|
|
|
// The "Square Detector" program.
|
|
|
|
// It loads several images sequentially and tries to find squares in
|
|
|
|
// each image
|
|
|
|
|
|
|
|
#include "opencv2/core/core.hpp"
|
|
|
|
#include "opencv2/imgproc/imgproc.hpp"
|
|
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
#include <math.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
void help()
|
|
|
|
{
|
|
|
|
cout <<
|
|
|
|
"\nA program using pyramid scaling, Canny, contours, contour simpification and\n"
|
|
|
|
"memory storage (it's got it all folks) to find\n"
|
|
|
|
"squares in a list of images pic1-6.png\n"
|
|
|
|
"Returns sequence of squares detected on the image.\n"
|
|
|
|
"the sequence is stored in the specified memory storage\n"
|
|
|
|
"Call:\n"
|
|
|
|
"./squares\n"
|
|
|
|
"Using OpenCV version %s\n" << CV_VERSION << "\n" << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int thresh = 50, N = 11;
|
|
|
|
const char* wndname = "Square Detection Demo";
|
|
|
|
|
|
|
|
// helper function:
|
|
|
|
// finds a cosine of angle between vectors
|
|
|
|
// from pt0->pt1 and from pt0->pt2
|
|
|
|
double angle( Point pt1, Point pt2, Point pt0 )
|
|
|
|
{
|
|
|
|
double dx1 = pt1.x - pt0.x;
|
|
|
|
double dy1 = pt1.y - pt0.y;
|
|
|
|
double dx2 = pt2.x - pt0.x;
|
|
|
|
double dy2 = pt2.y - pt0.y;
|
|
|
|
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
|
|
|
|
}
|
|
|
|
|
|
|
|
// returns sequence of squares detected on the image.
|
|
|
|
// the sequence is stored in the specified memory storage
|
|
|
|
void findSquares( const Mat& image, vector<vector<Point> >& squares )
|
|
|
|
{
|
|
|
|
squares.clear();
|
|
|
|
|
|
|
|
Mat pyr, timg, gray0(image.size(), CV_8U), gray;
|
|
|
|
|
|
|
|
// down-scale and upscale the image to filter out the noise
|
|
|
|
pyrDown(image, pyr, Size(image.cols/2, image.rows/2));
|
|
|
|
pyrUp(pyr, timg, image.size());
|
|
|
|
vector<vector<Point> > contours;
|
|
|
|
|
|
|
|
// find squares in every color plane of the image
|
|
|
|
for( int c = 0; c < 3; c++ )
|
|
|
|
{
|
|
|
|
int ch[] = {c, 0};
|
|
|
|
mixChannels(&timg, 1, &gray0, 1, ch, 1);
|
|
|
|
|
|
|
|
// try several threshold levels
|
|
|
|
for( int l = 0; l < N; l++ )
|
|
|
|
{
|
|
|
|
// hack: use Canny instead of zero threshold level.
|
|
|
|
// Canny helps to catch squares with gradient shading
|
|
|
|
if( l == 0 )
|
|
|
|
{
|
|
|
|
// apply Canny. Take the upper threshold from slider
|
|
|
|
// and set the lower to 0 (which forces edges merging)
|
|
|
|
Canny(gray0, gray, 0, thresh, 5);
|
|
|
|
// dilate canny output to remove potential
|
|
|
|
// holes between edge segments
|
|
|
|
dilate(gray, gray, Mat(), Point(-1,-1));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// apply threshold if l!=0:
|
|
|
|
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
|
|
|
|
gray = gray0 >= (l+1)*255/N;
|
|
|
|
}
|
|
|
|
|
|
|
|
// find contours and store them all as a list
|
|
|
|
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
|
|
|
|
|
|
|
|
vector<Point> approx;
|
|
|
|
|
|
|
|
// test each contour
|
|
|
|
for( size_t i = 0; i < contours.size(); i++ )
|
|
|
|
{
|
|
|
|
// approximate contour with accuracy proportional
|
|
|
|
// to the contour perimeter
|
|
|
|
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
|
|
|
|
|
|
|
|
// square contours should have 4 vertices after approximation
|
|
|
|
// relatively large area (to filter out noisy contours)
|
|
|
|
// and be convex.
|
|
|
|
// Note: absolute value of an area is used because
|
|
|
|
// area may be positive or negative - in accordance with the
|
|
|
|
// contour orientation
|
|
|
|
if( approx.size() == 4 &&
|
|
|
|
fabs(contourArea(Mat(approx))) > 1000 &&
|
|
|
|
isContourConvex(Mat(approx)) )
|
|
|
|
{
|
|
|
|
double maxCosine = 0;
|
|
|
|
|
|
|
|
for( int j = 2; j < 5; j++ )
|
|
|
|
{
|
|
|
|
// find the maximum cosine of the angle between joint edges
|
|
|
|
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
|
|
|
|
maxCosine = MAX(maxCosine, cosine);
|
|
|
|
}
|
|
|
|
|
|
|
|
// if cosines of all angles are small
|
|
|
|
// (all angles are ~90 degree) then write quandrange
|
|
|
|
// vertices to resultant sequence
|
|
|
|
if( maxCosine < 0.3 )
|
|
|
|
squares.push_back(approx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// the function draws all the squares in the image
|
|
|
|
void drawSquares( Mat& image, const vector<vector<Point> >& squares )
|
|
|
|
{
|
|
|
|
for( size_t i = 0; i < squares.size(); i++ )
|
|
|
|
{
|
|
|
|
const Point* p = &squares[i][0];
|
|
|
|
int n = (int)squares[i].size();
|
|
|
|
polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, CV_AA);
|
|
|
|
}
|
|
|
|
|
|
|
|
imshow(wndname, image);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int main(int /*argc*/, char** /*argv*/)
|
|
|
|
{
|
|
|
|
static const char* names[] = { "pic1.png", "pic2.png", "pic3.png",
|
|
|
|
"pic4.png", "pic5.png", "pic6.png", 0 };
|
|
|
|
help();
|
|
|
|
namedWindow( wndname, 1 );
|
|
|
|
vector<vector<Point> > squares;
|
|
|
|
|
|
|
|
for( int i = 0; names[i] != 0; i++ )
|
|
|
|
{
|
|
|
|
Mat image = imread(names[i], 1);
|
|
|
|
if( image.empty() )
|
|
|
|
{
|
|
|
|
cout << "Couldn't load " << names[i] << endl;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
findSquares(image, squares);
|
|
|
|
drawSquares(image, squares);
|
|
|
|
|
|
|
|
int c = waitKey();
|
|
|
|
if( (char)c == 27 )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|