
|
//Testing C++ code
|
|
|
|
//useCPlus = ((cvtest::randInt(rng) % 2)!=0);
|
|
|
|
input0 = test_mat[INPUT][0];
|
|
|
|
input1 = test_mat[INPUT][1];
|
|
|
|
input2 = test_mat[INPUT][2];
|
|
|
|
input_new_cam = test_mat[INPUT][3];
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_UndistortTest::prepare_to_validation( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
Mat& output = test_mat[INPUT_OUTPUT][0];
|
|
|
|
input_output.convertTo(output, output.type());
|
|
|
|
Mat& src = test_mat[INPUT][0];
|
|
|
|
Mat& dst = test_mat[REF_INPUT_OUTPUT][0];
|
|
|
|
Mat& dst0 = test_mat[INPUT_OUTPUT][0];
|
|
|
|
Mat mapx, mapy;
|
|
|
|
cvtest::initUndistortMap( test_mat[INPUT][1], test_mat[INPUT][2],
|
|
|
|
Mat(), Mat(), dst.size(), mapx, mapy, CV_32F );
|
|
|
|
Mat mask( dst.size(), CV_8U );
|
|
|
|
test_remap( src, dst, mapx, mapy, &mask, interpolation );
|
|
|
|
dst.setTo(Scalar::all(0), mask);
|
|
|
|
dst0.setTo(Scalar::all(0), mask);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class CV_UndistortMapTest : public cvtest::ArrayTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_UndistortMapTest();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
|
|
|
void run_func();
|
|
|
|
int prepare_test_case( int test_case_idx );
|
|
|
|
void prepare_to_validation( int /*test_case_idx*/ );
|
|
|
|
double get_success_error_level( int test_case_idx, int i, int j );
|
|
|
|
void fill_array( int test_case_idx, int i, int j, Mat& arr );
|
|
|
|
|
|
|
|
private:
|
|
|
|
bool dualChannel;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
CV_UndistortMapTest::CV_UndistortMapTest()
|
|
|
|
{
|
|
|
|
test_array[INPUT].push_back(NULL);
|
|
|
|
test_array[INPUT].push_back(NULL);
|
|
|
|
test_array[OUTPUT].push_back(NULL);
|
|
|
|
test_array[OUTPUT].push_back(NULL);
|
|
|
|
test_array[REF_OUTPUT].push_back(NULL);
|
|
|
|
test_array[REF_OUTPUT].push_back(NULL);
|
|
|
|
|
|
|
|
element_wise_relative_error = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_UndistortMapTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
|
|
|
int depth = cvtest::randInt(rng)%2 ? CV_64F : CV_32F;
|
|
|
|
|
|
|
|
Size sz = sizes[OUTPUT][0];
|
|
|
|
types[INPUT][0] = types[INPUT][1] = depth;
|
|
|
|
dualChannel = cvtest::randInt(rng)%2 == 0;
|
|
|
|
types[OUTPUT][0] = types[OUTPUT][1] =
|
|
|
|
types[REF_OUTPUT][0] = types[REF_OUTPUT][1] = dualChannel ? CV_32FC2 : CV_32F;
|
|
|
|
sizes[INPUT][0] = cvSize(3,3);
|
|
|
|
sizes[INPUT][1] = cvtest::randInt(rng)%2 ? cvSize(4,1) : cvSize(1,4);
|
|
|
|
|
|
|
|
sz.width = MAX(sz.width,16);
|
|
|
|
sz.height = MAX(sz.height,16);
|
|
|
|
sizes[OUTPUT][0] = sizes[OUTPUT][1] =
|
|
|
|
sizes[REF_OUTPUT][0] = sizes[REF_OUTPUT][1] = sz;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_UndistortMapTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
|
|
|
|
{
|
|
|
|
if( i != INPUT )
|
|
|
|
cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_UndistortMapTest::run_func()
|
|
|
|
{
|
|
|
|
