|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#ifndef __OPENCV_GPU_HPP__
|
|
|
|
#define __OPENCV_GPU_HPP__
|
|
|
|
|
|
|
|
#ifndef SKIP_INCLUDES
|
|
|
|
#include <vector>
|
|
|
|
#include <memory>
|
|
|
|
#include <iosfwd>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "opencv2/core/gpumat.hpp"
|
|
|
|
#include "opencv2/gpuarithm.hpp"
|
|
|
|
#include "opencv2/gpufilters.hpp"
|
|
|
|
#include "opencv2/gpuimgproc.hpp"
|
|
|
|
|
|
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
#include "opencv2/objdetect.hpp"
|
|
|
|
#include "opencv2/features2d.hpp"
|
|
|
|
|
|
|
|
namespace cv { namespace gpu {
|
|
|
|
////////////////////////////// Image processing //////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////// Calibration 3D //////////////////////////////////
|
|
|
|
|
|
|
|
CV_EXPORTS void transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
|
|
|
|
GpuMat& dst, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
CV_EXPORTS void projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
|
|
|
|
const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst,
|
|
|
|
Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
CV_EXPORTS void solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat,
|
|
|
|
const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false,
|
|
|
|
int num_iters=100, float max_dist=8.0, int min_inlier_count=100,
|
|
|
|
std::vector<int>* inliers=NULL);
|
|
|
|
|
|
|
|
//////////////////////////////// Image Labeling ////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////// Histograms //////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////// StereoBM_GPU ////////////////////////////////
|
|
|
|
|
|
|
|
class CV_EXPORTS StereoBM_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 };
|
|
|
|
|
|
|
|
enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 };
|
|
|
|
|
|
|
|
//! the default constructor
|
|
|
|
StereoBM_GPU();
|
|
|
|
//! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8.
|
|
|
|
StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ);
|
|
|
|
|
|
|
|
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
|
|
|
|
//! Output disparity has CV_8U type.
|
|
|
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! Some heuristics that tries to estmate
|
|
|
|
// if current GPU will be faster than CPU in this algorithm.
|
|
|
|
// It queries current active device.
|
|
|
|
static bool checkIfGpuCallReasonable();
|
|
|
|
|
|
|
|
int preset;
|
|
|
|
int ndisp;
|
|
|
|
int winSize;
|
|
|
|
|
|
|
|
// If avergeTexThreshold == 0 => post procesing is disabled
|
|
|
|
// If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image
|
|
|
|
// SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold
|
|
|
|
// i.e. input left image is low textured.
|
|
|
|
float avergeTexThreshold;
|
|
|
|
|
|
|
|
private:
|
|
|
|
GpuMat minSSD, leBuf, riBuf;
|
|
|
|
};
|
|
|
|
|
|
|
|
////////////////////////// StereoBeliefPropagation ///////////////////////////
|
|
|
|
// "Efficient Belief Propagation for Early Vision"
|
|
|
|
// P.Felzenszwalb
|
|
|
|
|
|
|
|
class CV_EXPORTS StereoBeliefPropagation
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { DEFAULT_NDISP = 64 };
|
|
|
|
enum { DEFAULT_ITERS = 5 };
|
|
|
|
enum { DEFAULT_LEVELS = 5 };
|
|
|
|
|
|
|
|
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels);
|
|
|
|
|
|
|
|
//! the default constructor
|
|
|
|
explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP,
|
|
|
|
int iters = DEFAULT_ITERS,
|
|
|
|
int levels = DEFAULT_LEVELS,
|
|
|
|
int msg_type = CV_32F);
|
|
|
|
|
|
|
|
//! the full constructor taking the number of disparities, number of BP iterations on each level,
|
|
|
|
//! number of levels, truncation of data cost, data weight,
|
|
|
|
//! truncation of discontinuity cost and discontinuity single jump
|
|
|
|
//! DataTerm = data_weight * min(fabs(I2-I1), max_data_term)
|
|
|
|
//! DiscTerm = min(disc_single_jump * fabs(f1-f2), max_disc_term)
|
|
|
|
//! please see paper for more details
|
|
|
|
StereoBeliefPropagation(int ndisp, int iters, int levels,
|
|
|
|
float max_data_term, float data_weight,
|
|
|
|
float max_disc_term, float disc_single_jump,
|
|
|
|
int msg_type = CV_32F);
|
|
|
|
|
|
|
|
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
|
|
|
|
//! if disparity is empty output type will be CV_16S else output type will be disparity.type().
|
|
|
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
|
|
|
|
//! version for user specified data term
|
|
|
|
void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
int ndisp;
|
|
|
|
|
|
|
|
int iters;
|
|
|
|
int levels;
|
|
|
|
|
|
|
|
float max_data_term;
|
|
|
|
float data_weight;
|
|
|
|
float max_disc_term;
|
|
|
|
float disc_single_jump;
|
|
|
|
|
|
|
|
int msg_type;
|
|
|
|
private:
|
|
|
|
GpuMat u, d, l, r, u2, d2, l2, r2;
|
|
|
|
std::vector<GpuMat> datas;
|
|
|
|
GpuMat out;
|
|
|
|
};
|
|
|
|
|
|
|
|
/////////////////////////// StereoConstantSpaceBP ///////////////////////////
|
|
|
|
// "A Constant-Space Belief Propagation Algorithm for Stereo Matching"
|
|
|
|
// Qingxiong Yang, Liang Wang, Narendra Ahuja
|
|
|
|
// http://vision.ai.uiuc.edu/~qyang6/
|
|
|
|
|
|
|
|
class CV_EXPORTS StereoConstantSpaceBP
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { DEFAULT_NDISP = 128 };
|
|
|
|
enum { DEFAULT_ITERS = 8 };
|
|
|
|
enum { DEFAULT_LEVELS = 4 };
|
|
|
|
enum { DEFAULT_NR_PLANE = 4 };
|
|
|
|
|
|
|
|
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane);
|
|
|
|
|
|
|
|
//! the default constructor
|
|
|
|
explicit StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP,
|
|
|
|
int iters = DEFAULT_ITERS,
|
|
|
|
int levels = DEFAULT_LEVELS,
|
|
|
|
int nr_plane = DEFAULT_NR_PLANE,
|
|
|
|
int msg_type = CV_32F);
|
|
|
|
|
|
|
|
//! the full constructor taking the number of disparities, number of BP iterations on each level,
|
|
|
|
//! number of levels, number of active disparity on the first level, truncation of data cost, data weight,
|
|
|
|
//! truncation of discontinuity cost, discontinuity single jump and minimum disparity threshold
|
|
|
|
StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane,
|
|
|
|
float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
|
|
|
|
int min_disp_th = 0,
|
|
|
|
int msg_type = CV_32F);
|
|
|
|
|
|
|
|
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
|
|
|
|
//! if disparity is empty output type will be CV_16S else output type will be disparity.type().
