|
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
#include "opencv2/highgui.hpp"
|
|
|
|
#include "opencv2/videoio.hpp"
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
|
|
|
|
int main( int argc, char** argv )
|
|
|
|
{
|
|
|
|
VideoCapture capture;
|
|
|
|
Mat log_polar_img, lin_polar_img, recovered_log_polar, recovered_lin_polar_img;
|
|
|
|
|
|
|
|
CommandLineParser parser(argc, argv, "{@input|0| camera device number or video file path}");
|
|
|
|
parser.about("\nThis program illustrates usage of Linear-Polar and Log-Polar image transforms\n");
|
|
|
|
parser.printMessage();
|
|
|
|
std::string arg = parser.get<std::string>("@input");
|
|
|
|
|
|
|
|
if( arg.size() == 1 && isdigit(arg[0]) )
|
|
|
|
capture.open( arg[0] - '0' );
|
|
|
|
else
|
|
|
|
capture.open(samples::findFileOrKeep(arg));
|
|
|
|
|
|
|
|
if( !capture.isOpened() )
|
|
|
|
{
|
|
|
|
fprintf(stderr,"Could not initialize capturing...\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
namedWindow( "Linear-Polar", WINDOW_AUTOSIZE );
|
|
|
|
namedWindow( "Log-Polar", WINDOW_AUTOSIZE);
|
|
|
|
namedWindow( "Recovered Linear-Polar", WINDOW_AUTOSIZE);
|
|
|
|
namedWindow( "Recovered Log-Polar", WINDOW_AUTOSIZE);
|
|
|
|
|
|
|
|
moveWindow( "Linear-Polar", 20,20 );
|
|
|
|
moveWindow( "Log-Polar", 700,20 );
|
|
|
|
moveWindow( "Recovered Linear-Polar", 20, 350 );
|
|
|
|
moveWindow( "Recovered Log-Polar", 700, 350 );
|
|
|
|
int flags = INTER_LINEAR + WARP_FILL_OUTLIERS;
|
|
|
|
Mat src;
|
|
|
|
for(;;)
|
|
|
|
{
|
|
|
|
capture >> src;
|
|
|
|
|
|
|
|
if(src.empty() )
|
|
|
|
break;
|
|
|
|
|
|
|
|
Point2f center( (float)src.cols / 2, (float)src.rows / 2 );
|
|
|
|
double maxRadius = 0.7*min(center.y, center.x);
|
|
|
|
|
|
|
|
#if 0 //deprecated
|
|
|
|
double M = frame.cols / log(maxRadius);
|
|
|
|
logPolar(frame, log_polar_img, center, M, flags);
|
|
|
|
linearPolar(frame, lin_polar_img, center, maxRadius, flags);
|
|
|
|
|
|
|
|
logPolar(log_polar_img, recovered_log_polar, center, M, flags + WARP_INVERSE_MAP);
|
|
|
|
linearPolar(lin_polar_img, recovered_lin_polar_img, center, maxRadius, flags + WARP_INVERSE_MAP);
|
|
|
|
#endif
|
|
|
|
//! [InverseMap]
|
|
|
|
// direct transform
|
|
|
|
warpPolar(src, lin_polar_img, Size(),center, maxRadius, flags); // linear Polar
|
|
|
|
warpPolar(src, log_polar_img, Size(),center, maxRadius, flags + WARP_POLAR_LOG); // semilog Polar
|
|
|
|
// inverse transform
|
|
|
|
warpPolar(lin_polar_img, recovered_lin_polar_img, src.size(), center, maxRadius, flags + WARP_INVERSE_MAP);
|
|
|
|
warpPolar(log_polar_img, recovered_log_polar, src.size(), center, maxRadius, flags + WARP_POLAR_LOG + WARP_INVERSE_MAP);
|
|
|
|
//! [InverseMap]
|
|
|
|
|
|
|
|
// Below is the reverse transformation for (rho, phi)->(x, y) :
|
|
|
|
Mat dst;
|
|
|
|
if (flags & WARP_POLAR_LOG)
|
|
|
|
dst = log_polar_img;
|
|
|
|
else
|
|
|
|
dst = lin_polar_img;
|
|
|
|
//get a point from the polar image
|
|
|
|
int rho = cvRound(dst.cols * 0.75);
|
|
|
|
int phi = cvRound(dst.rows / 2.0);
|
|
|
|
|
|
|
|
//! [InverseCoordinate]
|
|
|
|
double angleRad, magnitude;
|
|
|
|
double Kangle = dst.rows / CV_2PI;
|
|
|
|
angleRad = phi / Kangle;
|
|
|
|
if (flags & WARP_POLAR_LOG)
|
|
|
|
{
|
|
|
|
double Klog = dst.cols / std::log(maxRadius);
|
|
|
|
magnitude = std::exp(rho / Klog);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
double Klin = dst.cols / maxRadius;
|
|
|
|
magnitude = rho / Klin;
|
|
|
|
}
|
|
|
|
int x = cvRound(center.x + magnitude * cos(angleRad));
|
|
|
|
int y = cvRound(center.y + magnitude * sin(angleRad));
|
|
|
|
//! [InverseCoordinate]
|
|
|
|
drawMarker(src, Point(x, y), Scalar(0, 255, 0));
|
|
|
|
drawMarker(dst, Point(rho, phi), Scalar(0, 255, 0));
|
|
|
|
|
|
|
|
imshow("Src frame", src);
|
|
|
|
imshow("Log-Polar", log_polar_img);
|
|
|
|
imshow("Linear-Polar", lin_polar_img);
|
|
|
|
imshow("Recovered Linear-Polar", recovered_lin_polar_img );
|
|
|
|
imshow("Recovered Log-Polar", recovered_log_polar );
|
|
|
|
|
|
|
|
if( waitKey(10) >= 0 )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|