Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1057 lines
38 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <float.h>
#include <stdio.h>
#include "lkpyramid.hpp"
#define CV_DESCALE(x,n) (((x) + (1 << ((n)-1))) >> (n))
namespace
{
static void calcSharrDeriv(const cv::Mat& src, cv::Mat& dst)
{
using namespace cv;
using cv::detail::deriv_type;
int rows = src.rows, cols = src.cols, cn = src.channels(), colsn = cols*cn, depth = src.depth();
CV_Assert(depth == CV_8U);
dst.create(rows, cols, CV_MAKETYPE(DataType<deriv_type>::depth, cn*2));
#ifdef HAVE_TEGRA_OPTIMIZATION
if (tegra::calcSharrDeriv(src, dst))
return;
#endif
int x, y, delta = (int)alignSize((cols + 2)*cn, 16);
AutoBuffer<deriv_type> _tempBuf(delta*2 + 64);
deriv_type *trow0 = alignPtr(_tempBuf + cn, 16), *trow1 = alignPtr(trow0 + delta, 16);
#if CV_SSE2
__m128i z = _mm_setzero_si128(), c3 = _mm_set1_epi16(3), c10 = _mm_set1_epi16(10);
#endif
for( y = 0; y < rows; y++ )
{
const uchar* srow0 = src.ptr<uchar>(y > 0 ? y-1 : rows > 1 ? 1 : 0);
const uchar* srow1 = src.ptr<uchar>(y);
const uchar* srow2 = src.ptr<uchar>(y < rows-1 ? y+1 : rows > 1 ? rows-2 : 0);
deriv_type* drow = dst.ptr<deriv_type>(y);
// do vertical convolution
x = 0;
#if CV_SSE2
for( ; x <= colsn - 8; x += 8 )
{
__m128i s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(srow0 + x)), z);
__m128i s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(srow1 + x)), z);
__m128i s2 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(srow2 + x)), z);
__m128i t0 = _mm_add_epi16(_mm_mullo_epi16(_mm_add_epi16(s0, s2), c3), _mm_mullo_epi16(s1, c10));
__m128i t1 = _mm_sub_epi16(s2, s0);
_mm_store_si128((__m128i*)(trow0 + x), t0);
_mm_store_si128((__m128i*)(trow1 + x), t1);
}
#endif
for( ; x < colsn; x++ )
{
int t0 = (srow0[x] + srow2[x])*3 + srow1[x]*10;
int t1 = srow2[x] - srow0[x];
trow0[x] = (deriv_type)t0;
trow1[x] = (deriv_type)t1;
}
// make border
int x0 = (cols > 1 ? 1 : 0)*cn, x1 = (cols > 1 ? cols-2 : 0)*cn;
for( int k = 0; k < cn; k++ )
{
trow0[-cn + k] = trow0[x0 + k]; trow0[colsn + k] = trow0[x1 + k];
trow1[-cn + k] = trow1[x0 + k]; trow1[colsn + k] = trow1[x1 + k];
}
// do horizontal convolution, interleave the results and store them to dst
x = 0;
#if CV_SSE2
for( ; x <= colsn - 8; x += 8 )
{
__m128i s0 = _mm_loadu_si128((const __m128i*)(trow0 + x - cn));
__m128i s1 = _mm_loadu_si128((const __m128i*)(trow0 + x + cn));
__m128i s2 = _mm_loadu_si128((const __m128i*)(trow1 + x - cn));
__m128i s3 = _mm_load_si128((const __m128i*)(trow1 + x));
__m128i s4 = _mm_loadu_si128((const __m128i*)(trow1 + x + cn));
__m128i t0 = _mm_sub_epi16(s1, s0);
__m128i t1 = _mm_add_epi16(_mm_mullo_epi16(_mm_add_epi16(s2, s4), c3), _mm_mullo_epi16(s3, c10));
__m128i t2 = _mm_unpacklo_epi16(t0, t1);
t0 = _mm_unpackhi_epi16(t0, t1);
// this can probably be replaced with aligned stores if we aligned dst properly.
