|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
|
|
|
|
/*
|
|
|
|
Test for Tensorflow models loading
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include "npy_blob.hpp"
|
|
|
|
|
|
|
|
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
|
|
|
|
|
|
|
|
namespace opencv_test
|
|
|
|
{
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::dnn;
|
|
|
|
|
|
|
|
template<typename TString>
|
|
|
|
static std::string _tf(TString filename)
|
|
|
|
{
|
|
|
|
return (getOpenCVExtraDir() + "/dnn/") + filename;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Test_TensorFlow, read_inception)
|
|
|
|
{
|
|
|
|
Net net;
|
|
|
|
{
|
|
|
|
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
|
|
|
|
net = readNetFromTensorflow(model);
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
}
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
|
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png"));
|
|
|
|
ASSERT_TRUE(!sample.empty());
|
|
|
|
Mat input;
|
|
|
|
resize(sample, input, Size(224, 224));
|
|
|
|
input -= 128; // mean sub
|
|
|
|
|
|
|
|
Mat inputBlob = blobFromImage(input);
|
|
|
|
|
|
|
|
net.setInput(inputBlob, "input");
|
|
|
|
Mat out = net.forward("softmax2");
|
|
|
|
|
|
|
|
std::cout << out.dims << std::endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Test_TensorFlow, inception_accuracy)
|
|
|
|
{
|
|
|
|
Net net;
|
|
|
|
{
|
|
|
|
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
|
|
|
|
net = readNetFromTensorflow(model);
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
}
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
|
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png"));
|
|
|
|
ASSERT_TRUE(!sample.empty());
|
|
|
|
resize(sample, sample, Size(224, 224));
|
|
|
|
Mat inputBlob = blobFromImage(sample);
|
|
|
|
|
|
|
|
net.setInput(inputBlob, "input");
|
|
|
|
Mat out = net.forward("softmax2");
|
|
|
|
|
|
|
|
Mat ref = blobFromNPY(_tf("tf_inception_prob.npy"));
|
|
|
|
|
|
|
|
normAssert(ref, out);
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::string path(const std::string& file)
|
|
|
|
{
|
|
|
|
return findDataFile("dnn/tensorflow/" + file, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
class Test_TensorFlow_layers : public DNNTestLayer
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
void runTensorFlowNet(const std::string& prefix, bool hasText = false,
|
|
|
|
double l1 = 0.0, double lInf = 0.0, bool memoryLoad = false)
|
|
|
|
{
|
|
|
|
std::string netPath = path(prefix + "_net.pb");
|
|
|
|
std::string netConfig = (hasText ? path(prefix + "_net.pbtxt") : "");
|
|
|
|
std::string inpPath = path(prefix + "_in.npy");
|
|
|
|
std::string outPath = path(prefix + "_out.npy");
|
|
|
|
|
|
|
|
cv::Mat input = blobFromNPY(inpPath);
|
|
|
|
cv::Mat ref = blobFromNPY(outPath);
|
|
|
|
checkBackend(&input, &ref);
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
if (memoryLoad)
|
|
|
|
{
|
|
|
|
// Load files into a memory buffers
|
|
|
|
string dataModel;
|
|
|
|
ASSERT_TRUE(readFileInMemory(netPath, dataModel));
|
|
|
|
|
|
|
|
string dataConfig;
|
|
|
|
if (hasText)
|
|
|
|
ASSERT_TRUE(readFileInMemory(netConfig, dataConfig));
|
|
|
|
|
|
|
|
net = readNetFromTensorflow(dataModel.c_str(), dataModel.size(),
|
|
|
|
dataConfig.c_str(), dataConfig.size());
|
|
|
|
}
|
|
|
|
else
|
|
|
|
net = readNetFromTensorflow(netPath, netConfig);
|
|
|
|
|
|
|
|
ASSERT_FALSE(net.empty());
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
net.setInput(input);
|
|
|
|
cv::Mat output = net.forward();
|
|
|
|
normAssert(ref, output, "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, conv)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("single_conv");
|
|
|
|
runTensorFlowNet("atrous_conv2d_valid");
|
|
|
|
runTensorFlowNet("atrous_conv2d_same");
|
|
|
|
runTensorFlowNet("depthwise_conv2d");
|
|
|
|
runTensorFlowNet("keras_atrous_conv2d_same");
|
|
|
|
runTensorFlowNet("conv_pool_nchw");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, padding)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("padding_same");
|
|
|
|
runTensorFlowNet("padding_valid");
|
|
|
|
