|
|
|
///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
|
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// @Authors
|
|
|
|
// Jin Ma, jin@multicorewareinc.com
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other oclMaterials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::ocl;
|
|
|
|
using namespace cvtest;
|
|
|
|
using namespace testing;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
PARAM_TEST_CASE(Kalman, int, int)
|
|
|
|
{
|
|
|
|
int size_;
|
|
|
|
int iteration;
|
|
|
|
virtual void SetUp()
|
|
|
|
{
|
|
|
|
size_ = GET_PARAM(0);
|
|
|
|
iteration = GET_PARAM(1);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_P(Kalman, Accuracy)
|
|
|
|
{
|
|
|
|
const int Dim = size_;
|
|
|
|
const int Steps = iteration;
|
|
|
|
const double max_init = 1;
|
|
|
|
const double max_noise = 0.1;
|
|
|
|
|
|
|
|
cv::RNG &rng = TS::ptr()->get_rng();
|
|
|
|
|
|
|
|
Mat sample_mat(Dim, 1, CV_32F), temp_mat;
|
|
|
|
oclMat Sample(Dim, 1, CV_32F);
|
|
|
|
oclMat Temp(Dim, 1, CV_32F);
|
|
|
|
Mat Temp_cpu(Dim, 1, CV_32F);
|
|
|
|
|
|
|
|
Size size(Sample.cols, Sample.rows);
|
|
|
|
|
|
|
|
sample_mat = randomMat(rng, size, Sample.type(), -max_init, max_init, false);
|
|
|
|
Sample.upload(sample_mat);
|
|
|
|
|
|
|
|
//ocl start
|
|
|
|
cv::ocl::KalmanFilter kalman_filter_ocl;
|
|
|
|
kalman_filter_ocl.init(Dim, Dim);
|
|
|
|
|
|
|
|
cv::ocl::setIdentity(kalman_filter_ocl.errorCovPre, 1);
|
|
|
|
cv::ocl::setIdentity(kalman_filter_ocl.measurementMatrix, 1);
|
|
|
|
cv::ocl::setIdentity(kalman_filter_ocl.errorCovPost, 1);
|
|
|
|
|
|
|
|
kalman_filter_ocl.measurementNoiseCov.setTo(Scalar::all(0));
|
|
|
|
kalman_filter_ocl.statePre.setTo(Scalar::all(0));
|
|
|
|
kalman_filter_ocl.statePost.setTo(Scalar::all(0));
|
|
|
|
|
|
|
|
kalman_filter_ocl.correct(Sample);
|
|
|
|
//ocl end
|
|
|
|
|
|
|
|
//cpu start
|
|
|
|
cv::KalmanFilter kalman_filter_cpu;
|
|
|
|
|
|
|
|
kalman_filter_cpu.init(Dim, Dim);
|
|
|
|
|
|
|
|
cv::setIdentity(kalman_filter_cpu.errorCovPre, 1);
|
|
|
|
cv::setIdentity(kalman_filter_cpu.measurementMatrix, 1);
|
|
|
|
cv::setIdentity(kalman_filter_cpu.errorCovPost, 1);
|
|
|
|
|
|
|
|
kalman_filter_cpu.measurementNoiseCov.setTo(Scalar::all(0));
|
|
|
|
kalman_filter_cpu.statePre.setTo(Scalar::all(0));
|
|
|
|
kalman_filter_cpu.statePost.setTo(Scalar::all(0));
|
|
|
|
|
|
|
|
kalman_filter_cpu.correct(sample_mat);
|
|
|
|
//cpu end
|
|
|
|
//test begin
|
|
|
|
for(int i = 0; i<Steps; i++)
|
|
|
|
{
|
|
|
|
kalman_filter_ocl.predict();
|
|
|
|
kalman_filter_cpu.predict();
|
|
|
|
|
|
|
|
cv::gemm(kalman_filter_cpu.transitionMatrix, sample_mat, 1, cv::Mat(), 0, Temp_cpu);
|
|
|
|
|
|
|
|
Size size1(Temp.cols, Temp.rows);
|
|
|
|
Mat temp = randomMat(rng, size1, Temp.type(), 0, 0xffff, false);
|
|
|
|
|
|
|
|
|
|
|
|
cv::multiply(2, temp, temp);
|
|
|
|
|
|
|
|
cv::subtract(temp, 1, temp);
|
|
|
|
|
|
|
|
cv::multiply(max_noise, temp, temp);
|
|
|
|
|
|
|
|
cv::add(temp, Temp_cpu, Temp_cpu);
|
|
|
|
|
|
|
|
Temp.upload(Temp_cpu);
|
|
|
|
Temp.copyTo(Sample);
|
|
|
|
Temp_cpu.copyTo(sample_mat);
|
|
|
|
|
|
|
|
kalman_filter_ocl.correct(Temp);
|
|
|
|
kalman_filter_cpu.correct(Temp_cpu);
|
|
|
|
}
|
|
|
|
//test end
|
|
|
|
EXPECT_MAT_NEAR(kalman_filter_cpu.statePost, kalman_filter_ocl.statePost, 0);
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_Video, Kalman, Combine(Values(3, 7), Values(30)));
|
|
|
|
|
|
|
|
#endif // HAVE_OPENCL
|