_mm_storeu_si128((__m128i*)(drow + x*2), t2);
_mm_storeu_si128((__m128i*)(drow + x*2 + 8), t0);
}
#endif
for( ; x < colsn; x++ )
{
deriv_type t0 = (deriv_type)(trow0[x+cn] - trow0[x-cn]);
deriv_type t1 = (deriv_type)((trow1[x+cn] + trow1[x-cn])*3 + trow1[x]*10);
drow[x*2] = t0; drow[x*2+1] = t1;
}
}
}
}//namespace
cv::detail::LKTrackerInvoker::LKTrackerInvoker(
const Mat& _prevImg, const Mat& _prevDeriv, const Mat& _nextImg,
const Point2f* _prevPts, Point2f* _nextPts,
uchar* _status, float* _err,
Size _winSize, TermCriteria _criteria,
int _level, int _maxLevel, int _flags, float _minEigThreshold )
{
prevImg = &_prevImg;
prevDeriv = &_prevDeriv;
nextImg = &_nextImg;
prevPts = _prevPts;
nextPts = _nextPts;
status = _status;
err = _err;
winSize = _winSize;
criteria = _criteria;
level = _level;
maxLevel = _maxLevel;
flags = _flags;
minEigThreshold = _minEigThreshold;
}
#if defined __arm__ && !CV_NEON
typedef int64 acctype;
typedef int itemtype;
#else
typedef float acctype;
typedef float itemtype;
#endif
void cv::detail::LKTrackerInvoker::operator()(const BlockedRange& range) const
{
Point2f halfWin((winSize.width-1)*0.5f, (winSize.height-1)*0.5f);
const Mat& I = *prevImg;
const Mat& J = *nextImg;
const Mat& derivI = *prevDeriv;
int j, cn = I.channels(), cn2 = cn*2;
cv::AutoBuffer<deriv_type> _buf(winSize.area()*(cn + cn2));
int derivDepth = DataType<deriv_type>::depth;
Mat IWinBuf(winSize, CV_MAKETYPE(derivDepth, cn), (deriv_type*)_buf);
Mat derivIWinBuf(winSize, CV_MAKETYPE(derivDepth, cn2), (deriv_type*)_buf + winSize.area()*cn);
for( int ptidx = range.begin(); ptidx < range.end(); ptidx++ )
{
Point2f prevPt = prevPts[ptidx]*(float)(1./(1 << level));
Point2f nextPt;
if( level == maxLevel )
{
if( flags & OPTFLOW_USE_INITIAL_FLOW )
nextPt = nextPts[ptidx]*(float)(1./(1 << level));
else
nextPt = prevPt;
}
else
nextPt = nextPts[ptidx]*2.f;
nextPts[ptidx] = nextPt;
Point2i iprevPt, inextPt;
prevPt -= halfWin;
iprevPt.x = cvFloor(prevPt.x);
iprevPt.y = cvFloor(prevPt.y);
if( iprevPt.x < -winSize.width || iprevPt.x >= derivI.cols ||
iprevPt.y < -winSize.height || iprevPt.y >= derivI.rows )
{
if( level == 0 )
{
if( status )
status[ptidx] = false;
if( err )
err[ptidx] = 0;
}
continue;
}
float a = prevPt.x - iprevPt.x;
float b = prevPt.y - iprevPt.y;
const int W_BITS = 14, W_BITS1 = 14;
const float FLT_SCALE = 1.f/(1 << 20);
int iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS));
int iw01 = cvRound(a*(1.f - b)*(1 << W_BITS));
int iw10 = cvRound((1.f - a)*b*(1 << W_BITS));
int iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
int dstep = (int)(derivI.step/derivI.elemSize1());
int stepI = (int)(I.step/I.elemSize1());
int stepJ = (int)(J.step/J.elemSize1());
acctype iA11 = 0, iA12 = 0, iA22 = 0;
float A11, A12, A22;
#if CV_SSE2
__m128i qw0 = _mm_set1_epi32(iw00 + (iw01 << 16));
__m128i qw1 = _mm_set1_epi32(iw10 + (iw11 << 16));
__m128i z = _mm_setzero_si128();
__m128i qdelta_d = _mm_set1_epi32(1 << (W_BITS1-1));
__m128i qdelta = _mm_set1_epi32(1 << (W_BITS1-5-1));
__m128 qA11 = _mm_setzero_ps(), qA12 = _mm_setzero_ps(), qA22 = _mm_setzero_ps();
#endif
// extract the patch from the first image, compute covariation matrix of derivatives
int x, y;
for( y = 0; y < winSize.height; y++ )
{
const uchar* src = (const uchar*)I.data + (y + iprevPt.y)*stepI + iprevPt.x*cn;
const deriv_type* dsrc = (const deriv_type*)derivI.data + (y + iprevPt.y)*dstep + iprevPt.x*cn2;
deriv_type* Iptr = (deriv_type*)(IWinBuf.data + y*IWinBuf.step);
deriv_type* dIptr = (deriv_type*)(derivIWinBuf.data + y*derivIWinBuf.step);
x = 0;
#if CV_SSE2
for( ; x <= winSize.width*cn - 4; x += 4, dsrc += 4*2, dIptr += 4*2 )
{
__m128i v00, v01, v10, v11, t0, t1;
v00 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x)), z);
v01 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + cn)), z);
v10 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + stepI)), z);
v11 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + stepI + cn)), z);
t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0),
_mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1));
t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta), W_BITS1-5);
_mm_storel_epi64((__m128i*)(Iptr + x), _mm_packs_epi32(t0,t0));
v00 = _mm_loadu_si128((const __m128i*)(dsrc));
v01 = _mm_loadu_si128((const __m128i*)(dsrc + cn2));
v10 = _mm_loadu_si128((const __m128i*)(dsrc + dstep));
v11 = _mm_loadu_si128((const __m128i*)(dsrc + dstep + cn2));
t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0),
_mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1));
t1 = _mm_add_epi32(_mm_madd_epi16(_mm_unpackhi_epi16(v00, v01), qw0),
_mm_madd_epi16(_mm_unpackhi_epi16(v10, v11), qw1));
t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta_d), W_BITS1);
t1 = _mm_srai_epi32(_mm_add_epi32(t1, qdelta_d), W_BITS1);
v00 = _mm_packs_epi32(t0, t1); // Ix0 Iy0 Ix1 Iy1 ...