runTensorFlowNet("spatial_padding");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, eltwise_add_mul)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("eltwise_add_mul");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, pad_and_concat)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE < 2018030000
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
|
|
|
throw SkipTestException("Test is enabled starts from OpenVINO 2018R3");
|
|
|
|
#endif
|
|
|
|
runTensorFlowNet("pad_and_concat");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, concat_axis_1)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("concat_axis_1");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, batch_norm)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("batch_norm");
|
|
|
|
runTensorFlowNet("batch_norm", false, 0.0, 0.0, true);
|
|
|
|
runTensorFlowNet("fused_batch_norm");
|
|
|
|
runTensorFlowNet("fused_batch_norm", false, 0.0, 0.0, true);
|
|
|
|
runTensorFlowNet("batch_norm_text", true);
|
|
|
|
runTensorFlowNet("batch_norm_text", true, 0.0, 0.0, true);
|
|
|
|
runTensorFlowNet("unfused_batch_norm");
|
|
|
|
runTensorFlowNet("fused_batch_norm_no_gamma");
|
|
|
|
runTensorFlowNet("unfused_batch_norm_no_gamma");
|
|
|
|
runTensorFlowNet("mvn_batch_norm");
|
|
|
|
runTensorFlowNet("mvn_batch_norm_1x1");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, pooling)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("max_pool_even");
|
|
|
|
runTensorFlowNet("max_pool_odd_valid");
|
|
|
|
runTensorFlowNet("max_pool_odd_same");
|
|
|
|
runTensorFlowNet("reduce_mean"); // an average pooling over all spatial dimensions.
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: fix tests and replace to pooling
|
|
|
|
TEST_P(Test_TensorFlow_layers, ave_pool_same)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE < 2018030000
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
|
|
|
throw SkipTestException("Test is enabled starts from OpenVINO 2018R3");
|
|
|
|
#endif
|
|
|
|
runTensorFlowNet("ave_pool_same");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, deconvolution)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("deconvolution");
|
|
|
|
runTensorFlowNet("deconvolution_same");
|
|
|
|
runTensorFlowNet("deconvolution_stride_2_same");
|
|
|
|
runTensorFlowNet("deconvolution_adj_pad_valid");
|
|
|
|
runTensorFlowNet("deconvolution_adj_pad_same");
|
|
|
|
runTensorFlowNet("keras_deconv_valid");
|
|
|
|
runTensorFlowNet("keras_deconv_same");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, matmul)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
throw SkipTestException("");
|
|
|
|
runTensorFlowNet("matmul");
|
|
|
|
runTensorFlowNet("nhwc_reshape_matmul");
|
|
|
|
runTensorFlowNet("nhwc_transpose_reshape_matmul");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, reshape)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
|
|
|
throw SkipTestException("");
|
|
|
|
runTensorFlowNet("shift_reshape_no_reorder");
|
|
|
|
runTensorFlowNet("reshape_no_reorder");
|
|
|
|
runTensorFlowNet("reshape_reduce");
|
|
|
|
runTensorFlowNet("reshape_as_shape");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, flatten)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE &&
|
|
|
|
(target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD))
|
|
|
|
throw SkipTestException("");
|
|
|
|
runTensorFlowNet("flatten", true);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, unfused_flatten)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE &&
|
|
|
|
(target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
|
|
|
throw SkipTestException("");
|
|
|
|
runTensorFlowNet("unfused_flatten");
|
|
|
|
runTensorFlowNet("unfused_flatten_unknown_batch");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, leaky_relu)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("leaky_relu_order1");
|
|
|
|
runTensorFlowNet("leaky_relu_order2");
|
|
|
|
runTensorFlowNet("leaky_relu_order3");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, l2_normalize)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("l2_normalize");