|
|
|
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
int ndisp;
|
|
|
|
|
|
|
|
int iters;
|
|
|
|
int levels;
|
|
|
|
|
|
|
|
int nr_plane;
|
|
|
|
|
|
|
|
float max_data_term;
|
|
|
|
float data_weight;
|
|
|
|
float max_disc_term;
|
|
|
|
float disc_single_jump;
|
|
|
|
|
|
|
|
int min_disp_th;
|
|
|
|
|
|
|
|
int msg_type;
|
|
|
|
|
|
|
|
bool use_local_init_data_cost;
|
|
|
|
private:
|
|
|
|
GpuMat messages_buffers;
|
|
|
|
|
|
|
|
GpuMat temp;
|
|
|
|
GpuMat out;
|
|
|
|
};
|
|
|
|
|
|
|
|
/////////////////////////// DisparityBilateralFilter ///////////////////////////
|
|
|
|
// Disparity map refinement using joint bilateral filtering given a single color image.
|
|
|
|
// Qingxiong Yang, Liang Wang, Narendra Ahuja
|
|
|
|
// http://vision.ai.uiuc.edu/~qyang6/
|
|
|
|
|
|
|
|
class CV_EXPORTS DisparityBilateralFilter
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { DEFAULT_NDISP = 64 };
|
|
|
|
enum { DEFAULT_RADIUS = 3 };
|
|
|
|
enum { DEFAULT_ITERS = 1 };
|
|
|
|
|
|
|
|
//! the default constructor
|
|
|
|
explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS);
|
|
|
|
|
|
|
|
//! the full constructor taking the number of disparities, filter radius,
|
|
|
|
//! number of iterations, truncation of data continuity, truncation of disparity continuity
|
|
|
|
//! and filter range sigma
|
|
|
|
DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range);
|
|
|
|
|
|
|
|
//! the disparity map refinement operator. Refine disparity map using joint bilateral filtering given a single color image.
|
|
|
|
//! disparity must have CV_8U or CV_16S type, image must have CV_8UC1 or CV_8UC3 type.
|
|
|
|
void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
private:
|
|
|
|
int ndisp;
|
|
|
|
int radius;
|
|
|
|
int iters;
|
|
|
|
|
|
|
|
float edge_threshold;
|
|
|
|
float max_disc_threshold;
|
|
|
|
float sigma_range;
|
|
|
|
|
|
|
|
GpuMat table_color;
|
|
|
|
GpuMat table_space;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
|
|
|
|
struct CV_EXPORTS HOGConfidence
|
|
|
|
{
|
|
|
|
double scale;
|
|
|
|
std::vector<Point> locations;
|
|
|
|
std::vector<double> confidences;
|
|
|
|
std::vector<double> part_scores[4];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct CV_EXPORTS HOGDescriptor
|
|
|
|
{
|
|
|
|
enum { DEFAULT_WIN_SIGMA = -1 };
|
|
|
|
enum { DEFAULT_NLEVELS = 64 };
|
|
|
|
enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
|
|
|
|
|
|
|
|
HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
|
|
|
|
Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
|
|
|
|
int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA,
|
|
|
|
double threshold_L2hys=0.2, bool gamma_correction=true,
|
|
|
|
int nlevels=DEFAULT_NLEVELS);
|
|
|
|
|
|
|
|
size_t getDescriptorSize() const;
|
|
|
|
size_t getBlockHistogramSize() const;
|
|
|
|
|
|
|
|
void setSVMDetector(const std::vector<float>& detector);
|
|
|
|
|
|
|
|
static std::vector<float> getDefaultPeopleDetector();
|
|
|
|
static std::vector<float> getPeopleDetector48x96();
|
|
|
|
static std::vector<float> getPeopleDetector64x128();
|
|
|
|
|
|
|
|
void detect(const GpuMat& img, std::vector<Point>& found_locations,
|
|
|
|
double hit_threshold=0, Size win_stride=Size(),
|
|
|
|
Size padding=Size());
|
|
|
|
|
|
|
|
void detectMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
|
|
|
|
double hit_threshold=0, Size win_stride=Size(),
|
|
|
|
Size padding=Size(), double scale0=1.05,
|
|
|
|
int group_threshold=2);
|
|
|
|
|
|
|
|
void computeConfidence(const GpuMat& img, std::vector<Point>& hits, double hit_threshold,
|
|
|
|
Size win_stride, Size padding, std::vector<Point>& locations, std::vector<double>& confidences);
|
|
|
|
|
|
|
|
void computeConfidenceMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
|
|
|
|
double hit_threshold, Size win_stride, Size padding,
|
|
|
|
std::vector<HOGConfidence> &conf_out, int group_threshold);
|
|
|
|
|
|
|
|
void getDescriptors(const GpuMat& img, Size win_stride,
|
|
|
|
GpuMat& descriptors,
|
|
|
|
int descr_format=DESCR_FORMAT_COL_BY_COL);
|
|
|
|
|
|
|
|
Size win_size;
|
|
|
|
Size block_size;
|
|
|
|
Size block_stride;
|
|
|
|
Size cell_size;
|
|
|
|
int nbins;
|
|
|
|
double win_sigma;
|
|
|
|
double threshold_L2hys;
|
|
|
|
bool gamma_correction;
|
|
|
|
int nlevels;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void computeBlockHistograms(const GpuMat& img);
|
|
|
|
void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle);
|
|
|
|
|
|
|
|
double getWinSigma() const;
|
|
|
|
bool checkDetectorSize() const;
|
|
|
|
|
|
|
|
static int numPartsWithin(int size, int part_size, int stride);
|
|
|
|
static Size numPartsWithin(Size size, Size part_size, Size stride);
|
|
|
|
|
|
|
|
// Coefficients of the separating plane
|
|
|
|
float free_coef;
|
|
|
|
GpuMat detector;
|
|
|
|
|
|
|
|
// Results of the last classification step
|
|
|
|
GpuMat labels, labels_buf;
|
|
|
|
Mat labels_host;
|
|
|
|
|
|
|
|
// Results of the last histogram evaluation step
|
|
|
|
GpuMat block_hists, block_hists_buf;
|
|
|
|
|
|
|
|
// Gradients conputation results
|
|
|
|
GpuMat grad, qangle, grad_buf, qangle_buf;
|
|
|
|
|
|
|
|
// returns subbuffer with required size, reallocates buffer if nessesary.