_mm_storeu_si128((__m128i*)dIptr, v00);
t0 = _mm_srai_epi32(v00, 16); // Iy0 Iy1 Iy2 Iy3
t1 = _mm_srai_epi32(_mm_slli_epi32(v00, 16), 16); // Ix0 Ix1 Ix2 Ix3
__m128 fy = _mm_cvtepi32_ps(t0);
__m128 fx = _mm_cvtepi32_ps(t1);
qA22 = _mm_add_ps(qA22, _mm_mul_ps(fy, fy));
qA12 = _mm_add_ps(qA12, _mm_mul_ps(fx, fy));
qA11 = _mm_add_ps(qA11, _mm_mul_ps(fx, fx));
}
#endif
for( ; x < winSize.width*cn; x++, dsrc += 2, dIptr += 2 )
{
int ival = CV_DESCALE(src[x]*iw00 + src[x+cn]*iw01 +
src[x+stepI]*iw10 + src[x+stepI+cn]*iw11, W_BITS1-5);
int ixval = CV_DESCALE(dsrc[0]*iw00 + dsrc[cn2]*iw01 +
dsrc[dstep]*iw10 + dsrc[dstep+cn2]*iw11, W_BITS1);
int iyval = CV_DESCALE(dsrc[1]*iw00 + dsrc[cn2+1]*iw01 + dsrc[dstep+1]*iw10 +
dsrc[dstep+cn2+1]*iw11, W_BITS1);
Iptr[x] = (short)ival;
dIptr[0] = (short)ixval;
dIptr[1] = (short)iyval;
iA11 += (itemtype)(ixval*ixval);
iA12 += (itemtype)(ixval*iyval);
iA22 += (itemtype)(iyval*iyval);
}
}
#if CV_SSE2
float CV_DECL_ALIGNED(16) A11buf[4], A12buf[4], A22buf[4];
_mm_store_ps(A11buf, qA11);
_mm_store_ps(A12buf, qA12);
_mm_store_ps(A22buf, qA22);
iA11 += A11buf[0] + A11buf[1] + A11buf[2] + A11buf[3];
iA12 += A12buf[0] + A12buf[1] + A12buf[2] + A12buf[3];
iA22 += A22buf[0] + A22buf[1] + A22buf[2] + A22buf[3];
#endif
A11 = iA11*FLT_SCALE;
A12 = iA12*FLT_SCALE;
A22 = iA22*FLT_SCALE;
float D = A11*A22 - A12*A12;
float minEig = (A22 + A11 - std::sqrt((A11-A22)*(A11-A22) +
4.f*A12*A12))/(2*winSize.width*winSize.height);
if( err && (flags & CV_LKFLOW_GET_MIN_EIGENVALS) != 0 )
err[ptidx] = (float)minEig;
if( minEig < minEigThreshold || D < FLT_EPSILON )
{
if( level == 0 && status )
status[ptidx] = false;
continue;
}
D = 1.f/D;
nextPt -= halfWin;
Point2f prevDelta;
for( j = 0; j < criteria.maxCount; j++ )
{
inextPt.x = cvFloor(nextPt.x);
inextPt.y = cvFloor(nextPt.y);
if( inextPt.x < -winSize.width || inextPt.x >= J.cols ||
inextPt.y < -winSize.height || inextPt.y >= J.rows )
{
if( level == 0 && status )
status[ptidx] = false;
break;
}
a = nextPt.x - inextPt.x;
b = nextPt.y - inextPt.y;
iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS));
iw01 = cvRound(a*(1.f - b)*(1 << W_BITS));
iw10 = cvRound((1.f - a)*b*(1 << W_BITS));
iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
acctype ib1 = 0, ib2 = 0;
float b1, b2;
#if CV_SSE2
qw0 = _mm_set1_epi32(iw00 + (iw01 << 16));
qw1 = _mm_set1_epi32(iw10 + (iw11 << 16));
__m128 qb0 = _mm_setzero_ps(), qb1 = _mm_setzero_ps();
#endif
for( y = 0; y < winSize.height; y++ )
{
const uchar* Jptr = (const uchar*)J.data + (y + inextPt.y)*stepJ + inextPt.x*cn;
const deriv_type* Iptr = (const deriv_type*)(IWinBuf.data + y*IWinBuf.step);
const deriv_type* dIptr = (const deriv_type*)(derivIWinBuf.data + y*derivIWinBuf.step);
x = 0;
#if CV_SSE2
for( ; x <= winSize.width*cn - 8; x += 8, dIptr += 8*2 )
{
__m128i diff0 = _mm_loadu_si128((const __m128i*)(Iptr + x)), diff1;
__m128i v00 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x)), z);
__m128i v01 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + cn)), z);
__m128i v10 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + stepJ)), z);
__m128i v11 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + stepJ + cn)), z);
__m128i t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0),
_mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1));
__m128i t1 = _mm_add_epi32(_mm_madd_epi16(_mm_unpackhi_epi16(v00, v01), qw0),
_mm_madd_epi16(_mm_unpackhi_epi16(v10, v11), qw1));
t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta), W_BITS1-5);
t1 = _mm_srai_epi32(_mm_add_epi32(t1, qdelta), W_BITS1-5);
diff0 = _mm_subs_epi16(_mm_packs_epi32(t0, t1), diff0);
diff1 = _mm_unpackhi_epi16(diff0, diff0);
diff0 = _mm_unpacklo_epi16(diff0, diff0); // It0 It0 It1 It1 ...