cv::Mat a = test_mat[INPUT][0], k = test_mat[INPUT][1];
|
|
|
|
cv::Mat &mapx = test_mat[OUTPUT][0], &mapy = !dualChannel ? test_mat[OUTPUT][1] : mapx;
|
|
|
|
cv::Size mapsz = test_mat[OUTPUT][0].size();
|
|
|
|
|
|
|
|
cv::initUndistortRectifyMap(a, k, cv::Mat(), a,
|
|
|
|
mapsz, dualChannel ? CV_32FC2 : CV_32FC1,
|
|
|
|
mapx, !dualChannel ? cv::_InputOutputArray(mapy) : cv::noArray());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double CV_UndistortMapTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
|
|
|
{
|
|
|
|
return 1e-3;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_UndistortMapTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
|
|
|
|
const Mat& mapx = test_mat[OUTPUT][0];
|
|
|
|
double k[4], a[9] = {0,0,0,0,0,0,0,0,1};
|
|
|
|
double sz = MAX(mapx.rows, mapx.cols);
|
|
|
|
Mat& _a0 = test_mat[INPUT][0], &_k0 = test_mat[INPUT][1];
|
|
|
|
Mat _a(3,3,CV_64F,a);
|
|
|
|
Mat _k(_k0.rows,_k0.cols, CV_MAKETYPE(CV_64F,_k0.channels()),k);
|
|
|
|
|
|
|
|
if( code <= 0 )
|
|
|
|
return code;
|
|
|
|
|
|
|
|
double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7;
|
|
|
|
a[2] = (mapx.cols - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
|
|
|
|
a[5] = (mapx.rows - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
|
|
|
|
a[0] = sz/(0.9 - cvtest::randReal(rng)*0.6);
|
|
|
|
a[4] = aspect_ratio*a[0];
|
|
|
|
k[0] = cvtest::randReal(rng)*0.06 - 0.03;
|
|
|
|
k[1] = cvtest::randReal(rng)*0.06 - 0.03;
|
|
|
|
if( k[0]*k[1] > 0 )
|
|
|
|
k[1] = -k[1];
|
|
|
|
k[2] = cvtest::randReal(rng)*0.004 - 0.002;
|
|
|
|
k[3] = cvtest::randReal(rng)*0.004 - 0.002;
|
|
|
|
|
|
|
|
_a.convertTo(_a0, _a0.depth());
|
|
|
|
_k.convertTo(_k0, _k0.depth());
|
|
|
|
|
|
|
|
if (dualChannel)
|
|
|
|
{
|
|
|
|
test_mat[REF_OUTPUT][1] = Scalar::all(0);
|
|
|
|
test_mat[OUTPUT][1] = Scalar::all(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_UndistortMapTest::prepare_to_validation( int )
|
|
|
|
{
|
|
|
|
Mat mapx, mapy;
|
|
|
|
cvtest::initUndistortMap( test_mat[INPUT][0], test_mat[INPUT][1], Mat(), Mat(),
|
|
|
|
test_mat[REF_OUTPUT][0].size(), mapx, mapy, CV_32F );
|
|
|
|
if( !dualChannel )
|
|
|
|
{
|
|
|
|
mapx.copyTo(test_mat[REF_OUTPUT][0]);
|
|
|
|
mapy.copyTo(test_mat[REF_OUTPUT][1]);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
Mat p[2] = {mapx, mapy};
|
|
|
|
cv::merge(p, 2, test_mat[REF_OUTPUT][0]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Calib3d_Undistort, accuracy) { CV_UndistortTest test; test.safe_run(); }
|
|
|
|
TEST(Calib3d_InitUndistortMap, accuracy) { CV_UndistortMapTest test; test.safe_run(); }
|
|
|
|
|
|
|
|
TEST(Calib3d_UndistortPoints, inputShape)
|
|
|
|
{
|
|
|
|
//https://github.com/opencv/opencv/issues/14423
|
|
|
|
Matx33d cameraMatrix = Matx33d::eye();
|
|
|
|
{
|
|
|
|
//2xN 1-channel
|
|
|
|
Mat imagePoints(2, 3, CV_32FC1);
|
|
|
|
imagePoints.at<float>(0,0) = 320; imagePoints.at<float>(1,0) = 240;
|
|
|
|
imagePoints.at<float>(0,1) = 0; imagePoints.at<float>(1,1) = 240;