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: fix it and add to l2_normalize
|
|
|
|
TEST_P(Test_TensorFlow_layers, l2_normalize_3d)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU)
|
|
|
|
throw SkipTestException("");
|
|
|
|
runTensorFlowNet("l2_normalize_3d");
|
|
|
|
}
|
|
|
|
|
|
|
|
class Test_TensorFlow_nets : public DNNTestLayer {};
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_nets, MobileNet_SSD)
|
|
|
|
{
|
|
|
|
checkBackend();
|
|
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) ||
|
|
|
|
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
|
|
|
|
throw SkipTestException("");
|
|
|
|
|
|
|
|
std::string netPath = findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false);
|
|
|
|
std::string netConfig = findDataFile("dnn/ssd_mobilenet_v1_coco.pbtxt", false);
|
|
|
|
std::string imgPath = findDataFile("dnn/street.png", false);
|
|
|
|
|
|
|
|
Mat inp;
|
|
|
|
resize(imread(imgPath), inp, Size(300, 300));
|
|
|
|
inp = blobFromImage(inp, 1.0f / 127.5, Size(), Scalar(127.5, 127.5, 127.5), true);
|
|
|
|
|
|
|
|
std::vector<String> outNames(3);
|
|
|
|
outNames[0] = "concat";
|
|
|
|
outNames[1] = "concat_1";
|
|
|
|
outNames[2] = "detection_out";
|
|
|
|
|
|
|
|
std::vector<Mat> refs(outNames.size());
|
|
|
|
for (int i = 0; i < outNames.size(); ++i)
|
|
|
|
{
|
|
|
|
std::string path = findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco." + outNames[i] + ".npy", false);
|
|
|
|
refs[i] = blobFromNPY(path);
|
|
|
|
}
|
|
|
|
|
|
|
|
Net net = readNetFromTensorflow(netPath, netConfig);
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
net.setInput(inp);
|
|
|
|
|
|
|
|
std::vector<Mat> output;
|
|
|
|
net.forward(output, outNames);
|
|
|
|
|
|
|
|
normAssert(refs[0].reshape(1, 1), output[0].reshape(1, 1), "", 1e-5, 1.5e-4);
|
|
|
|
normAssert(refs[1].reshape(1, 1), output[1].reshape(1, 1), "", 1e-5, 3e-4);
|
|
|
|
normAssertDetections(refs[2], output[2], "", 0.2);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_nets, Inception_v2_SSD)
|
|
|
|
{
|
|
|
|
checkBackend();
|
|
|
|
std::string proto = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", false);
|
|
|
|
std::string model = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pb", false);
|
|
|
|
|
|
|
|
Net net = readNetFromTensorflow(model, proto);
|
|
|
|
Mat img = imread(findDataFile("dnn/street.png", false));
|
|
|
|
Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false);
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
net.setInput(blob);
|
|
|
|
// Output has shape 1x1xNx7 where N - number of detections.
|
|
|
|
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
|
|
|
|
Mat out = net.forward();
|
|
|
|
Mat ref = (Mat_<float>(5, 7) << 0, 1, 0.90176028, 0.19872092, 0.36311883, 0.26461923, 0.63498729,
|
|
|
|
0, 3, 0.93569964, 0.64865261, 0.45906419, 0.80675775, 0.65708131,
|
|
|
|
0, 3, 0.75838411, 0.44668293, 0.45907149, 0.49459291, 0.52197015,
|
|
|
|
0, 10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527,
|
|
|
|
0, 10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384);
|
|
|
|
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0097 : default_l1;
|
|
|
|
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.09 : default_lInf;
|
|
|
|
normAssertDetections(ref, out, "", 0.5, scoreDiff, iouDiff);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD)
|
|
|
|
{
|
|
|
|
checkBackend();
|
|
|
|
|
|
|
|
std::string model = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", false);
|
|
|
|
std::string proto = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt", false);
|
|
|
|
|
|
|
|
Net net = readNetFromTensorflow(model, proto);
|
|
|
|
Mat img = imread(findDataFile("dnn/dog416.png", false));
|
|
|
|
Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false);
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
net.setInput(blob);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco_2017_11_17.detection_out.npy"));
|
|
|
|
float scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 7e-3 : 1e-5;
|
|
|
|
float iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0098 : 1e-3;
|
|
|
|
