|
|
|
///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
|
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// @Authors
|
|
|
|
// Jin Ma, jin@multicorewareinc.com
|
|
|
|
// Xiaopeng Fu, fuxiaopeng2222@163.com
|
|
|
|
// Erping Pang, pang_er_ping@163.com
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other oclMaterials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::ocl;
|
|
|
|
using namespace cvtest;
|
|
|
|
using namespace testing;
|
|
|
|
///////K-NEAREST NEIGHBOR//////////////////////////
|
|
|
|
static void genTrainData(Mat& trainData, int trainDataRow, int trainDataCol,
|
|
|
|
Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0)
|
|
|
|
{
|
|
|
|
cv::RNG &rng = TS::ptr()->get_rng();
|
|
|
|
cv::Size size(trainDataCol, trainDataRow);
|
|
|
|
trainData = randomMat(rng, size, CV_32FC1, 1.0, 1000.0, false);
|
|
|
|
if(nClasses != 0)
|
|
|
|
{
|
|
|
|
cv::Size size1(trainDataRow, 1);
|
|
|
|
trainLabel = randomMat(rng, size1, CV_8UC1, 0, nClasses - 1, false);
|
|
|
|
trainLabel.convertTo(trainLabel, CV_32FC1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
PARAM_TEST_CASE(KNN, int, Size, int, bool)
|
|
|
|
{
|
|
|
|
int k;
|
|
|
|
int trainDataCol;
|
|
|
|
int testDataRow;
|
|
|
|
int nClass;
|
|
|
|
bool regression;
|
|
|
|
virtual void SetUp()
|
|
|
|
{
|
|
|
|
k = GET_PARAM(0);
|
|
|
|
nClass = GET_PARAM(2);
|
|
|
|
trainDataCol = GET_PARAM(1).width;
|
|
|
|
testDataRow = GET_PARAM(1).height;
|
|
|
|
regression = GET_PARAM(3);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_P(KNN, Accuracy)
|
|
|
|
{
|
|
|
|
Mat trainData, trainLabels;
|
|
|
|
const int trainDataRow = 500;
|
|
|
|
genTrainData(trainData, trainDataRow, trainDataCol, trainLabels, nClass);
|
|
|
|
|
|
|
|
Mat testData, testLabels;
|
|
|
|
genTrainData(testData, testDataRow, trainDataCol);
|
|
|
|
|
|
|
|
KNearestNeighbour knn_ocl;
|
|
|
|
CvKNearest knn_cpu;
|
|
|
|
Mat best_label_cpu;
|
|
|
|
oclMat best_label_ocl;
|
|
|
|
|
|
|
|
/*ocl k-Nearest_Neighbor start*/
|
|
|
|
oclMat trainData_ocl;
|
|
|
|
trainData_ocl.upload(trainData);
|
|
|
|
Mat simpleIdx;
|
|
|
|
knn_ocl.train(trainData, trainLabels, simpleIdx, regression);
|
|
|
|
|
|
|
|
oclMat testdata;
|
|
|
|
testdata.upload(testData);
|
|
|
|
knn_ocl.find_nearest(testdata, k, best_label_ocl);
|
|
|
|
/*ocl k-Nearest_Neighbor end*/
|
|
|
|
|
|
|
|
/*cpu k-Nearest_Neighbor start*/
|
|
|
|
knn_cpu.train(trainData, trainLabels, simpleIdx, regression);
|
|
|
|
knn_cpu.find_nearest(testData, k, &best_label_cpu);
|
|
|
|
/*cpu k-Nearest_Neighbor end*/
|
|
|
|
if(regression)
|
|
|
|
{
|
|
|
|
EXPECT_MAT_SIMILAR(Mat(best_label_ocl), best_label_cpu, 1e-5);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
EXPECT_MAT_NEAR(Mat(best_label_ocl), best_label_cpu, 0.0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_ML, KNN, Combine(Values(6, 5), Values(Size(200, 400), Size(300, 600)),
|
|
|
|
Values(4, 3), Values(false, true)));
|
|
|
|