|
|
|
|
static GpuMat getBuffer(const Size& sz, int type, GpuMat& buf);
|
|
|
|
static GpuMat getBuffer(int rows, int cols, int type, GpuMat& buf);
|
|
|
|
|
|
|
|
std::vector<GpuMat> image_scales;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////// BruteForceMatcher //////////////////////////////////
|
|
|
|
|
|
|
|
class CV_EXPORTS BFMatcher_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
explicit BFMatcher_GPU(int norm = cv::NORM_L2);
|
|
|
|
|
|
|
|
// Add descriptors to train descriptor collection
|
|
|
|
void add(const std::vector<GpuMat>& descCollection);
|
|
|
|
|
|
|
|
// Get train descriptors collection
|
|
|
|
const std::vector<GpuMat>& getTrainDescriptors() const;
|
|
|
|
|
|
|
|
// Clear train descriptors collection
|
|
|
|
void clear();
|
|
|
|
|
|
|
|
// Return true if there are not train descriptors in collection
|
|
|
|
bool empty() const;
|
|
|
|
|
|
|
|
// Return true if the matcher supports mask in match methods
|
|
|
|
bool isMaskSupported() const;
|
|
|
|
|
|
|
|
// Find one best match for each query descriptor
|
|
|
|
void matchSingle(const GpuMat& query, const GpuMat& train,
|
|
|
|
GpuMat& trainIdx, GpuMat& distance,
|
|
|
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
// Download trainIdx and distance and convert it to CPU vector with DMatch
|
|
|
|
static void matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector<DMatch>& matches);
|
|
|
|
// Convert trainIdx and distance to vector with DMatch
|
|
|
|
static void matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>& matches);
|
|
|
|
|
|
|
|
// Find one best match for each query descriptor
|
|
|
|
void match(const GpuMat& query, const GpuMat& train, std::vector<DMatch>& matches, const GpuMat& mask = GpuMat());
|
|
|
|
|
|
|
|
// Make gpu collection of trains and masks in suitable format for matchCollection function
|
|
|
|
void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const std::vector<GpuMat>& masks = std::vector<GpuMat>());
|
|
|
|
|
|
|
|
// Find one best match from train collection for each query descriptor
|
|
|
|
void matchCollection(const GpuMat& query, const GpuMat& trainCollection,
|
|
|
|
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
|
|
|
|
const GpuMat& masks = GpuMat(), Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
// Download trainIdx, imgIdx and distance and convert it to vector with DMatch
|
|
|
|
static void matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector<DMatch>& matches);
|
|
|
|
// Convert trainIdx, imgIdx and distance to vector with DMatch
|
|
|
|
static void matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<DMatch>& matches);
|
|
|
|
|
|
|
|
// Find one best match from train collection for each query descriptor.
|
|
|
|
void match(const GpuMat& query, std::vector<DMatch>& matches, const std::vector<GpuMat>& masks = std::vector<GpuMat>());
|
|
|
|
|
|
|
|
// Find k best matches for each query descriptor (in increasing order of distances)
|
|
|
|
void knnMatchSingle(const GpuMat& query, const GpuMat& train,
|
|
|
|
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k,
|
|
|
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
// Download trainIdx and distance and convert it to vector with DMatch
|
|
|
|
// compactResult is used when mask is not empty. If compactResult is false matches
|
|
|
|
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
|
|
// matches vector will not contain matches for fully masked out query descriptors.
|
|
|
|
static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
// Convert trainIdx and distance to vector with DMatch
|
|
|
|
static void knnMatchConvert(const Mat& trainIdx, const Mat& distance,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
|
|
|
|
// Find k best matches for each query descriptor (in increasing order of distances).
|
|
|
|
// compactResult is used when mask is not empty. If compactResult is false matches
|
|
|
|
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
|
|
// matches vector will not contain matches for fully masked out query descriptors.
|
|
|
|
void knnMatch(const GpuMat& query, const GpuMat& train,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, int k, const GpuMat& mask = GpuMat(),
|
|
|
|
bool compactResult = false);
|
|
|
|
|
|
|
|
// Find k best matches from train collection for each query descriptor (in increasing order of distances)
|
|
|
|
void knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection,
|
|
|
|
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
|
|
|
|
const GpuMat& maskCollection = GpuMat(), Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
// Download trainIdx and distance and convert it to vector with DMatch
|
|
|
|
// compactResult is used when mask is not empty. If compactResult is false matches
|
|
|
|
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
|
|
// matches vector will not contain matches for fully masked out query descriptors.
|
|
|
|
static void knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
// Convert trainIdx and distance to vector with DMatch
|
|
|
|
static void knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
|
|
|
|
// Find k best matches for each query descriptor (in increasing order of distances).
|
|
|
|
// compactResult is used when mask is not empty. If compactResult is false matches
|
|
|
|
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
|
|
// matches vector will not contain matches for fully masked out query descriptors.
|
|
|
|
void knnMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, int k,
|
|
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);
|
|
|
|
|
|
|
|
// Find best matches for each query descriptor which have distance less than maxDistance.
|
|
|
|
// nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx.
|
|
|
|
// carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches,
|
|
|
|
// because it didn't have enough memory.
|
|
|
|
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10),
|
|
|
|
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
|
|
|
|
// Matches doesn't sorted.
|
|
|
|
void radiusMatchSingle(const GpuMat& query, const GpuMat& train,
|
|
|
|
GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
|
|
|
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
// Download trainIdx, nMatches and distance and convert it to vector with DMatch.
|
|
|
|
// matches will be sorted in increasing order of distances.
|
|
|
|
// compactResult is used when mask is not empty. If compactResult is false matches
|
|
|
|
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
|
|
// matches vector will not contain matches for fully masked out query descriptors.
|
|
|
|
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
// Convert trainIdx, nMatches and distance to vector with DMatch.
|
|
|
|
static void radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
|
|
|
|
// Find best matches for each query descriptor which have distance less than maxDistance
|
|
|
|
// in increasing order of distances).