|
|
|
|
imagePoints.at<float>(0,2) = 320; imagePoints.at<float>(1,2) = 0;
|
|
|
|
|
|
|
|
vector<Point2f> normalized;
|
|
|
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray());
|
|
|
|
EXPECT_EQ(static_cast<int>(normalized.size()), imagePoints.cols);
|
|
|
|
for (int i = 0; i < static_cast<int>(normalized.size()); i++) {
|
|
|
|
EXPECT_NEAR(normalized[i].x, imagePoints.at<float>(0,i), std::numeric_limits<float>::epsilon());
|
|
|
|
EXPECT_NEAR(normalized[i].y, imagePoints.at<float>(1,i), std::numeric_limits<float>::epsilon());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
//Nx2 1-channel
|
|
|
|
Mat imagePoints(3, 2, CV_32FC1);
|
|
|
|
imagePoints.at<float>(0,0) = 320; imagePoints.at<float>(0,1) = 240;
|
|
|
|
imagePoints.at<float>(1,0) = 0; imagePoints.at<float>(1,1) = 240;
|
|
|
|
imagePoints.at<float>(2,0) = 320; imagePoints.at<float>(2,1) = 0;
|
|
|
|
|
|
|
|
vector<Point2f> normalized;
|
|
|
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray());
|
|
|
|
EXPECT_EQ(static_cast<int>(normalized.size()), imagePoints.rows);
|
|
|
|
for (int i = 0; i < static_cast<int>(normalized.size()); i++) {
|
|
|
|
EXPECT_NEAR(normalized[i].x, imagePoints.at<float>(i,0), std::numeric_limits<float>::epsilon());
|
|
|
|
EXPECT_NEAR(normalized[i].y, imagePoints.at<float>(i,1), std::numeric_limits<float>::epsilon());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
//1xN 2-channel
|
|
|
|
Mat imagePoints(1, 3, CV_32FC2);
|
|
|
|
imagePoints.at<Vec2f>(0,0) = Vec2f(320, 240);
|
|
|
|
imagePoints.at<Vec2f>(0,1) = Vec2f(0, 240);
|
|
|
|
imagePoints.at<Vec2f>(0,2) = Vec2f(320, 0);
|
|
|
|
|
|
|
|
vector<Point2f> normalized;
|
|
|
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray());
|
|
|
|
EXPECT_EQ(static_cast<int>(normalized.size()), imagePoints.cols);
|
|
|
|
for (int i = 0; i < static_cast<int>(normalized.size()); i++) {
|
|
|
|
EXPECT_NEAR(normalized[i].x, imagePoints.at<Vec2f>(0,i)(0), std::numeric_limits<float>::epsilon());
|
|
|
|
EXPECT_NEAR(normalized[i].y, imagePoints.at<Vec2f>(0,i)(1), std::numeric_limits<float>::epsilon());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
//Nx1 2-channel
|
|
|
|
Mat imagePoints(3, 1, CV_32FC2);
|
|
|
|
imagePoints.at<Vec2f>(0,0) = Vec2f(320, 240);
|
|
|
|
imagePoints.at<Vec2f>(1,0) = Vec2f(0, 240);
|
|
|
|
imagePoints.at<Vec2f>(2,0) = Vec2f(320, 0);
|
|
|
|
|
|
|
|
vector<Point2f> normalized;
|
|
|
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray());
|
|
|
|
EXPECT_EQ(static_cast<int>(normalized.size()), imagePoints.rows);
|
|
|
|
for (int i = 0; i < static_cast<int>(normalized.size()); i++) {
|
|
|
|
EXPECT_NEAR(normalized[i].x, imagePoints.at<Vec2f>(i,0)(0), std::numeric_limits<float>::epsilon());
|
|
|
|
EXPECT_NEAR(normalized[i].y, imagePoints.at<Vec2f>(i,0)(1), std::numeric_limits<float>::epsilon());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
//vector<Point2f>
|
|
|
|
vector<Point2f> imagePoints;
|
|
|
|