|
|
|
|
////////////////////////////////SVM/////////////////////////////////////////////////
|
|
|
|
PARAM_TEST_CASE(SVM_OCL, int, int, int)
|
|
|
|
{
|
|
|
|
cv::Size size;
|
|
|
|
int kernel_type;
|
|
|
|
int svm_type;
|
|
|
|
Mat src, labels, samples, labels_predict;
|
|
|
|
int K;
|
|
|
|
cv::RNG rng ;
|
|
|
|
|
|
|
|
virtual void SetUp()
|
|
|
|
{
|
|
|
|
|
|
|
|
kernel_type = GET_PARAM(0);
|
|
|
|
svm_type = GET_PARAM(1);
|
|
|
|
K = GET_PARAM(2);
|
|
|
|
rng = TS::ptr()->get_rng();
|
|
|
|
cv::Size size = cv::Size(MWIDTH, MHEIGHT);
|
|
|
|
src.create(size, CV_32FC1);
|
|
|
|
labels.create(1, size.height, CV_32SC1);
|
|
|
|
int row_idx = 0;
|
|
|
|
const int max_number = size.height / K - 1;
|
|
|
|
CV_Assert(K <= size.height);
|
|
|
|
for(int i = 0; i < K; i++ )
|
|
|
|
{
|
|
|
|
Mat center_row_header = src.row(row_idx);
|
|
|
|
center_row_header.setTo(0);
|
|
|
|
int nchannel = center_row_header.channels();
|
|
|
|
for(int j = 0; j < nchannel; j++)
|
|
|
|
{
|
|
|
|
center_row_header.at<float>(0, i * nchannel + j) = 500.0;
|
|
|
|
}
|
|
|
|
labels.at<int>(0, row_idx) = i;
|
|
|
|
for(int j = 0; (j < max_number) ||
|
|
|
|
(i == K - 1 && j < max_number + size.height % K); j ++)
|
|
|
|
{
|
|
|
|
Mat cur_row_header = src.row(row_idx + 1 + j);
|
|
|
|
center_row_header.copyTo(cur_row_header);
|
|
|
|
Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), 1, 100, false);
|
|
|
|
cur_row_header += tmpmat;
|
|
|
|
labels.at<int>(0, row_idx + 1 + j) = i;
|
|
|
|
}
|
|
|
|
row_idx += 1 + max_number;
|
|
|
|
}
|
|
|
|
labels.convertTo(labels, CV_32FC1);
|
|
|
|
cv::Size test_size = cv::Size(MWIDTH, 100);
|
|
|
|
samples.create(test_size, CV_32FC1);
|
|
|
|
labels_predict.create(1, test_size.height, CV_32SC1);
|
|
|
|
const int max_number_test = test_size.height / K - 1;
|
|
|
|
row_idx = 0;
|
|
|
|
for(int i = 0; i < K; i++ )
|
|
|
|
{
|
|
|
|
Mat center_row_header = samples.row(row_idx);
|
|
|
|
center_row_header.setTo(0);
|
|
|
|
int nchannel = center_row_header.channels();
|
|
|
|
for(int j = 0; j < nchannel; j++)
|
|
|
|
{
|
|
|
|
center_row_header.at<float>(0, i * nchannel + j) = 500.0;
|
|
|
|
}
|
|
|
|
labels_predict.at<int>(0, row_idx) = i;
|
|
|
|
for(int j = 0; (j < max_number_test) ||
|
|
|
|
(i == K - 1 && j < max_number_test + test_size.height % K); j ++)
|
|
|
|
{
|
|
|
|
Mat cur_row_header = samples.row(row_idx + 1 + j);
|
|
|
|
center_row_header.copyTo(cur_row_header);
|
|
|
|
Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), 1, 100, false);
|
|
|
|
cur_row_header += tmpmat;
|
|
|
|
labels_predict.at<int>(0, row_idx + 1 + j) = i;
|
|
|
|
}
|
|
|
|
row_idx += 1 + max_number_test;
|
|
|
|
}
|
|
|
|
labels_predict.convertTo(labels_predict, CV_32FC1);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
TEST_P(SVM_OCL, Accuracy)
|
|
|
|
{
|
|
|
|
CvSVMParams params;
|
|
|
|
params.degree = 0.4;
|
|
|
|
params.gamma = 1;
|
|
|
|
params.coef0 = 1;
|
|
|
|
params.C = 1;
|
|
|