normAssertDetections(ref, out, "", 0.3, scoreDiff, iouDiff);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_nets, Faster_RCNN)
|
|
|
|
{
|
|
|
|
static std::string names[] = {"faster_rcnn_inception_v2_coco_2018_01_28",
|
|
|
|
"faster_rcnn_resnet50_coco_2018_01_28"};
|
|
|
|
|
|
|
|
checkBackend();
|
|
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) ||
|
|
|
|
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
|
|
|
|
throw SkipTestException("");
|
|
|
|
|
|
|
|
for (int i = 1; i < 2; ++i)
|
|
|
|
{
|
|
|
|
std::string proto = findDataFile("dnn/" + names[i] + ".pbtxt", false);
|
|
|
|
std::string model = findDataFile("dnn/" + names[i] + ".pb", false);
|
|
|
|
|
|
|
|
Net net = readNetFromTensorflow(model, proto);
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
Mat img = imread(findDataFile("dnn/dog416.png", false));
|
|
|
|
Mat blob = blobFromImage(img, 1.0f, Size(800, 600), Scalar(), true, false);
|
|
|
|
|
|
|
|
net.setInput(blob);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/" + names[i] + ".detection_out.npy"));
|
|
|
|
normAssertDetections(ref, out, names[i].c_str(), 0.3);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD_PPN)
|
|
|
|
{
|
|
|
|
checkBackend();
|
|
|
|
std::string proto = findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pbtxt", false);
|
|
|
|
std::string model = findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pb", false);
|
|
|
|
|
|
|
|
Net net = readNetFromTensorflow(model, proto);
|
|
|
|
Mat img = imread(findDataFile("dnn/dog416.png", false));
|
|
|
|
Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_ppn_coco.detection_out.npy", false));
|
|
|
|
Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false);
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
net.setInput(blob);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.011 : default_l1;
|
|
|
|
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.021 : default_lInf;
|
|
|
|
normAssertDetections(ref, out, "", 0.4, scoreDiff, iouDiff);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8)
|
|
|
|
{
|
|
|
|
checkBackend();
|
|
|
|
std::string proto = findDataFile("dnn/opencv_face_detector.pbtxt", false);
|
|
|
|
std::string model = findDataFile("dnn/opencv_face_detector_uint8.pb", false);
|
|
|
|
|
|
|
|
Net net = readNetFromTensorflow(model, proto);
|
|
|
|
Mat img = imread(findDataFile("gpu/lbpcascade/er.png", false));
|
|
|
|
Mat blob = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false);
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
net.setInput(blob);
|
|
|
|
// Output has shape 1x1xNx7 where N - number of detections.
|
|
|
|
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
// References are from test for Caffe model.
|
|
|
|
Mat ref = (Mat_<float>(6, 7) << 0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631,
|
|
|
|
0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168,
|
|
|
|
0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290,
|
|
|
|
0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477,
|
|
|
|
0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494,
|
|
|
|
0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801);
|
|
|
|
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 4e-3 : 3.4e-3;
|
|
|
|
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.024 : 1e-2;
|
|
|
|
normAssertDetections(ref, out, "", 0.9, scoreDiff, iouDiff);
|
|
|
|
}
|
|
|
|
|
|
|
|
// inp = cv.imread('opencv_extra/testdata/cv/ximgproc/sources/08.png')
|
|
|
|
// inp = inp[:,:,[2, 1, 0]].astype(np.float32).reshape(1, 512, 512, 3)
|
|
|
|
// outs = sess.run([sess.graph.get_tensor_by_name('feature_fusion/Conv_7/Sigmoid:0'),
|
|
|
|
// sess.graph.get_tensor_by_name('feature_fusion/concat_3:0')],
|
|
|
|
// feed_dict={'input_images:0': inp})
|
|
|
|
// scores = np.ascontiguousarray(outs[0].transpose(0, 3, 1, 2))
|
|
|
|
// geometry = np.ascontiguousarray(outs[1].transpose(0, 3, 1, 2))
|
|
|
|
// np.save('east_text_detection.scores.npy', scores)
|
|
|
|
// np.save('east_text_detection.geometry.npy', geometry)
|
|
|
|
TEST_P(Test_TensorFlow_nets, EAST_text_detection)
|
|
|
|
{
|
|
|
|
checkBackend();
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE < 2018030000