v00 = _mm_loadu_si128((const __m128i*)(dIptr)); // Ix0 Iy0 Ix1 Iy1 ...
v01 = _mm_loadu_si128((const __m128i*)(dIptr + 8));
v10 = _mm_mullo_epi16(v00, diff0);
v11 = _mm_mulhi_epi16(v00, diff0);
v00 = _mm_unpacklo_epi16(v10, v11);
v10 = _mm_unpackhi_epi16(v10, v11);
qb0 = _mm_add_ps(qb0, _mm_cvtepi32_ps(v00));
qb1 = _mm_add_ps(qb1, _mm_cvtepi32_ps(v10));
v10 = _mm_mullo_epi16(v01, diff1);
v11 = _mm_mulhi_epi16(v01, diff1);
v00 = _mm_unpacklo_epi16(v10, v11);
v10 = _mm_unpackhi_epi16(v10, v11);
qb0 = _mm_add_ps(qb0, _mm_cvtepi32_ps(v00));
qb1 = _mm_add_ps(qb1, _mm_cvtepi32_ps(v10));
}
#endif
for( ; x < winSize.width*cn; x++, dIptr += 2 )
{
int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 +
Jptr[x+stepJ]*iw10 + Jptr[x+stepJ+cn]*iw11,
W_BITS1-5) - Iptr[x];
ib1 += (itemtype)(diff*dIptr[0]);
ib2 += (itemtype)(diff*dIptr[1]);
}
}
#if CV_SSE2
float CV_DECL_ALIGNED(16) bbuf[4];
_mm_store_ps(bbuf, _mm_add_ps(qb0, qb1));
ib1 += bbuf[0] + bbuf[2];
ib2 += bbuf[1] + bbuf[3];
#endif
b1 = ib1*FLT_SCALE;
b2 = ib2*FLT_SCALE;
Point2f delta( (float)((A12*b2 - A22*b1) * D),
(float)((A12*b1 - A11*b2) * D));
//delta = -delta;
nextPt += delta;
nextPts[ptidx] = nextPt + halfWin;
if( delta.ddot(delta) <= criteria.epsilon )
break;
if( j > 0 && std::abs(delta.x + prevDelta.x) < 0.01 &&
std::abs(delta.y + prevDelta.y) < 0.01 )
{
nextPts[ptidx] -= delta*0.5f;
break;
}
prevDelta = delta;
}
if( status[ptidx] && err && level == 0 && (flags & CV_LKFLOW_GET_MIN_EIGENVALS) == 0 )
{
Point2f nextPoint = nextPts[ptidx] - halfWin;
Point inextPoint;
inextPoint.x = cvFloor(nextPoint.x);
inextPoint.y = cvFloor(nextPoint.y);
if( inextPoint.x < -winSize.width || inextPoint.x >= J.cols ||
inextPoint.y < -winSize.height || inextPoint.y >= J.rows )
{
if( status )
status[ptidx] = false;
continue;
}
float aa = nextPoint.x - inextPoint.x;
float bb = nextPoint.y - inextPoint.y;
iw00 = cvRound((1.f - aa)*(1.f - bb)*(1 << W_BITS));
iw01 = cvRound(aa*(1.f - bb)*(1 << W_BITS));
iw10 = cvRound((1.f - aa)*bb*(1 << W_BITS));
iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
float errval = 0.f;
for( y = 0; y < winSize.height; y++ )
{
const uchar* Jptr = (const uchar*)J.data + (y + inextPoint.y)*stepJ + inextPoint.x*cn;
const deriv_type* Iptr = (const deriv_type*)(IWinBuf.data + y*IWinBuf.step);
for( x = 0; x < winSize.width*cn; x++ )
{
int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 +
Jptr[x+stepJ]*iw10 + Jptr[x+stepJ+cn]*iw11,
W_BITS1-5) - Iptr[x];
errval += std::abs((float)diff);
}
}
err[ptidx] = errval * 1.f/(32*winSize.width*cn*winSize.height);
}
}
}
int cv::buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size winSize, int maxLevel, bool withDerivatives,
int pyrBorder, int derivBorder, bool tryReuseInputImage)
{
Mat img = _img.getMat();
CV_Assert(img.depth() == CV_8U && winSize.width > 2 && winSize.height > 2 );
int pyrstep = withDerivatives ? 2 : 1;
pyramid.create(1, (maxLevel + 1) * pyrstep, 0 /*type*/, -1, true, 0);
int derivType = CV_MAKETYPE(DataType<cv::detail::deriv_type>::depth, img.channels() * 2);
//level 0
bool lvl0IsSet = false;
if(tryReuseInputImage && img.isSubmatrix() && (pyrBorder & BORDER_ISOLATED) == 0)
{
Size wholeSize;
Point ofs;
img.locateROI(wholeSize, ofs);
if (ofs.x >= winSize.width && ofs.y >= winSize.height
&& ofs.x + img.cols + winSize.width <= wholeSize.width
