|
|
|
// Faster-RCNN models use custom layer called 'Proposal' written in Python. To
|
|
|
|
// map it into OpenCV's layer replace a layer node with [type: 'Python'] to the
|
|
|
|
// following definition:
|
|
|
|
// layer {
|
|
|
|
// name: 'proposal'
|
|
|
|
// type: 'Proposal'
|
|
|
|
// bottom: 'rpn_cls_prob_reshape'
|
|
|
|
// bottom: 'rpn_bbox_pred'
|
|
|
|
// bottom: 'im_info'
|
|
|
|
// top: 'rois'
|
|
|
|
// proposal_param {
|
|
|
|
// ratio: 0.5
|
|
|
|
// ratio: 1.0
|
|
|
|
// ratio: 2.0
|
|
|
|
// scale: 8
|
|
|
|
// scale: 16
|
|
|
|
// scale: 32
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
#include <opencv2/dnn.hpp>
|
|
|
|
#include <opencv2/dnn/all_layers.hpp>
|
|
|
|
#include <opencv2/imgproc.hpp>
|
|
|
|
#include <opencv2/highgui.hpp>
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace dnn;
|
|
|
|
|
|
|
|
const char* keys =
|
|
|
|
"{ help h | | print help message }"
|
|
|
|
"{ proto p | | path to .prototxt }"
|
|
|
|
"{ model m | | path to .caffemodel }"
|
|
|
|
"{ image i | | path to input image }"
|
|
|
|
"{ conf c | 0.8 | minimal confidence }";
|
|
|
|
|
|
|
|
const char* classNames[] = {
|
|
|
|
"__background__",
|
|
|
|
"aeroplane", "bicycle", "bird", "boat",
|
|
|
|
"bottle", "bus", "car", "cat", "chair",
|
|
|
|
"cow", "diningtable", "dog", "horse",
|
|
|
|
"motorbike", "person", "pottedplant",
|
|
|
|
"sheep", "sofa", "train", "tvmonitor"
|
|
|
|
};
|
|
|
|
|
|
|
|
static const int kInpWidth = 800;
|
|
|
|
static const int kInpHeight = 600;
|
|
|
|
|
|
|
|
int main(int argc, char** argv)
|
|
|
|
{
|
|
|
|
// Parse command line arguments.
|
|
|
|
CommandLineParser parser(argc, argv, keys);
|
|
|
|
parser.about( "This sample is used to run Faster-RCNN object detection with OpenCV.\n"
|
|
|
|
"You can get required models from https://github.com/rbgirshick/py-faster-rcnn" );
|
|
|
|
|
|
|
|
if (argc == 1 || parser.has("help"))
|
|
|
|
{
|
|
|
|
parser.printMessage();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
String protoPath = parser.get<String>("proto");
|
|
|
|
String modelPath = parser.get<String>("model");
|
|
|
|
String imagePath = parser.get<String>("image");
|
|
|
|
float confThreshold = parser.get<float>("conf");
|
|
|
|
CV_Assert(!protoPath.empty(), !modelPath.empty(), !imagePath.empty());
|
|
|
|
|
|
|
|
// Load a model.
|
|
|
|
Net net = readNetFromCaffe(protoPath, modelPath);
|
|
|
|
|
|
|
|
// Create a preprocessing layer that does final bounding boxes applying predicted
|
|
|
|
// deltas to objects locations proposals and doing non-maximum suppression over it.
|
|
|
|
LayerParams lp;
|
|
|
|
lp.set("code_type", "CENTER_SIZE"); // An every bounding box is [xmin, ymin, xmax, ymax]
|
|
|
|
lp.set("num_classes", 21);
|
|
|
|
lp.set("share_location", (int)false); // Separate predictions for different classes.