|
|
|
|
void radiusMatch(const GpuMat& query, const GpuMat& train,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, float maxDistance,
|
|
|
|
const GpuMat& mask = GpuMat(), bool compactResult = false);
|
|
|
|
|
|
|
|
// Find best matches for each query descriptor which have distance less than maxDistance.
|
|
|
|
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10),
|
|
|
|
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
|
|
|
|
// Matches doesn't sorted.
|
|
|
|
void radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
|
|
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
// Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch.
|
|
|
|
// matches will be sorted in increasing order of distances.
|
|
|
|
// compactResult is used when mask is not empty. If compactResult is false matches
|
|
|
|
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
|
|
// matches vector will not contain matches for fully masked out query descriptors.
|
|
|
|
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
// Convert trainIdx, nMatches and distance to vector with DMatch.
|
|
|
|
static void radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
|
|
|
|
// Find best matches from train collection for each query descriptor which have distance less than
|
|
|
|
// maxDistance (in increasing order of distances).
|
|
|
|
void radiusMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, float maxDistance,
|
|
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);
|
|
|
|
|
|
|
|
int norm;
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::vector<GpuMat> trainDescCollection;
|
|
|
|
};
|
|
|
|
|
|
|
|
template <class Distance>
|
|
|
|
class CV_EXPORTS BruteForceMatcher_GPU;
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
class CV_EXPORTS BruteForceMatcher_GPU< L1<T> > : public BFMatcher_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
explicit BruteForceMatcher_GPU() : BFMatcher_GPU(NORM_L1) {}
|
|
|
|
explicit BruteForceMatcher_GPU(L1<T> /*d*/) : BFMatcher_GPU(NORM_L1) {}
|
|
|
|
};
|
|
|
|
template <typename T>
|
|
|
|
class CV_EXPORTS BruteForceMatcher_GPU< L2<T> > : public BFMatcher_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
explicit BruteForceMatcher_GPU() : BFMatcher_GPU(NORM_L2) {}
|
|
|
|
explicit BruteForceMatcher_GPU(L2<T> /*d*/) : BFMatcher_GPU(NORM_L2) {}
|
|
|
|
};
|
|
|
|
template <> class CV_EXPORTS BruteForceMatcher_GPU< Hamming > : public BFMatcher_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
explicit BruteForceMatcher_GPU() : BFMatcher_GPU(NORM_HAMMING) {}
|
|
|
|
explicit BruteForceMatcher_GPU(Hamming /*d*/) : BFMatcher_GPU(NORM_HAMMING) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
////////////////////////////////// CascadeClassifier_GPU //////////////////////////////////////////
|
|
|
|
// The cascade classifier class for object detection: supports old haar and new lbp xlm formats and nvbin for haar cascades olny.
|
|
|
|
class CV_EXPORTS CascadeClassifier_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CascadeClassifier_GPU();
|
|
|
|
CascadeClassifier_GPU(const String& filename);
|
|
|
|
~CascadeClassifier_GPU();
|
|
|
|
|
|
|
|
bool empty() const;
|
|
|
|
bool load(const String& filename);
|
|
|
|
void release();
|
|
|
|
|
|
|
|
/* returns number of detected objects */
|
|
|
|
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor = 1.2, int minNeighbors = 4, Size minSize = Size());
|
|
|
|
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4);
|
|
|
|
|
|
|
|
bool findLargestObject;
|
|
|
|
bool visualizeInPlace;
|
|
|
|
|
|
|
|
Size getClassifierSize() const;
|
|
|
|
|
|
|
|
private:
|
|
|
|
struct CascadeClassifierImpl;
|
|
|
|
CascadeClassifierImpl* impl;
|
|
|
|
struct HaarCascade;
|
|
|
|
struct LbpCascade;
|
|
|
|
friend class CascadeClassifier_GPU_LBP;
|
|
|
|
};
|
|
|
|
|
|
|
|
////////////////////////////////// FAST //////////////////////////////////////////
|
|
|
|
|
|
|
|
class CV_EXPORTS FAST_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum
|
|
|
|
{
|
|
|
|
LOCATION_ROW = 0,
|
|
|
|
RESPONSE_ROW,
|
|
|
|
ROWS_COUNT
|
|
|
|
};
|
|
|
|
|
|
|
|
// all features have same size
|
|
|
|
static const int FEATURE_SIZE = 7;
|
|
|
|
|
|
|
|
explicit FAST_GPU(int threshold, bool nonmaxSupression = true, double keypointsRatio = 0.05);
|
|
|
|
|
|
|
|
//! finds the keypoints using FAST detector
|
|
|
|
//! supports only CV_8UC1 images
|
|
|
|
void operator ()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
|
|
|
|
void operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
|
|
|
|
|
|
|
|
//! download keypoints from device to host memory
|
|
|
|
static void downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);
|
|
|
|
|
|
|
|
//! convert keypoints to KeyPoint vector
|
|
|
|
static void convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints);
|
|
|
|
|
|
|
|
//! release temporary buffer's memory
|
|
|
|
void release();
|
|
|
|
|
|
|
|
bool nonmaxSupression;
|
|
|
|
|
|
|
|
int threshold;
|
|
|
|
|
|
|
|
//! max keypoints = keypointsRatio * img.size().area()
|
|
|
|
double keypointsRatio;
|
|
|
|
|
|
|
|
//! find keypoints and compute it's response if nonmaxSupression is true
|
|
|
|
//! return count of detected keypoints
|
|
|
|
int calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask);
|
|
|
|
|
|
|
|
//! get final array of keypoints
|
|
|
|
//! performs nonmax supression if needed
|
|
|
|
//! return final count of keypoints
|
|
|
|
int getKeyPoints(GpuMat& keypoints);
|
|
|
|
|
|
|
|
private:
|
|
|
|
GpuMat kpLoc_;
|
|
|
|
int count_;
|
|
|
|
|
|
|
|
GpuMat score_;
|
|
|
|
|
|
|
|
GpuMat d_keypoints_;
|
|
|
|
};
|
|
|
|
|
|
|
|
////////////////////////////////// ORB //////////////////////////////////////////
|
|
|
|
|
|
|
|
class CV_EXPORTS ORB_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum
|
|
|
|
{
|
|
|
|
X_ROW = 0,
|
|
|
|
Y_ROW,
|
|
|
|
RESPONSE_ROW,
|
|
|
|
ANGLE_ROW,
|
|
|
|
OCTAVE_ROW,
|
|
|
|
SIZE_ROW,
|
|
|
|
ROWS_COUNT
|
|
|
|
};
|
|
|
|
|
|
|
|
enum
|
|
|
|
{
|
|
|
|
DEFAULT_FAST_THRESHOLD = 20
|
|
|
|
};
|
|
|
|
|
|
|
|
//! Constructor
|
|
|
|
explicit ORB_GPU(int nFeatures = 500, float scaleFactor = 1.2f, int nLevels = 8, int edgeThreshold = 31,
|
|
|
|
int firstLevel = 0, int WTA_K = 2, int scoreType = 0, int patchSize = 31);
|
|
|
|
|
|
|
|
//! Compute the ORB features on an image
|
|
|
|
//! image - the image to compute the features (supports only CV_8UC1 images)
|
|
|
|
//! mask - the mask to apply
|
|
|
|
//! keypoints - the resulting keypoints
|
|
|
|
void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
|
|
|
|
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
|
|
|
|
|
|
|
|
//! Compute the ORB features and descriptors on an image
|
|
|
|
//! image - the image to compute the features (supports only CV_8UC1 images)
|
|
|
|
//! mask - the mask to apply
|
|
|
|
//! keypoints - the resulting keypoints
|
|
|
|
//! descriptors - descriptors array
|
|
|
|
void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors);
|
|
|
|
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors);
|
|
|
|
|
|
|
|
//! download keypoints from device to host memory
|
|
|
|
static void downloadKeyPoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);
|
|
|
|
//! convert keypoints to KeyPoint vector
|
|
|
|
static void convertKeyPoints(const Mat& d_keypoints, std::vector<KeyPoint>& keypoints);
|
|
|
|
|
|
|
|
//! returns the descriptor size in bytes
|
|
|
|
inline int descriptorSize() const { return kBytes; }
|
|
|
|
|
|
|
|
inline void setFastParams(int threshold, bool nonmaxSupression = true)
|
|
|
|
{
|
|
|
|
fastDetector_.threshold = threshold;
|
|
|
|
fastDetector_.nonmaxSupression = nonmaxSupression;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! release temporary buffer's memory
|
|
|
|
void release();
|
|
|
|
|
|
|
|
//! if true, image will be blurred before descriptors calculation
|
|
|
|
bool blurForDescriptor;
|
|
|
|
|
|
|
|
private:
|
|
|
|
enum { kBytes = 32 };
|
|
|
|
|
|
|
|
void buildScalePyramids(const GpuMat& image, const GpuMat& mask);
|
|
|
|
|
|
|
|
void computeKeyPointsPyramid();
|
|
|
|
|
|
|
|
void computeDescriptors(GpuMat& descriptors);
|
|
|
|
|
|
|
|
void mergeKeyPoints(GpuMat& keypoints);
|
|
|
|
|
|
|
|
int nFeatures_;
|
|
|
|
float scaleFactor_;
|
|
|
|
int nLevels_;
|
|
|
|
int edgeThreshold_;
|
|
|
|
int firstLevel_;
|
|
|
|
int WTA_K_;
|
|
|
|
int scoreType_;
|
|
|
|
int patchSize_;
|
|
|
|
|
|
|
|
// The number of desired features per scale
|
|
|
|
std::vector<size_t> n_features_per_level_;
|
|
|
|
|
|
|
|
// Points to compute BRIEF descriptors from
|
|
|
|
GpuMat pattern_;
|
|
|
|
|
|
|
|
std::vector<GpuMat> imagePyr_;
|
|
|
|
std::vector<GpuMat> maskPyr_;
|
|
|
|
|
|
|
|
GpuMat buf_;
|
|
|
|
|
|
|
|
std::vector<GpuMat> keyPointsPyr_;
|
|
|
|
std::vector<int> keyPointsCount_;
|
|
|
|
|
|
|
|
FAST_GPU fastDetector_;
|
|
|
|
|
|
|
|
Ptr<FilterEngine_GPU> blurFilter;
|
|
|
|
|
|
|
|
GpuMat d_keypoints_;
|
|
|
|
};
|
|
|
|
|
|
|
|
////////////////////////////////// Optical Flow //////////////////////////////////////////
|
|
|
|
|
|
|
|
class CV_EXPORTS BroxOpticalFlow
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
BroxOpticalFlow(float alpha_, float gamma_, float scale_factor_, int inner_iterations_, int outer_iterations_, int solver_iterations_) :
|
|
|
|
alpha(alpha_), gamma(gamma_), scale_factor(scale_factor_),
|
|
|
|
inner_iterations(inner_iterations_), outer_iterations(outer_iterations_), solver_iterations(solver_iterations_)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Compute optical flow
|
|
|
|
//! frame0 - source frame (supports only CV_32FC1 type)
|
|
|
|
//! frame1 - frame to track (with the same size and type as frame0)
|
|
|
|
//! u - flow horizontal component (along x axis)
|
|
|
|
//! v - flow vertical component (along y axis)
|
|
|
|
void operator ()(const GpuMat& frame0, const GpuMat& frame1, GpuMat& u, GpuMat& v, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! flow smoothness
|
|
|
|
float alpha;
|
|
|
|
|
|
|
|
//! gradient constancy importance
|
|
|
|
float gamma;
|
|
|
|
|
|
|
|
//! pyramid scale factor
|
|
|
|
float scale_factor;
|
|
|
|
|
|
|
|
//! number of lagged non-linearity iterations (inner loop)
|
|
|
|
int inner_iterations;
|
|
|
|
|
|
|
|
//! number of warping iterations (number of pyramid levels)
|
|
|
|
int outer_iterations;
|
|
|
|
|
|
|
|
//! number of linear system solver iterations
|
|
|
|
int solver_iterations;
|
|
|
|
|
|
|
|
GpuMat buf;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CV_EXPORTS PyrLKOpticalFlow
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
PyrLKOpticalFlow();
|
|
|
|
|
|
|
|
void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
|
|
|
|
GpuMat& status, GpuMat* err = 0);
|
|
|
|
|
|
|
|
void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0);
|
|
|
|
|
|
|
|
void releaseMemory();
|
|
|
|
|
|
|
|
Size winSize;
|
|
|
|
int maxLevel;
|
|
|
|
int iters;
|
|
|
|
bool useInitialFlow;
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::vector<GpuMat> prevPyr_;
|
|
|
|
std::vector<GpuMat> nextPyr_;
|
|
|
|
|
|
|
|
GpuMat buf_;
|
|
|
|
|
|
|
|
GpuMat uPyr_[2];
|
|
|
|
GpuMat vPyr_[2];
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
class CV_EXPORTS FarnebackOpticalFlow
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
FarnebackOpticalFlow()
|
|
|
|
{
|
|
|
|
numLevels = 5;
|
|
|
|
pyrScale = 0.5;
|
|
|
|
fastPyramids = false;
|
|
|
|
winSize = 13;
|
|
|
|
numIters = 10;
|
|
|
|
polyN = 5;
|
|
|
|
polySigma = 1.1;
|
|
|
|
flags = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int numLevels;
|
|
|
|