&& ofs.y + img.rows + winSize.height <= wholeSize.height)
{
pyramid.getMatRef(0) = img;
lvl0IsSet = true;
}
}
if(!lvl0IsSet)
{
Mat& temp = pyramid.getMatRef(0);
if(!temp.empty())
temp.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width);
if(temp.type() != img.type() || temp.cols != winSize.width*2 + img.cols || temp.rows != winSize.height * 2 + img.rows)
temp.create(img.rows + winSize.height*2, img.cols + winSize.width*2, img.type());
if(pyrBorder == BORDER_TRANSPARENT)
img.copyTo(temp(Rect(winSize.width, winSize.height, img.cols, img.rows)));
else
copyMakeBorder(img, temp, winSize.height, winSize.height, winSize.width, winSize.width, pyrBorder);
temp.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width);
}
Size sz = img.size();
Mat prevLevel = pyramid.getMatRef(0);
Mat thisLevel = prevLevel;
for(int level = 0; level <= maxLevel; ++level)
{
if (level != 0)
{
Mat& temp = pyramid.getMatRef(level * pyrstep);
if(!temp.empty())
temp.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width);
if(temp.type() != img.type() || temp.cols != winSize.width*2 + sz.width || temp.rows != winSize.height * 2 + sz.height)
temp.create(sz.height + winSize.height*2, sz.width + winSize.width*2, img.type());
thisLevel = temp(Rect(winSize.width, winSize.height, sz.width, sz.height));
pyrDown(prevLevel, thisLevel, sz);
if(pyrBorder != BORDER_TRANSPARENT)
copyMakeBorder(thisLevel, temp, winSize.height, winSize.height, winSize.width, winSize.width, pyrBorder|BORDER_ISOLATED);
temp.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width);
}
if(withDerivatives)
{
Mat& deriv = pyramid.getMatRef(level * pyrstep + 1);
if(!deriv.empty())
deriv.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width);
if(deriv.type() != derivType || deriv.cols != winSize.width*2 + sz.width || deriv.rows != winSize.height * 2 + sz.height)
deriv.create(sz.height + winSize.height*2, sz.width + winSize.width*2, derivType);
Mat derivI = deriv(Rect(winSize.width, winSize.height, sz.width, sz.height));
calcSharrDeriv(thisLevel, derivI);
if(derivBorder != BORDER_TRANSPARENT)
copyMakeBorder(derivI, deriv, winSize.height, winSize.height, winSize.width, winSize.width, derivBorder|BORDER_ISOLATED);
deriv.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width);
}
sz = Size((sz.width+1)/2, (sz.height+1)/2);
if( sz.width <= winSize.width || sz.height <= winSize.height )
{
pyramid.create(1, (level + 1) * pyrstep, 0 /*type*/, -1, true, 0);//check this
return level;
}
prevLevel = thisLevel;
}
return maxLevel;
}
void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
InputArray _prevPts, InputOutputArray _nextPts,
OutputArray _status, OutputArray _err,
Size winSize, int maxLevel,
TermCriteria criteria,
int flags, double minEigThreshold )
{
Mat prevPtsMat = _prevPts.getMat();
const int derivDepth = DataType<cv::detail::deriv_type>::depth;
CV_Assert( maxLevel >= 0 && winSize.width > 2 && winSize.height > 2 );
int level=0, i, npoints;
CV_Assert( (npoints = prevPtsMat.checkVector(2, CV_32F, true)) >= 0 );
if( npoints == 0 )
{
_nextPts.release();
_status.release();
_err.release();
return;
}
if( !(flags & OPTFLOW_USE_INITIAL_FLOW) )
_nextPts.create(prevPtsMat.size(), prevPtsMat.type(), -1, true);
Mat nextPtsMat = _nextPts.getMat();