|
params.nu = 0.5;
|
|
|
|
params.p = 1;
|
|
|
|
params.svm_type = svm_type;
|
|
|
|
params.kernel_type = kernel_type;
|
|
|
|
|
|
|
|
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, 0.001);
|
|
|
|
|
|
|
|
CvSVM SVM;
|
|
|
|
SVM.train(src, labels, Mat(), Mat(), params);
|
|
|
|
|
|
|
|
cv::ocl::CvSVM_OCL SVM_OCL;
|
|
|
|
SVM_OCL.train(src, labels, Mat(), Mat(), params);
|
|
|
|
|
|
|
|
int c = SVM.get_support_vector_count();
|
|
|
|
int c1 = SVM_OCL.get_support_vector_count();
|
|
|
|
|
|
|
|
Mat sv(c, MHEIGHT, CV_32FC1);
|
|
|
|
Mat sv_ocl(c1, MHEIGHT, CV_32FC1);
|
|
|
|
for(int i = 0; i < c; i++)
|
|
|
|
{
|
|
|
|
const float* v = SVM.get_support_vector(i);
|
|
|
|
|
|
|
|
for(int j = 0; j < MHEIGHT; j++)
|
|
|
|
{
|
|
|
|
sv.at<float>(i, j) = v[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for(int i = 0; i < c1; i++)
|
|
|
|
{
|
|
|
|
const float* v_ocl = SVM_OCL.get_support_vector(i);
|
|
|
|
|
|
|
|
for(int j = 0; j < MHEIGHT; j++)
|
|
|
|
{
|
|
|
|
sv_ocl.at<float>(i, j) = v_ocl[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cv::BFMatcher matcher(cv::NORM_L2);
|
|
|
|
std::vector<cv::DMatch> matches;
|
|
|
|
matcher.match(sv, sv_ocl, matches);
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
for(std::vector<cv::DMatch>::iterator itr = matches.begin(); itr != matches.end(); itr++)
|
|
|
|
{
|
|
|
|
if((*itr).distance < 0.1)
|
|
|
|
{
|
|
|
|
count ++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if(c != 0)
|
|
|
|
{
|
|
|
|
float matchedRatio = (float)count / c;
|
|
|
|
EXPECT_GT(matchedRatio, 0.95);
|
|
|
|
}
|
|
|
|
if(c != 0)
|
|
|
|
{
|
|
|
|
CvMat *result = cvCreateMat(1, samples.rows, CV_32FC1);
|
|
|
|
CvMat test_samples = samples;
|
|
|
|
|
|
|
|
CvMat *result_ocl = cvCreateMat(1, samples.rows, CV_32FC1);
|
|
|
|
|
|
|
|
SVM.predict(&test_samples, result);
|
|
|
|
|
|
|
|
SVM_OCL.predict(&test_samples, result_ocl);
|
|
|
|
|
|
|
|
int true_resp = 0, true_resp_ocl = 0;
|
|
|
|
for (int i = 0; i < samples.rows; i++)
|
|
|
|
{
|
|
|
|
if (result->data.fl[i] == labels_predict.at<float>(0, i))
|
|
|
|
{
|
|
|
|
true_resp++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
float matchedRatio = (float)true_resp / samples.rows;
|
|
|
|
|
|
|
|
for (int i = 0; i < samples.rows; i++)
|
|
|
|
{
|
|
|
|
if (result_ocl->data.fl[i] == labels_predict.at<float>(0, i))
|
|
|
|
{
|
|
|
|
true_resp_ocl++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
float matchedRatio_ocl = (float)true_resp_ocl / samples.rows;
|
|
|
|
|
|
|
|
if(matchedRatio != 0 && true_resp_ocl < true_resp)
|
|
|
|
{
|
|
|
|
EXPECT_NEAR(matchedRatio_ocl, matchedRatio, 0.03);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_ML, SVM_OCL, testing::Combine(
|
|
|
|
Values(CvSVM::LINEAR, CvSVM::POLY, CvSVM::RBF, CvSVM::SIGMOID),
|
|
|
|
Values(CvSVM::C_SVC, CvSVM::NU_SVC, CvSVM::ONE_CLASS, CvSVM::EPS_SVR, CvSVM::NU_SVR),
|
|
|
|
Values(2, 3, 4)
|
|
|
|
));
|
|
|
|
#endif // HAVE_OPENCL
|