double pyrScale;
|
|
|
|
bool fastPyramids;
|
|
|
|
int winSize;
|
|
|
|
int numIters;
|
|
|
|
int polyN;
|
|
|
|
double polySigma;
|
|
|
|
int flags;
|
|
|
|
|
|
|
|
void operator ()(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s = Stream::Null());
|
|
|
|
|
|
|
|
void releaseMemory()
|
|
|
|
{
|
|
|
|
frames_[0].release();
|
|
|
|
frames_[1].release();
|
|
|
|
pyrLevel_[0].release();
|
|
|
|
pyrLevel_[1].release();
|
|
|
|
M_.release();
|
|
|
|
bufM_.release();
|
|
|
|
R_[0].release();
|
|
|
|
R_[1].release();
|
|
|
|
blurredFrame_[0].release();
|
|
|
|
blurredFrame_[1].release();
|
|
|
|
pyramid0_.clear();
|
|
|
|
pyramid1_.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
void prepareGaussian(
|
|
|
|
int n, double sigma, float *g, float *xg, float *xxg,
|
|
|
|
double &ig11, double &ig03, double &ig33, double &ig55);
|
|
|
|
|
|
|
|
void setPolynomialExpansionConsts(int n, double sigma);
|
|
|
|
|
|
|
|
void updateFlow_boxFilter(
|
|
|
|
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
|
|
|
|
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);
|
|
|
|
|
|
|
|
void updateFlow_gaussianBlur(
|
|
|
|
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
|
|
|
|
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);
|
|
|
|
|
|
|
|
GpuMat frames_[2];
|
|
|
|
GpuMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2];
|
|
|
|
std::vector<GpuMat> pyramid0_, pyramid1_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
|
|
|
|
//
|
|
|
|
// see reference:
|
|
|
|
// [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
|
|
|
|
// [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
|
|
|
|
class CV_EXPORTS OpticalFlowDual_TVL1_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
OpticalFlowDual_TVL1_GPU();
|
|
|
|
|
|
|
|
void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy);
|
|
|
|
|
|
|
|
void collectGarbage();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Time step of the numerical scheme.
|
|
|
|
*/
|
|
|
|
double tau;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Weight parameter for the data term, attachment parameter.
|
|
|
|
* This is the most relevant parameter, which determines the smoothness of the output.
|
|
|
|
* The smaller this parameter is, the smoother the solutions we obtain.
|
|
|
|
* It depends on the range of motions of the images, so its value should be adapted to each image sequence.
|
|
|
|
*/
|
|
|
|
double lambda;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Weight parameter for (u - v)^2, tightness parameter.
|
|
|
|
* It serves as a link between the attachment and the regularization terms.
|
|
|
|
* In theory, it should have a small value in order to maintain both parts in correspondence.
|
|
|
|
* The method is stable for a large range of values of this parameter.
|
|
|
|
*/
|
|
|
|
double theta;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Number of scales used to create the pyramid of images.
|
|
|
|
*/
|
|
|
|
int nscales;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Number of warpings per scale.
|
|
|
|
* Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
|
|
|
|
* This is a parameter that assures the stability of the method.
|
|
|
|
* It also affects the running time, so it is a compromise between speed and accuracy.
|
|
|
|
*/
|
|
|
|
int warps;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
|
|
|
|
* A small value will yield more accurate solutions at the expense of a slower convergence.
|
|
|
|
*/
|
|
|
|
double epsilon;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Stopping criterion iterations number used in the numerical scheme.
|
|
|
|
*/
|
|
|
|
int iterations;
|
|
|
|
|
|
|
|
double scaleStep;
|
|
|
|
|
|
|
|
bool useInitialFlow;
|
|
|
|
|
|
|
|
private:
|
|
|
|
void procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2);
|
|
|
|
|
|
|
|
std::vector<GpuMat> I0s;
|
|
|
|
std::vector<GpuMat> I1s;
|
|
|
|
std::vector<GpuMat> u1s;
|
|
|
|
std::vector<GpuMat> u2s;
|
|
|
|
|
|
|
|
GpuMat I1x_buf;
|
|
|
|
GpuMat I1y_buf;
|
|
|
|
|
|
|
|
GpuMat I1w_buf;
|
|
|
|
GpuMat I1wx_buf;
|
|
|
|
GpuMat I1wy_buf;
|
|
|
|
|
|
|
|
GpuMat grad_buf;
|
|
|
|
GpuMat rho_c_buf;
|
|
|
|
|
|
|
|
GpuMat p11_buf;
|
|
|
|
GpuMat p12_buf;
|
|
|
|
GpuMat p21_buf;
|
|
|
|
GpuMat p22_buf;
|
|
|
|
|
|
|
|
GpuMat diff_buf;
|
|
|
|
GpuMat norm_buf;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
//! Calculates optical flow for 2 images using block matching algorithm */
|
|
|
|
CV_EXPORTS void calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr,
|
|
|
|
Size block_size, Size shift_size, Size max_range, bool use_previous,
|
|
|
|
GpuMat& velx, GpuMat& vely, GpuMat& buf,
|
|
|
|
Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
class CV_EXPORTS FastOpticalFlowBM
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, int search_window = 21, int block_window = 7, Stream& s = Stream::Null());
|
|
|
|
|
|
|
|
private:
|
|
|
|
GpuMat buffer;
|
|
|
|
GpuMat extended_I0;
|
|
|
|
GpuMat extended_I1;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
//! Interpolate frames (images) using provided optical flow (displacement field).
|
|
|
|
//! frame0 - frame 0 (32-bit floating point images, single channel)
|
|
|
|
//! frame1 - frame 1 (the same type and size)
|
|
|
|
//! fu - forward horizontal displacement
|
|
|
|
//! fv - forward vertical displacement
|
|
|
|
//! bu - backward horizontal displacement
|
|
|
|
//! bv - backward vertical displacement
|
|
|
|
//! pos - new frame position
|
|
|
|
//! newFrame - new frame
|
|
|
|
//! buf - temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 GpuMat;
|
|
|
|
//! occlusion masks 0, occlusion masks 1,
|
|
|
|
//! interpolated forward flow 0, interpolated forward flow 1,
|
|
|
|
//! interpolated backward flow 0, interpolated backward flow 1
|
|
|
|
//!