CV_Assert( nextPtsMat.checkVector(2, CV_32F, true) == npoints );
const Point2f* prevPts = (const Point2f*)prevPtsMat.data;
Point2f* nextPts = (Point2f*)nextPtsMat.data;
_status.create((int)npoints, 1, CV_8U, -1, true);
Mat statusMat = _status.getMat(), errMat;
CV_Assert( statusMat.isContinuous() );
uchar* status = statusMat.data;
float* err = 0;
for( i = 0; i < npoints; i++ )
status[i] = true;
if( _err.needed() )
{
_err.create((int)npoints, 1, CV_32F, -1, true);
errMat = _err.getMat();
CV_Assert( errMat.isContinuous() );
err = (float*)errMat.data;
}
std::vector<Mat> prevPyr, nextPyr;
int levels1 = -1;
int lvlStep1 = 1;
int levels2 = -1;
int lvlStep2 = 1;
if(_prevImg.kind() == _InputArray::STD_VECTOR_MAT)
{
_prevImg.getMatVector(prevPyr);
levels1 = int(prevPyr.size()) - 1;
CV_Assert(levels1 >= 0);
if (levels1 % 2 == 1 && prevPyr[0].channels() * 2 == prevPyr[1].channels() && prevPyr[1].depth() == derivDepth)
{
lvlStep1 = 2;
levels1 /= 2;
}
// ensure that pyramid has reqired padding
if(levels1 > 0)
{
Size fullSize;
Point ofs;
prevPyr[lvlStep1].locateROI(fullSize, ofs);
CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height
&& ofs.x + prevPyr[lvlStep1].cols + winSize.width <= fullSize.width
&& ofs.y + prevPyr[lvlStep1].rows + winSize.height <= fullSize.height);
}
if(levels1 < maxLevel)
maxLevel = levels1;
}
if(_nextImg.kind() == _InputArray::STD_VECTOR_MAT)
{
_nextImg.getMatVector(nextPyr);
levels2 = int(nextPyr.size()) - 1;
CV_Assert(levels2 >= 0);
if (levels2 % 2 == 1 && nextPyr[0].channels() * 2 == nextPyr[1].channels() && nextPyr[1].depth() == derivDepth)
{
lvlStep2 = 2;
levels2 /= 2;
}
// ensure that pyramid has reqired padding
if(levels2 > 0)
{
Size fullSize;
Point ofs;
nextPyr[lvlStep2].locateROI(fullSize, ofs);
CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height
&& ofs.x + nextPyr[lvlStep2].cols + winSize.width <= fullSize.width
&& ofs.y + nextPyr[lvlStep2].rows + winSize.height <= fullSize.height);
}
if(levels2 < maxLevel)
maxLevel = levels2;
}
if (levels1 < 0)
maxLevel = buildOpticalFlowPyramid(_prevImg, prevPyr, winSize, maxLevel, false);
if (levels2 < 0)
maxLevel = buildOpticalFlowPyramid(_nextImg, nextPyr, winSize, maxLevel, false);
if( (criteria.type & TermCriteria::COUNT) == 0 )
criteria.maxCount = 30;
else
criteria.maxCount = std::min(std::max(criteria.maxCount, 0), 100);
if( (criteria.type & TermCriteria::EPS) == 0 )
criteria.epsilon = 0.01;
else
criteria.epsilon = std::min(std::max(criteria.epsilon, 0.), 10.);
criteria.epsilon *= criteria.epsilon;
// dI/dx ~ Ix, dI/dy ~ Iy
Mat derivIBuf;
if(lvlStep1 == 1)
derivIBuf.create(prevPyr[0].rows + winSize.height*2, prevPyr[0].cols + winSize.width*2, CV_MAKETYPE(derivDepth, prevPyr[0].channels() * 2));
for( level = maxLevel; level >= 0; level-- )
{
Mat derivI;
if(lvlStep1 == 1)
{
Size imgSize = prevPyr[level * lvlStep1].size();
Mat _derivI( imgSize.height + winSize.height*2,
imgSize.width + winSize.width*2, derivIBuf.type(), derivIBuf.data );
derivI = _derivI(Rect(winSize.width, winSize.height, imgSize.width, imgSize.height));
calcSharrDeriv(prevPyr[level * lvlStep1], derivI);
copyMakeBorder(derivI, _derivI, winSize.height, winSize.height, winSize.width, winSize.width, BORDER_CONSTANT|BORDER_ISOLATED);
}
else
derivI = prevPyr[level * lvlStep1 + 1];