|
|
|
|
lp.set("background_label_id", 0);
|
|
|
|
lp.set("variance_encoded_in_target", (int)true);
|
|
|
|
lp.set("keep_top_k", 100);
|
|
|
|
lp.set("nms_threshold", 0.3);
|
|
|
|
lp.set("normalized_bbox", (int)false);
|
|
|
|
Ptr<Layer> detectionOutputLayer = DetectionOutputLayer::create(lp);
|
|
|
|
|
|
|
|
Mat img = imread(imagePath);
|
|
|
|
resize(img, img, Size(kInpWidth, kInpHeight));
|
|
|
|
Mat blob = blobFromImage(img, 1.0, Size(), Scalar(102.9801, 115.9465, 122.7717), false, false);
|
|
|
|
Mat imInfo = (Mat_<float>(1, 3) << img.rows, img.cols, 1.6f);
|
|
|
|
|
|
|
|
net.setInput(blob, "data");
|
|
|
|
net.setInput(imInfo, "im_info");
|
|
|
|
|
|
|
|
std::vector<Mat> outs;
|
|
|
|
std::vector<String> outNames(3);
|
|
|
|
outNames[0] = "proposal";
|
|
|
|
outNames[1] = "bbox_pred";
|
|
|
|
outNames[2] = "cls_prob";
|
|
|
|
net.forward(outs, outNames);
|
|
|
|
|
|
|
|
Mat proposals = outs[0].colRange(1, 5).clone(); // Only last 4 columns.
|
|
|
|
Mat& deltas = outs[1];
|
|
|
|
Mat& scores = outs[2];
|
|
|
|
|
|
|
|
// Reshape proposals from Nx4 to 1x1xN*4
|
|
|
|
std::vector<int> shape(3, 1);
|
|
|
|
shape[2] = (int)proposals.total();
|
|
|
|
proposals = proposals.reshape(1, shape);
|
|
|
|
|
|
|
|
// Run postprocessing layer.
|
|
|
|
std::vector<Mat> layerInputs(3), layerOutputs(1), layerInternals;
|
|
|
|
layerInputs[0] = deltas.reshape(1, 1);
|
|
|
|
layerInputs[1] = scores.reshape(1, 1);
|
|
|
|
layerInputs[2] = proposals;
|
|
|
|
detectionOutputLayer->forward(layerInputs, layerOutputs, layerInternals);
|
|
|
|
|
|
|
|
// Draw detections.
|
|
|
|
Mat detections = layerOutputs[0];
|
|
|
|
const float* data = (float*)detections.data;
|
|
|
|
for (size_t i = 0; i < detections.total(); i += 7)
|
|
|
|
{
|
|
|
|
// An every detection is a vector [id, classId, confidence, left, top, right, bottom]
|
|
|
|
float confidence = data[i + 2];
|
|
|
|
if (confidence > confThreshold)
|
|
|
|
{
|
|
|
|
int classId = (int)data[i + 1];
|
|
|
|
int left = max(0, min((int)data[i + 3], img.cols - 1));
|
|
|
|
int top = max(0, min((int)data[i + 4], img.rows - 1));
|
|
|
|
int right = max(0, min((int)data[i + 5], img.cols - 1));
|
|
|
|
int bottom = max(0, min((int)data[i + 6], img.rows - 1));
|
|
|
|
|
|
|
|
// Draw a bounding box.
|
|
|
|
rectangle(img, Point(left, top), Point(right, bottom), Scalar(0, 255, 0));
|
|
|
|
|
|
|
|
// Put a label with a class name and confidence.
|
|
|
|
String label = cv::format("%s, %.3f", classNames[classId], confidence);
|
|
|
|
int baseLine;
|
|
|
|
Size labelSize = cv::getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
|
|
|
|
|
|
|
|
top = max(top, labelSize.height);
|
|
|
|
rectangle(img, Point(left, top - labelSize.height),
|
|
|
|
Point(left + labelSize.width, top + baseLine),
|
|
|
|
Scalar(255, 255, 255), FILLED);
|
|
|
|
putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
imshow("frame", img);
|
|
|
|
waitKey();
|
|
|
|
return 0;
|
|
|
|
}
|