|
|
|
|
CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1,
|
|
|
|
const GpuMat& fu, const GpuMat& fv,
|
|
|
|
const GpuMat& bu, const GpuMat& bv,
|
|
|
|
float pos, GpuMat& newFrame, GpuMat& buf,
|
|
|
|
Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
CV_EXPORTS void createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors);
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////// Background/foreground segmentation ////////////////////////
|
|
|
|
|
|
|
|
// Foreground Object Detection from Videos Containing Complex Background.
|
|
|
|
// Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian.
|
|
|
|
// ACM MM2003 9p
|
|
|
|
class CV_EXPORTS FGDStatModel
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
struct CV_EXPORTS Params
|
|
|
|
{
|
|
|
|
int Lc; // Quantized levels per 'color' component. Power of two, typically 32, 64 or 128.
|
|
|
|
int N1c; // Number of color vectors used to model normal background color variation at a given pixel.
|
|
|
|
int N2c; // Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c.
|
|
|
|
// Used to allow the first N1c vectors to adapt over time to changing background.
|
|
|
|
|
|
|
|
int Lcc; // Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64.
|
|
|
|
int N1cc; // Number of color co-occurrence vectors used to model normal background color variation at a given pixel.
|
|
|
|
int N2cc; // Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc.
|
|
|
|
// Used to allow the first N1cc vectors to adapt over time to changing background.
|
|
|
|
|
|
|
|
bool is_obj_without_holes; // If TRUE we ignore holes within foreground blobs. Defaults to TRUE.
|
|
|
|
int perform_morphing; // Number of erode-dilate-erode foreground-blob cleanup iterations.
|
|
|
|
// These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1.
|
|
|
|
|
|
|
|
float alpha1; // How quickly we forget old background pixel values seen. Typically set to 0.1.
|
|
|
|
float alpha2; // "Controls speed of feature learning". Depends on T. Typical value circa 0.005.
|
|
|
|
float alpha3; // Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1.
|
|
|
|
|
|
|
|
float delta; // Affects color and color co-occurrence quantization, typically set to 2.
|
|
|
|
float T; // A percentage value which determines when new features can be recognized as new background. (Typically 0.9).
|
|
|
|
float minArea; // Discard foreground blobs whose bounding box is smaller than this threshold.
|
|
|
|
|
|
|
|
// default Params
|
|
|
|
Params();
|
|
|
|
};
|
|
|
|
|
|
|
|
// out_cn - channels count in output result (can be 3 or 4)
|
|
|
|
// 4-channels require more memory, but a bit faster
|
|
|
|
explicit FGDStatModel(int out_cn = 3);
|
|
|
|
explicit FGDStatModel(const cv::gpu::GpuMat& firstFrame, const Params& params = Params(), int out_cn = 3);
|
|
|
|
|
|
|
|
~FGDStatModel();
|
|
|
|
|
|
|
|
void create(const cv::gpu::GpuMat& firstFrame, const Params& params = Params());
|
|
|
|
void release();
|
|
|
|
|
|
|
|
int update(const cv::gpu::GpuMat& curFrame);
|
|
|
|
|
|
|
|
//8UC3 or 8UC4 reference background image
|
|
|
|
cv::gpu::GpuMat background;
|
|
|
|
|
|
|
|
//8UC1 foreground image
|
|
|
|
cv::gpu::GpuMat foreground;
|
|
|
|
|
|
|
|
std::vector< std::vector<cv::Point> > foreground_regions;
|
|
|
|
|
|
|
|
private:
|
|
|
|
FGDStatModel(const FGDStatModel&);
|
|
|
|
FGDStatModel& operator=(const FGDStatModel&);
|
|
|
|
|
|
|
|
class Impl;
|
|
|
|
std::auto_ptr<Impl> impl_;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm
|
|
|
|
|
|
|
|
The class implements the following algorithm:
|
|
|
|
"An improved adaptive background mixture model for real-time tracking with shadow detection"
|
|
|
|
P. KadewTraKuPong and R. Bowden,
|
|
|
|
Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
|
|
|
|
http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS MOG_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
//! the default constructor
|
|
|
|
MOG_GPU(int nmixtures = -1);
|
|
|
|
|
|
|
|
//! re-initiaization method
|
|
|
|
void initialize(Size frameSize, int frameType);
|
|
|
|
|
|
|
|
//! the update operator
|
|
|
|
void operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = 0.0f, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! computes a background image which are the mean of all background gaussians
|
|
|
|
void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;
|
|
|
|
|
|
|
|
//! releases all inner buffers
|
|
|
|
void release();
|
|
|
|
|
|
|
|
int history;
|
|
|
|
float varThreshold;
|
|
|
|
float backgroundRatio;
|
|
|
|
float noiseSigma;
|
|
|
|
|
|
|
|
private:
|
|
|
|
int nmixtures_;
|
|
|
|
|
|
|
|
Size frameSize_;
|
|
|
|
int frameType_;
|
|
|
|
int nframes_;
|
|
|
|
|
|
|
|
GpuMat weight_;
|
|
|
|
GpuMat sortKey_;
|
|
|
|
GpuMat mean_;
|
|
|
|
GpuMat var_;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*!
|
|
|
|
The class implements the following algorithm:
|
|
|
|
"Improved adaptive Gausian mixture model for background subtraction"
|
|
|
|
Z.Zivkovic
|
|
|
|
International Conference Pattern Recognition, UK, August, 2004.
|
|
|
|
http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS MOG2_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
//! the default constructor
|
|
|
|
MOG2_GPU(int nmixtures = -1);
|
|
|
|
|
|
|
|
//! re-initiaization method
|
|
|
|
void initialize(Size frameSize, int frameType);
|
|
|
|
|
|
|
|
//! the update operator
|
|
|
|
void operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! computes a background image which are the mean of all background gaussians
|
|
|
|
void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;
|
|
|
|
|
|
|
|
//! releases all inner buffers
|
|
|
|
void release();
|
|
|
|
|
|
|
|
// parameters
|
|
|
|
// you should call initialize after parameters changes
|
|
|
|
|
|
|
|
int history;
|
|
|
|
|
|
|
|
//! here it is the maximum allowed number of mixture components.