imagePoints.push_back(Point2f(320, 240));
|
|
|
|
imagePoints.push_back(Point2f(0, 240));
|
|
|
|
imagePoints.push_back(Point2f(320, 0));
|
|
|
|
|
|
|
|
vector<Point2f> normalized;
|
|
|
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray());
|
|
|
|
EXPECT_EQ(normalized.size(), imagePoints.size());
|
|
|
|
for (int i = 0; i < static_cast<int>(normalized.size()); i++) {
|
|
|
|
EXPECT_NEAR(normalized[i].x, imagePoints[i].x, std::numeric_limits<float>::epsilon());
|
|
|
|
EXPECT_NEAR(normalized[i].y, imagePoints[i].y, std::numeric_limits<float>::epsilon());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
//vector<Point2d>
|
|
|
|
vector<Point2d> imagePoints;
|
|
|
|
imagePoints.push_back(Point2d(320, 240));
|
|
|
|
imagePoints.push_back(Point2d(0, 240));
|
|
|
|
imagePoints.push_back(Point2d(320, 0));
|
|
|
|
|
|
|
|
vector<Point2d> normalized;
|
|
|
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray());
|
|
|
|
EXPECT_EQ(normalized.size(), imagePoints.size());
|
|
|
|
for (int i = 0; i < static_cast<int>(normalized.size()); i++) {
|
|
|
|
EXPECT_NEAR(normalized[i].x, imagePoints[i].x, std::numeric_limits<double>::epsilon());
|
|
|
|
EXPECT_NEAR(normalized[i].y, imagePoints[i].y, std::numeric_limits<double>::epsilon());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Calib3d_UndistortPoints, outputShape)
|
|
|
|
{
|
|
|
|
Matx33d cameraMatrix = Matx33d::eye();
|
|
|
|
{
|
|
|
|
vector<Point2f> imagePoints;
|
|
|
|
imagePoints.push_back(Point2f(320, 240));
|
|
|
|
imagePoints.push_back(Point2f(0, 240));
|
|
|
|
imagePoints.push_back(Point2f(320, 0));
|
|
|
|
|
|
|
|
//Mat --> will be Nx1 2-channel
|
|
|
|
Mat normalized;
|
|
|
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray());
|
|
|
|
EXPECT_EQ(static_cast<int>(imagePoints.size()), normalized.rows);
|
|
|
|
for (int i = 0; i < normalized.rows; i++) {
|
|
|
|
EXPECT_NEAR(normalized.at<Vec2f>(i,0)(0), imagePoints[i].x, std::numeric_limits<float>::epsilon());
|
|
|
|
EXPECT_NEAR(normalized.at<Vec2f>(i,0)(1), imagePoints[i].y, std::numeric_limits<float>::epsilon());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
vector<Point2f> imagePoints;
|
|
|
|
imagePoints.push_back(Point2f(320, 240));
|
|
|
|
imagePoints.push_back(Point2f(0, 240));
|
|
|
|
imagePoints.push_back(Point2f(320, 0));
|
|
|
|
|
|
|
|
//Nx1 2-channel
|
|
|
|
Mat normalized(static_cast<int>(imagePoints.size()), 1, CV_32FC2);
|
|
|
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray());
|
|
|
|
EXPECT_EQ(static_cast<int>(imagePoints.size()), normalized.rows);
|
|
|
|
for (int i = 0; i < normalized.rows; i++) {
|
|
|
|
EXPECT_NEAR(normalized.at<Vec2f>(i,0)(0), imagePoints[i].x, std::numeric_limits<float>::epsilon());
|
|
|
|
EXPECT_NEAR(normalized.at<Vec2f>(i,0)(1), imagePoints[i].y, std::numeric_limits<float>::epsilon());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
vector<Point2f> imagePoints;
|
|
|
|
imagePoints.push_back(Point2f(320, 240));
|
|
|
|
imagePoints.push_back(Point2f(0, 240));