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
|
|
|
throw SkipTestException("Test is enabled starts from OpenVINO 2018R3");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
std::string netPath = findDataFile("dnn/frozen_east_text_detection.pb", false);
|
|
|
|
std::string imgPath = findDataFile("cv/ximgproc/sources/08.png", false);
|
|
|
|
std::string refScoresPath = findDataFile("dnn/east_text_detection.scores.npy", false);
|
|
|
|
std::string refGeometryPath = findDataFile("dnn/east_text_detection.geometry.npy", false);
|
|
|
|
|
|
|
|
Net net = readNet(findDataFile("dnn/frozen_east_text_detection.pb", false));
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
|
|
|
Mat img = imread(imgPath);
|
|
|
|
Mat inp = blobFromImage(img, 1.0, Size(), Scalar(123.68, 116.78, 103.94), true, false);
|
|
|
|
net.setInput(inp);
|
|
|
|
|
|
|
|
std::vector<Mat> outs;
|
|
|
|
std::vector<String> outNames(2);
|
|
|
|
outNames[0] = "feature_fusion/Conv_7/Sigmoid";
|
|
|
|
outNames[1] = "feature_fusion/concat_3";
|
|
|
|
net.forward(outs, outNames);
|
|
|
|
|
|
|
|
Mat scores = outs[0];
|
|
|
|
Mat geometry = outs[1];
|
|
|
|
|
|
|
|
// Scores are in range [0, 1]. Geometry values are in range [-0.23, 290]
|
|
|
|
double l1_scores = default_l1, lInf_scores = default_lInf;
|
|
|
|
double l1_geometry = default_l1, lInf_geometry = default_lInf;
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
{
|
|
|
|
lInf_scores = 0.11;
|
|
|
|
l1_geometry = 0.28; lInf_geometry = 5.94;
|
|
|
|
}
|
|
|
|
else if (target == DNN_TARGET_MYRIAD)
|
|
|
|
{
|
|
|
|
lInf_scores = 0.214;
|
|
|
|
l1_geometry = 0.47; lInf_geometry = 15.34;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
l1_geometry = 1e-4, lInf_geometry = 3e-3;
|
|
|
|
}
|
|
|
|
normAssert(scores, blobFromNPY(refScoresPath), "scores", l1_scores, lInf_scores);
|
|
|
|
normAssert(geometry, blobFromNPY(refGeometryPath), "geometry", l1_geometry, lInf_geometry);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_nets, dnnBackendsAndTargets());
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, fp16_weights)
|
|
|
|
{
|
|
|
|
const float l1 = 0.00071;
|
|
|
|
const float lInf = 0.012;
|
|
|
|
runTensorFlowNet("fp16_single_conv", false, l1, lInf);
|
|
|
|
runTensorFlowNet("fp16_deconvolution", false, l1, lInf);
|
|
|
|
runTensorFlowNet("fp16_max_pool_odd_same", false, l1, lInf);
|
|
|
|
runTensorFlowNet("fp16_padding_valid", false, l1, lInf);
|
|
|
|
runTensorFlowNet("fp16_eltwise_add_mul", false, l1, lInf);
|
|
|
|
runTensorFlowNet("fp16_max_pool_odd_valid", false, l1, lInf);
|
|
|
|
runTensorFlowNet("fp16_max_pool_even", false, l1, lInf);
|
|
|
|
runTensorFlowNet("fp16_padding_same", false, l1, lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: fix pad_and_concat and add this test case to fp16_weights
|
|
|
|
TEST_P(Test_TensorFlow_layers, fp16_pad_and_concat)
|
|
|
|
{
|
|
|
|
const float l1 = 0.00071;
|
|
|
|
const float lInf = 0.012;
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE < 2018030000
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
|
|
|
throw SkipTestException("Test is enabled starts from OpenVINO 2018R3");
|
|
|
|
#endif
|
|
|
|
runTensorFlowNet("fp16_pad_and_concat", false, l1, lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, defun)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("defun_dropout");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, quantized)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("uint8_single_conv");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, lstm)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE ||
|
|
|
|
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
|
|
|
|
throw SkipTestException("");
|
|
|
|
runTensorFlowNet("lstm", true);
|
|
|
|
runTensorFlowNet("lstm", true, 0.0, 0.0, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, split)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
|
|
|
throw SkipTestException("");
|
|
|
|
runTensorFlowNet("split_equals");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, resize_nearest_neighbor)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_MYRIAD)