|
|
|
|
//! Actual number is determined dynamically per pixel
|
|
|
|
float varThreshold;
|
|
|
|
// threshold on the squared Mahalanobis distance to decide if it is well described
|
|
|
|
// by the background model or not. Related to Cthr from the paper.
|
|
|
|
// This does not influence the update of the background. A typical value could be 4 sigma
|
|
|
|
// and that is varThreshold=4*4=16; Corresponds to Tb in the paper.
|
|
|
|
|
|
|
|
/////////////////////////
|
|
|
|
// less important parameters - things you might change but be carefull
|
|
|
|
////////////////////////
|
|
|
|
|
|
|
|
float backgroundRatio;
|
|
|
|
// corresponds to fTB=1-cf from the paper
|
|
|
|
// TB - threshold when the component becomes significant enough to be included into
|
|
|
|
// the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
|
|
|
|
// For alpha=0.001 it means that the mode should exist for approximately 105 frames before
|
|
|
|
// it is considered foreground
|
|
|
|
// float noiseSigma;
|
|
|
|
float varThresholdGen;
|
|
|
|
|
|
|
|
//correspondts to Tg - threshold on the squared Mahalan. dist. to decide
|
|
|
|
//when a sample is close to the existing components. If it is not close
|
|
|
|
//to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
|
|
|
|
//Smaller Tg leads to more generated components and higher Tg might make
|
|
|
|
//lead to small number of components but they can grow too large
|
|
|
|
float fVarInit;
|
|
|
|
float fVarMin;
|
|
|
|
float fVarMax;
|
|
|
|
|
|
|
|
//initial variance for the newly generated components.
|
|
|
|
//It will will influence the speed of adaptation. A good guess should be made.
|
|
|
|
//A simple way is to estimate the typical standard deviation from the images.
|
|
|
|
//I used here 10 as a reasonable value
|
|
|
|
// min and max can be used to further control the variance
|
|
|
|
float fCT; //CT - complexity reduction prior
|
|
|
|
//this is related to the number of samples needed to accept that a component
|
|
|
|
//actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
|
|
|
|
//the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
|
|
|
|
|
|
|
|
//shadow detection parameters
|
|
|
|
bool bShadowDetection; //default 1 - do shadow detection
|
|
|
|
unsigned char nShadowDetection; //do shadow detection - insert this value as the detection result - 127 default value
|
|
|
|
float fTau;
|
|
|
|
// Tau - shadow threshold. The shadow is detected if the pixel is darker
|
|
|
|
//version of the background. Tau is a threshold on how much darker the shadow can be.
|
|
|
|
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
|
|
|
|
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
|
|
|
|
|
|
|
|
private:
|
|
|
|
int nmixtures_;
|
|
|
|
|
|
|
|
Size frameSize_;
|
|
|
|
int frameType_;
|
|
|
|
int nframes_;
|
|
|
|
|
|
|
|
GpuMat weight_;
|
|
|
|
GpuMat variance_;
|
|
|
|
GpuMat mean_;
|
|
|
|
|
|
|
|
GpuMat bgmodelUsedModes_; //keep track of number of modes per pixel
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Background Subtractor module. Takes a series of images and returns a sequence of mask (8UC1)
|
|
|
|
* images of the same size, where 255 indicates Foreground and 0 represents Background.
|
|
|
|
* This class implements an algorithm described in "Visual Tracking of Human Visitors under
|
|
|
|
* Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere,
|
|
|
|
* A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012.
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS GMG_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
GMG_GPU();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Validate parameters and set up data structures for appropriate frame size.
|
|
|
|
* @param frameSize Input frame size
|
|
|
|
* @param min Minimum value taken on by pixels in image sequence. Usually 0
|
|
|
|
* @param max Maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
|
|
|
|
*/
|
|
|
|
void initialize(Size frameSize, float min = 0.0f, float max = 255.0f);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Performs single-frame background subtraction and builds up a statistical background image
|
|
|
|
* model.
|
|
|
|
* @param frame Input frame
|
|
|
|
* @param fgmask Output mask image representing foreground and background pixels
|
|
|
|
* @param stream Stream for the asynchronous version
|
|
|
|
*/
|
|
|
|
void operator ()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! Releases all inner buffers
|
|
|
|
void release();
|
|
|
|
|
|
|
|
//! Total number of distinct colors to maintain in histogram.
|
|
|
|
int maxFeatures;
|
|
|
|
|
|
|
|
//! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
|
|
|
|
float learningRate;
|
|
|
|
|
|
|
|
//! Number of frames of video to use to initialize histograms.
|
|
|
|
int numInitializationFrames;
|
|
|
|
|
|
|
|
//! Number of discrete levels in each channel to be used in histograms.
|
|
|
|
int quantizationLevels;
|
|
|
|
|
|
|
|
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
|
|
|
|
float backgroundPrior;
|
|
|
|
|
|
|
|
//! Value above which pixel is determined to be FG.
|
|
|
|
float decisionThreshold;
|
|
|
|
|
|
|
|
//! Smoothing radius, in pixels, for cleaning up FG image.
|
|
|
|
int smoothingRadius;
|
|
|
|
|
|
|
|
//! Perform background model update.
|
|
|
|
bool updateBackgroundModel;
|
|
|
|
|
|
|
|
private:
|
|
|
|
float maxVal_, minVal_;
|
|
|
|
|
|
|
|
Size frameSize_;
|
|
|
|
|
|
|
|
int frameNum_;
|
|
|
|
|
|
|
|
GpuMat nfeatures_;
|
|
|
|
GpuMat colors_;
|
|
|
|
GpuMat weights_;
|
|
|
|
|
|
|
|
Ptr<FilterEngine_GPU> boxFilter_;
|
|
|
|
GpuMat buf_;
|
|
|
|
};
|
|
|
|
|
|
|
|
//! removes points (CV_32FC2, single row matrix) with zero mask value
|
|
|
|
CV_EXPORTS void compactPoints(GpuMat &points0, GpuMat &points1, const GpuMat &mask);
|
|
|
|
|
|
|
|
CV_EXPORTS void calcWobbleSuppressionMaps(
|
|
|
|
int left, int idx, int right, Size size, const Mat &ml, const Mat &mr,
|
|
|
|
GpuMat &mapx, GpuMat &mapy);
|
|
|
|
|
|
|
|
} // namespace gpu
|
|
|
|
|
|
|
|
} // namespace cv
|
|
|
|
|
|
|
|
#endif /* __OPENCV_GPU_HPP__ */
|