|
|
|
|
imagePoints.push_back(Point2f(320, 0));
|
|
|
|
|
|
|
|
//1xN 2-channel
|
|
|
|
Mat normalized(1, static_cast<int>(imagePoints.size()), CV_32FC2);
|
|
|
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray());
|
|
|
|
EXPECT_EQ(static_cast<int>(imagePoints.size()), normalized.cols);
|
|
|
|
for (int i = 0; i < normalized.rows; i++) {
|
|
|
|
EXPECT_NEAR(normalized.at<Vec2f>(0,i)(0), imagePoints[i].x, std::numeric_limits<float>::epsilon());
|
|
|
|
EXPECT_NEAR(normalized.at<Vec2f>(0,i)(1), imagePoints[i].y, std::numeric_limits<float>::epsilon());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
vector<Point2f> imagePoints;
|
|
|
|
imagePoints.push_back(Point2f(320, 240));
|
|
|
|
imagePoints.push_back(Point2f(0, 240));
|
|
|
|
imagePoints.push_back(Point2f(320, 0));
|
|
|
|
|
|
|
|
//vector<Point2f>
|
|
|
|
vector<Point2f> normalized;
|
|
|
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray());
|
|
|
|
EXPECT_EQ(imagePoints.size(), normalized.size());
|
|
|
|
for (int i = 0; i < static_cast<int>(normalized.size()); i++) {
|
|
|
|
EXPECT_NEAR(normalized[i].x, imagePoints[i].x, std::numeric_limits<float>::epsilon());
|
|
|
|
EXPECT_NEAR(normalized[i].y, imagePoints[i].y, std::numeric_limits<float>::epsilon());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
vector<Point2d> imagePoints;
|
|
|
|
imagePoints.push_back(Point2d(320, 240));
|
|
|
|
imagePoints.push_back(Point2d(0, 240));
|
|
|
|
imagePoints.push_back(Point2d(320, 0));
|
|
|
|
|
|
|
|
//vector<Point2d>
|
|
|
|
vector<Point2d> normalized;
|
|
|
|
undistortPoints(imagePoints, normalized, cameraMatrix, noArray());
|
|
|
|
EXPECT_EQ(imagePoints.size(), normalized.size());
|
|
|
|
for (int i = 0; i < static_cast<int>(normalized.size()); i++) {
|
|
|
|
EXPECT_NEAR(normalized[i].x, imagePoints[i].x, std::numeric_limits<double>::epsilon());
|
|
|
|
EXPECT_NEAR(normalized[i].y, imagePoints[i].y, std::numeric_limits<double>::epsilon());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Calib3d_initUndistortRectifyMap, regression_14467)
|
|
|
|
{
|
|
|
|
Size size_w_h(512 + 3, 512);
|
|
|
|
Matx33f k(
|
|
|
|
6200, 0, size_w_h.width / 2.0f,
|
|
|
|
0, 6200, size_w_h.height / 2.0f,
|
|
|
|
0, 0, 1
|
|
|
|
);
|
|
|
|
|
|
|
|
Mat mesh_uv(size_w_h, CV_32FC2);
|
|
|
|
for (int i = 0; i < size_w_h.height; i++)
|
|
|
|
{
|
|
|
|
for (int j = 0; j < size_w_h.width; j++)
|
|
|
|
{
|
|
|
|
mesh_uv.at<Vec2f>(i, j) = Vec2f((float)j, (float)i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Matx<double, 1, 14> d(
|
|
|
|
0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0.09, 0.0
|
|
|
|
);
|
|
|
|
Mat mapxy, dst;
|
|
|
|
initUndistortRectifyMap(k, d, noArray(), k, size_w_h, CV_32FC2, mapxy, noArray());
|
|
|
|
undistortPoints(mapxy.reshape(2, (int)mapxy.total()), dst, k, d, noArray(), k);
|
|
|
|
dst = dst.reshape(2, mapxy.rows);
|
|
|
|
EXPECT_LE(cvtest::norm(dst, mesh_uv, NORM_INF), 1e-3);
|
|
|
|
}
|
|
|
|
|
|
|
|
}} // namespace
|