CV_Assert(prevPyr[level * lvlStep1].size() == nextPyr[level * lvlStep2].size());
CV_Assert(prevPyr[level * lvlStep1].type() == nextPyr[level * lvlStep2].type());
#ifdef HAVE_TEGRA_OPTIMIZATION
typedef tegra::LKTrackerInvoker<cv::detail::LKTrackerInvoker> LKTrackerInvoker;
#else
typedef cv::detail::LKTrackerInvoker LKTrackerInvoker;
#endif
parallel_for(BlockedRange(0, npoints), LKTrackerInvoker(prevPyr[level * lvlStep1], derivI,
nextPyr[level * lvlStep2], prevPts, nextPts,
status, err,
winSize, criteria, level, maxLevel,
flags, (float)minEigThreshold));
}
}
namespace cv
{
static void
getRTMatrix( const Point2f* a, const Point2f* b,
int count, Mat& M, bool fullAffine )
{
CV_Assert( M.isContinuous() );
if( fullAffine )
{
double sa[6][6]={{0.}}, sb[6]={0.};
Mat A( 6, 6, CV_64F, &sa[0][0] ), B( 6, 1, CV_64F, sb );
Mat MM = M.reshape(1, 6);
for( int i = 0; i < count; i++ )
{
sa[0][0] += a[i].x*a[i].x;
sa[0][1] += a[i].y*a[i].x;
sa[0][2] += a[i].x;
sa[1][1] += a[i].y*a[i].y;
sa[1][2] += a[i].y;
sa[2][2] += 1;
sb[0] += a[i].x*b[i].x;
sb[1] += a[i].y*b[i].x;
sb[2] += b[i].x;
sb[3] += a[i].x*b[i].y;
sb[4] += a[i].y*b[i].y;
sb[5] += b[i].y;
}
sa[3][4] = sa[4][3] = sa[1][0] = sa[0][1];
sa[3][5] = sa[5][3] = sa[2][0] = sa[0][2];
sa[4][5] = sa[5][4] = sa[2][1] = sa[1][2];
sa[3][3] = sa[0][0];
sa[4][4] = sa[1][1];
sa[5][5] = sa[2][2];
solve( A, B, MM, DECOMP_EIG );
}
else
{
double sa[4][4]={{0.}}, sb[4]={0.}, m[4];
Mat A( 4, 4, CV_64F, sa ), B( 4, 1, CV_64F, sb );
Mat MM( 4, 1, CV_64F, m );
for( int i = 0; i < count; i++ )
{
sa[0][0] += a[i].x*a[i].x + a[i].y*a[i].y;
sa[0][2] += a[i].x;
sa[0][3] += a[i].y;
sa[2][1] += -a[i].y;
sa[2][2] += 1;
sa[3][0] += a[i].y;
sa[3][1] += a[i].x;
sa[3][3] += 1;
sb[0] += a[i].x*b[i].x + a[i].y*b[i].y;
sb[1] += a[i].x*b[i].y - a[i].y*b[i].x;
sb[2] += b[i].x;
sb[3] += b[i].y;
}
sa[1][1] = sa[0][0];
sa[2][1] = sa[1][2] = -sa[0][3];
sa[3][1] = sa[1][3] = sa[2][0] = sa[0][2];
sa[2][2] = sa[3][3] = count;
sa[3][0] = sa[0][3];
solve( A, B, MM, DECOMP_EIG );
double* om = M.ptr<double>();
om[0] = om[4] = m[0];
om[1] = -m[1];
om[3] = m[1];
om[2] = m[2];
om[5] = m[3];
}
}
}
cv::Mat cv::estimateRigidTransform( InputArray src1, InputArray src2, bool fullAffine )
{
Mat M(2, 3, CV_64F), A = src1.getMat(), B = src2.getMat();
const int COUNT = 15;
const int WIDTH = 160, HEIGHT = 120;
const int RANSAC_MAX_ITERS = 500;
const int RANSAC_SIZE0 = 3;
const double RANSAC_GOOD_RATIO = 0.5;
std::vector<Point2f> pA, pB;
std::vector<int> good_idx;
std::vector<uchar> status;
double scale = 1.;
int i, j, k, k1;
RNG rng((uint64)-1);
int good_count = 0;
if( A.size() != B.size() )
CV_Error( CV_StsUnmatchedSizes, "Both input images must have the same size" );
if( A.type() != B.type() )
CV_Error( CV_StsUnmatchedFormats, "Both input images must have the same data type" );
int count = A.checkVector(2);
if( count > 0 )
{
A.reshape(2, count).convertTo(pA, CV_32F);
B.reshape(2, count).convertTo(pB, CV_32F);
}
else if( A.depth() == CV_8U )
{
int cn = A.channels();
CV_Assert( cn == 1 || cn == 3 || cn == 4 );
Size sz0 = A.size();
Size sz1(WIDTH, HEIGHT);
scale = std::max(1., std::max( (double)sz1.width/sz0.width, (double)sz1.height/sz0.height ));
sz1.width = cvRound( sz0.width * scale );
sz1.height = cvRound( sz0.height * scale );
bool equalSizes = sz1.width == sz0.width && sz1.height == sz0.height;