|
|
|
|
throw SkipTestException("");
|
|
|
|
runTensorFlowNet("resize_nearest_neighbor");
|
|
|
|
runTensorFlowNet("keras_upsampling2d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, slice)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE &&
|
|
|
|
(target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
|
|
|
throw SkipTestException("");
|
|
|
|
runTensorFlowNet("slice_4d");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, softmax)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("keras_softmax");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, relu6)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("keras_relu6");
|
|
|
|
runTensorFlowNet("keras_relu6", /*hasText*/ true);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, keras_mobilenet_head)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("keras_mobilenet_head");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TensorFlow_layers, resize_bilinear)
|
|
|
|
{
|
|
|
|
runTensorFlowNet("resize_bilinear");
|
|
|
|
runTensorFlowNet("resize_bilinear_factor");
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_layers, dnnBackendsAndTargets());
|
|
|
|
|
|
|
|
TEST(Test_TensorFlow, two_inputs)
|
|
|
|
{
|
|
|
|
Net net = readNet(path("two_inputs_net.pbtxt"));
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
|
|
|
|
Mat firstInput(2, 3, CV_32FC1), secondInput(2, 3, CV_32FC1);
|
|
|
|
randu(firstInput, -1, 1);
|
|
|
|
randu(secondInput, -1, 1);
|
|
|
|
|
|
|
|
net.setInput(firstInput, "first_input");
|
|
|
|
net.setInput(secondInput, "second_input");
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
normAssert(out, firstInput + secondInput);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Test_TensorFlow, Mask_RCNN)
|
|
|
|
{
|
|
|
|
std::string proto = findDataFile("dnn/mask_rcnn_inception_v2_coco_2018_01_28.pbtxt", false);
|
|
|
|
std::string model = findDataFile("dnn/mask_rcnn_inception_v2_coco_2018_01_28.pb", false);
|
|
|
|
|
|
|
|
Net net = readNetFromTensorflow(model, proto);
|
|
|
|
Mat img = imread(findDataFile("dnn/street.png", false));
|
|
|
|
Mat refDetections = blobFromNPY(path("mask_rcnn_inception_v2_coco_2018_01_28.detection_out.npy"));
|
|
|
|
Mat refMasks = blobFromNPY(path("mask_rcnn_inception_v2_coco_2018_01_28.detection_masks.npy"));
|
|
|
|
Mat blob = blobFromImage(img, 1.0f, Size(800, 800), Scalar(), true, false);
|
|
|
|
|
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
|
|
|
|
|
|
net.setInput(blob);
|
|
|
|
|
|
|
|
// Mask-RCNN predicts bounding boxes and segmentation masks.
|
|
|
|
std::vector<String> outNames(2);
|
|
|
|
outNames[0] = "detection_out_final";
|
|
|
|
outNames[1] = "detection_masks";
|
|
|
|
|
|
|
|
std::vector<Mat> outs;
|
|
|
|
net.forward(outs, outNames);
|
|
|
|
|
|
|
|
Mat outDetections = outs[0];
|
|
|
|
Mat outMasks = outs[1];
|
|
|
|
normAssertDetections(refDetections, outDetections, "", /*threshold for zero confidence*/1e-5);
|
|
|
|
|
|
|
|
// Output size of masks is NxCxHxW where
|
|
|
|
// N - number of detected boxes
|
|
|
|
// C - number of classes (excluding background)
|
|
|
|
// HxW - segmentation shape
|
|
|
|
const int numDetections = outDetections.size[2];
|
|
|
|
|
|
|
|
int masksSize[] = {1, numDetections, outMasks.size[2], outMasks.size[3]};
|
|
|
|
Mat masks(4, &masksSize[0], CV_32F);
|
|
|
|
|
|
|
|
std::vector<cv::Range> srcRanges(4, cv::Range::all());
|
|
|
|
std::vector<cv::Range> dstRanges(4, cv::Range::all());
|
|
|
|
|
|
|
|
outDetections = outDetections.reshape(1, outDetections.total() / 7);
|
|
|
|
for (int i = 0; i < numDetections; ++i)
|
|
|
|
{
|
|
|
|
// Get a class id for this bounding box and copy mask only for that class.
|
|
|
|
int classId = static_cast<int>(outDetections.at<float>(i, 1));
|
|
|
|
srcRanges[0] = dstRanges[1] = cv::Range(i, i + 1);
|
|
|
|
srcRanges[1] = cv::Range(classId, classId + 1);
|
|
|
|
outMasks(srcRanges).copyTo(masks(dstRanges));
|
|
|
|
}
|
|
|
|
cv::Range topRefMasks[] = {Range::all(), Range(0, numDetections), Range::all(), Range::all()};
|
|
|
|
normAssert(masks, refMasks(&topRefMasks[0]));
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|