Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

149 lines
5.2 KiB

// Faster-RCNN models use custom layer called 'Proposal' written in Python. To
// map it into OpenCV's layer replace a layer node with [type: 'Python'] to the
// following definition:
// layer {
// name: 'proposal'
// type: 'Proposal'
// bottom: 'rpn_cls_prob_reshape'
// bottom: 'rpn_bbox_pred'
// bottom: 'im_info'
// top: 'rois'
// proposal_param {
// ratio: 0.5
// ratio: 1.0
// ratio: 2.0
// scale: 8
// scale: 16
// scale: 32
// }
// }
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/dnn/all_layers.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
using namespace dnn;
const char* keys =
"{ help h | | print help message }"
"{ proto p | | path to .prototxt }"
"{ model m | | path to .caffemodel }"
"{ image i | | path to input image }"
"{ conf c | 0.8 | minimal confidence }";
const char* classNames[] = {
"__background__",
"aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair",
"cow", "diningtable", "dog", "horse",
"motorbike", "person", "pottedplant",
"sheep", "sofa", "train", "tvmonitor"
};
static const int kInpWidth = 800;
static const int kInpHeight = 600;
int main(int argc, char** argv)
{
// Parse command line arguments.
CommandLineParser parser(argc, argv, keys);
parser.about( "This sample is used to run Faster-RCNN object detection with OpenCV.\n"
"You can get required models from https://github.com/rbgirshick/py-faster-rcnn" );
if (argc == 1 || parser.has("help"))
{
parser.printMessage();
return 0;
}
String protoPath = parser.get<String>("proto");
String modelPath = parser.get<String>("model");
String imagePath = parser.get<String>("image");
float confThreshold = parser.get<float>("conf");
CV_Assert(!protoPath.empty(), !modelPath.empty(), !imagePath.empty());
// Load a model.
Net net = readNetFromCaffe(protoPath, modelPath);
// Create a preprocessing layer that does final bounding boxes applying predicted
// deltas to objects locations proposals and doing non-maximum suppression over it.
LayerParams lp;
lp.set("code_type", "CENTER_SIZE"); // An every bounding box is [xmin, ymin, xmax, ymax]
lp.set("num_classes", 21);
lp.set("share_location", (int)false); // Separate predictions for different classes.
lp.set("background_label_id", 0);
lp.set("variance_encoded_in_target", (int)true);
lp.set("keep_top_k", 100);
lp.set("nms_threshold", 0.3);
lp.set("normalized_bbox", (int)false);
Ptr<Layer> detectionOutputLayer = DetectionOutputLayer::create(lp);
Mat img = imread(imagePath);
resize(img, img, Size(kInpWidth, kInpHeight));
Mat blob = blobFromImage(img, 1.0, Size(), Scalar(102.9801, 115.9465, 122.7717), false, false);
Mat imInfo = (Mat_<float>(1, 3) << img.rows, img.cols, 1.6f);
net.setInput(blob, "data");
net.setInput(imInfo, "im_info");
std::vector<Mat> outs;
std::vector<String> outNames(3);
outNames[0] = "proposal";
outNames[1] = "bbox_pred";
outNames[2] = "cls_prob";
net.forward(outs, outNames);
Mat proposals = outs[0].colRange(1, 5).clone(); // Only last 4 columns.
Mat& deltas = outs[1];
Mat& scores = outs[2];
// Reshape proposals from Nx4 to 1x1xN*4
std::vector<int> shape(3, 1);
shape[2] = (int)proposals.total();
proposals = proposals.reshape(1, shape);
// Run postprocessing layer.
std::vector<Mat> layerInputs(3), layerOutputs(1), layerInternals;
layerInputs[0] = deltas.reshape(1, 1);
layerInputs[1] = scores.reshape(1, 1);
layerInputs[2] = proposals;
detectionOutputLayer->forward(layerInputs, layerOutputs, layerInternals);
// Draw detections.
Mat detections = layerOutputs[0];
const float* data = (float*)detections.data;
for (size_t i = 0; i < detections.total(); i += 7)
{
// An every detection is a vector [id, classId, confidence, left, top, right, bottom]
float confidence = data[i + 2];
if (confidence > confThreshold)
{
int classId = (int)data[i + 1];
int left = max(0, min((int)data[i + 3], img.cols - 1));
int top = max(0, min((int)data[i + 4], img.rows - 1));
int right = max(0, min((int)data[i + 5], img.cols - 1));
int bottom = max(0, min((int)data[i + 6], img.rows - 1));
// Draw a bounding box.
rectangle(img, Point(left, top), Point(right, bottom), Scalar(0, 255, 0));
// Put a label with a class name and confidence.
String label = cv::format("%s, %.3f", classNames[classId], confidence);
int baseLine;
Size labelSize = cv::getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = max(top, labelSize.height);
rectangle(img, Point(left, top - labelSize.height),
Point(left + labelSize.width, top + baseLine),
Scalar(255, 255, 255), FILLED);
putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0));
}
}
imshow("frame", img);
waitKey();
return 0;
}