if( !equalSizes || cn != 1 )
{
Mat sA, sB;
if( cn != 1 )
{
Mat gray;
cvtColor(A, gray, COLOR_BGR2GRAY);
resize(gray, sA, sz1, 0., 0., INTER_AREA);
cvtColor(B, gray, COLOR_BGR2GRAY);
resize(gray, sB, sz1, 0., 0., INTER_AREA);
}
else
{
resize(A, sA, sz1, 0., 0., INTER_AREA);
resize(B, sB, sz1, 0., 0., INTER_AREA);
}
A = sA;
B = sB;
}
int count_y = COUNT;
int count_x = cvRound((double)COUNT*sz1.width/sz1.height);
count = count_x * count_y;
pA.resize(count);
pB.resize(count);
status.resize(count);
for( i = 0, k = 0; i < count_y; i++ )
for( j = 0; j < count_x; j++, k++ )
{
pA[k].x = (j+0.5f)*sz1.width/count_x;
pA[k].y = (i+0.5f)*sz1.height/count_y;
}
// find the corresponding points in B
calcOpticalFlowPyrLK(A, B, pA, pB, status, noArray(), Size(21, 21), 3,
TermCriteria(TermCriteria::MAX_ITER,40,0.1));
// repack the remained points
for( i = 0, k = 0; i < count; i++ )
if( status[i] )
{
if( i > k )
{
pA[k] = pA[i];
pB[k] = pB[i];
}
k++;
}
count = k;
pA.resize(count);
pB.resize(count);
}
else
CV_Error( CV_StsUnsupportedFormat, "Both input images must have either 8uC1 or 8uC3 type" );
good_idx.resize(count);
if( count < RANSAC_SIZE0 )
return Mat();
Rect brect = boundingRect(pB);
// RANSAC stuff:
// 1. find the consensus
for( k = 0; k < RANSAC_MAX_ITERS; k++ )
{
int idx[RANSAC_SIZE0];
Point2f a[RANSAC_SIZE0];
Point2f b[RANSAC_SIZE0];
// choose random 3 non-complanar points from A & B
for( i = 0; i < RANSAC_SIZE0; i++ )
{
for( k1 = 0; k1 < RANSAC_MAX_ITERS; k1++ )
{
idx[i] = rng.uniform(0, count);
for( j = 0; j < i; j++ )
{
if( idx[j] == idx[i] )
break;
// check that the points are not very close one each other
if( fabs(pA[idx[i]].x - pA[idx[j]].x) +
fabs(pA[idx[i]].y - pA[idx[j]].y) < FLT_EPSILON )
break;
if( fabs(pB[idx[i]].x - pB[idx[j]].x) +
fabs(pB[idx[i]].y - pB[idx[j]].y) < FLT_EPSILON )
break;
}
if( j < i )
continue;
if( i+1 == RANSAC_SIZE0 )
{
// additional check for non-complanar vectors
a[0] = pA[idx[0]];
a[1] = pA[idx[1]];
a[2] = pA[idx[2]];
b[0] = pB[idx[0]];
b[1] = pB[idx[1]];
b[2] = pB[idx[2]];
double dax1 = a[1].x - a[0].x, day1 = a[1].y - a[0].y;
double dax2 = a[2].x - a[0].x, day2 = a[2].y - a[0].y;
double dbx1 = b[1].x - b[0].x, dby1 = b[1].y - b[0].y;
double dbx2 = b[2].x - b[0].x, dby2 = b[2].y - b[0].y;
const double eps = 0.01;
if( fabs(dax1*day2 - day1*dax2) < eps*std::sqrt(dax1*dax1+day1*day1)*std::sqrt(dax2*dax2+day2*day2) ||
fabs(dbx1*dby2 - dby1*dbx2) < eps*std::sqrt(dbx1*dbx1+dby1*dby1)*std::sqrt(dbx2*dbx2+dby2*dby2) )
continue;
}
break;
}
if( k1 >= RANSAC_MAX_ITERS )
break;
}
if( i < RANSAC_SIZE0 )
continue;
// estimate the transformation using 3 points
getRTMatrix( a, b, 3, M, fullAffine );
const double* m = M.ptr<double>();
for( i = 0, good_count = 0; i < count; i++ )
{
if( std::abs( m[0]*pA[i].x + m[1]*pA[i].y + m[2] - pB[i].x ) +
std::abs( m[3]*pA[i].x + m[4]*pA[i].y + m[5] - pB[i].y ) < std::max(brect.width,brect.height)*0.05 )
good_idx[good_count++] = i;
}
if( good_count >= count*RANSAC_GOOD_RATIO )
break;
}
if( k >= RANSAC_MAX_ITERS )
return Mat();
if( good_count < count )
{
for( i = 0; i < good_count; i++ )
{
j = good_idx[i];
pA[i] = pA[j];
pB[i] = pB[j];
}
}
getRTMatrix( &pA[0], &pB[0], good_count, M, fullAffine );
M.at<double>(0, 2) /= scale;
M.at<double>(1, 2) /= scale;
return M;
}
/* End of file. */