Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

148 lines
6.0 KiB

#!/usr/bin/env python
'''
CUDA-accelerated Computer Vision functions
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
import os
from tests_common import NewOpenCVTests, unittest
class cuda_test(NewOpenCVTests):
def setUp(self):
super(cuda_test, self).setUp()
if not cv.cuda.getCudaEnabledDeviceCount():
self.skipTest("No CUDA-capable device is detected")
def test_cuda_upload_download(self):
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
cuMat = cv.cuda_GpuMat()
cuMat.upload(npMat)
self.assertTrue(np.allclose(cuMat.download(), npMat))
def test_cuda_upload_download_stream(self):
stream = cv.cuda_Stream()
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
cuMat = cv.cuda_GpuMat(128,128, cv.CV_8UC3)
cuMat.upload(npMat, stream)
npMat2 = cuMat.download(stream=stream)
stream.waitForCompletion()
self.assertTrue(np.allclose(npMat2, npMat))
def test_cuda_interop(self):
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
cuMat = cv.cuda_GpuMat()
cuMat.upload(npMat)
self.assertTrue(cuMat.cudaPtr() != 0)
cuMatFromPtrSz = cv.cuda.createGpuMatFromCudaMemory(cuMat.size(),cuMat.type(),cuMat.cudaPtr(), cuMat.step)
self.assertTrue(cuMat.cudaPtr() == cuMatFromPtrSz.cudaPtr())
cuMatFromPtrRc = cv.cuda.createGpuMatFromCudaMemory(cuMat.size()[1],cuMat.size()[0],cuMat.type(),cuMat.cudaPtr(), cuMat.step)
self.assertTrue(cuMat.cudaPtr() == cuMatFromPtrRc.cudaPtr())
stream = cv.cuda_Stream()
self.assertTrue(stream.cudaPtr() != 0)
streamFromPtr = cv.cuda.wrapStream(stream.cudaPtr())
self.assertTrue(stream.cudaPtr() == streamFromPtr.cudaPtr())
asyncstream = cv.cuda_Stream(1) # cudaStreamNonBlocking
self.assertTrue(asyncstream.cudaPtr() != 0)
def test_cuda_buffer_pool(self):
cv.cuda.setBufferPoolUsage(True)
cv.cuda.setBufferPoolConfig(cv.cuda.getDevice(), 1024 * 1024 * 64, 2)
stream_a = cv.cuda.Stream()
pool_a = cv.cuda.BufferPool(stream_a)
cuMat = pool_a.getBuffer(1024, 1024, cv.CV_8UC3)
cv.cuda.setBufferPoolUsage(False)
self.assertEqual(cuMat.size(), (1024, 1024))
self.assertEqual(cuMat.type(), cv.CV_8UC3)
def test_cuda_release(self):
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
cuMat = cv.cuda_GpuMat()
cuMat.upload(npMat)
cuMat.release()
self.assertTrue(cuMat.cudaPtr() == 0)
self.assertTrue(cuMat.step == 0)
self.assertTrue(cuMat.size() == (0, 0))
def test_cuda_convertTo(self):
# setup
npMat_8UC4 = (np.random.random((128, 128, 4)) * 255).astype(np.uint8)
npMat_32FC4 = npMat_8UC4.astype(np.single)
new_type = cv.CV_32FC4
# sync
# in/out
cuMat_8UC4 = cv.cuda_GpuMat(npMat_8UC4)
cuMat_32FC4 = cv.cuda_GpuMat(cuMat_8UC4.size(), new_type)
cuMat_32FC4_out = cuMat_8UC4.convertTo(new_type, cuMat_32FC4)
self.assertTrue(cuMat_32FC4.cudaPtr() == cuMat_32FC4_out.cudaPtr())
npMat_32FC4_out = cuMat_32FC4.download()
self.assertTrue(np.array_equal(npMat_32FC4, npMat_32FC4_out))
# out
cuMat_32FC4_out = cuMat_8UC4.convertTo(new_type)
npMat_32FC4_out = cuMat_32FC4.download()
self.assertTrue(np.array_equal(npMat_32FC4, npMat_32FC4_out))
# async
stream = cv.cuda.Stream()
cuMat_32FC4 = cv.cuda_GpuMat(cuMat_8UC4.size(), new_type)
cuMat_32FC4_out = cuMat_8UC4.convertTo(new_type, cuMat_32FC4)
# in/out
cuMat_32FC4_out = cuMat_8UC4.convertTo(new_type, 1, 0, stream, cuMat_32FC4)
self.assertTrue(cuMat_32FC4.cudaPtr() == cuMat_32FC4_out.cudaPtr())
npMat_32FC4_out = cuMat_32FC4.download(stream)
stream.waitForCompletion()
self.assertTrue(np.array_equal(npMat_32FC4, npMat_32FC4_out))
# out
cuMat_32FC4_out = cuMat_8UC4.convertTo(new_type, 1, 0, stream)
npMat_32FC4_out = cuMat_32FC4.download(stream)
stream.waitForCompletion()
self.assertTrue(np.array_equal(npMat_32FC4, npMat_32FC4_out))
def test_cuda_copyTo(self):
# setup
npMat_8UC4 = (np.random.random((128, 128, 4)) * 255).astype(np.uint8)
# sync
# in/out
cuMat_8UC4 = cv.cuda_GpuMat(npMat_8UC4)
cuMat_8UC4_dst = cv.cuda_GpuMat(cuMat_8UC4.size(), cuMat_8UC4.type())
cuMat_8UC4_out = cuMat_8UC4.copyTo(cuMat_8UC4_dst)
self.assertTrue(cuMat_8UC4_out.cudaPtr() == cuMat_8UC4_dst.cudaPtr())
npMat_8UC4_out = cuMat_8UC4_out.download()
self.assertTrue(np.array_equal(npMat_8UC4, npMat_8UC4_out))
# out
cuMat_8UC4_out = cuMat_8UC4.copyTo()
npMat_8UC4_out = cuMat_8UC4_out.download()
self.assertTrue(np.array_equal(npMat_8UC4, npMat_8UC4_out))
# async
stream = cv.cuda.Stream()
# in/out
cuMat_8UC4 = cv.cuda_GpuMat(npMat_8UC4)
cuMat_8UC4_dst = cv.cuda_GpuMat(cuMat_8UC4.size(), cuMat_8UC4.type())
cuMat_8UC4_out = cuMat_8UC4.copyTo(cuMat_8UC4_dst, stream)
self.assertTrue(cuMat_8UC4_out.cudaPtr() == cuMat_8UC4_out.cudaPtr())
npMat_8UC4_out = cuMat_8UC4_dst.download(stream)
stream.waitForCompletion()
self.assertTrue(np.array_equal(npMat_8UC4, npMat_8UC4_out))
# out
cuMat_8UC4_out = cuMat_8UC4.copyTo(stream)
npMat_8UC4_out = cuMat_8UC4_out.download(stream)
stream.waitForCompletion()
self.assertTrue(np.array_equal(npMat_8UC4, npMat_8UC4_out))
def test_cuda_denoising(self):
self.assertEqual(True, hasattr(cv.cuda, 'fastNlMeansDenoising'))
self.assertEqual(True, hasattr(cv.cuda, 'fastNlMeansDenoisingColored'))
self.assertEqual(True, hasattr(cv.cuda, 'nonLocalMeans'))
if __name__ == '__main__':
NewOpenCVTests.bootstrap()