|
|
|
/**
|
|
|
|
* @file Sobel_Demo.cpp
|
|
|
|
* @brief Sample code uses Sobel or Scharr OpenCV functions for edge detection
|
|
|
|
* @author OpenCV team
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
#include "opencv2/imgcodecs.hpp"
|
|
|
|
#include "opencv2/highgui.hpp"
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @function main
|
|
|
|
*/
|
|
|
|
int main( int argc, char** argv )
|
|
|
|
{
|
|
|
|
cv::CommandLineParser parser(argc, argv,
|
|
|
|
"{@input |../data/lena.jpg|input image}"
|
|
|
|
"{ksize k|1|ksize (hit 'K' to increase its value)}"
|
|
|
|
"{scale s|1|scale (hit 'S' to increase its value)}"
|
|
|
|
"{delta d|0|delta (hit 'D' to increase its value)}"
|
|
|
|
"{help h|false|show help message}");
|
|
|
|
|
|
|
|
cout << "The sample uses Sobel or Scharr OpenCV functions for edge detection\n\n";
|
|
|
|
parser.printMessage();
|
|
|
|
cout << "\nPress 'ESC' to exit program.\nPress 'R' to reset values ( ksize will be -1 equal to Scharr function )";
|
|
|
|
|
|
|
|
//![variables]
|
|
|
|
// First we declare the variables we are going to use
|
|
|
|
Mat image,src, src_gray;
|
|
|
|
Mat grad;
|
|
|
|
const String window_name = "Sobel Demo - Simple Edge Detector";
|
|
|
|
int ksize = parser.get<int>("ksize");
|
|
|
|
int scale = parser.get<int>("scale");
|
|
|
|
int delta = parser.get<int>("delta");
|
|
|
|
int ddepth = CV_16S;
|
|
|
|
//![variables]
|
|
|
|
|
|
|
|
//![load]
|
|
|
|
String imageName = parser.get<String>("@input");
|
|
|
|
// As usual we load our source image (src)
|
|
|
|
image = imread( imageName, IMREAD_COLOR ); // Load an image
|
|
|
|
|
|
|
|
// Check if image is loaded fine
|
|
|
|
if( image.empty() )
|
|
|
|
{
|
|
|
|
printf("Error opening image: %s\n", imageName.c_str());
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
//![load]
|
|
|
|
|
|
|
|
for (;;)
|
|
|
|
{
|
|
|
|
//![reduce_noise]
|
|
|
|
// Remove noise by blurring with a Gaussian filter ( kernel size = 3 )
|
|
|
|
GaussianBlur(image, src, Size(3, 3), 0, 0, BORDER_DEFAULT);
|
|
|
|
//![reduce_noise]
|
|
|
|
|
|
|
|
//![convert_to_gray]
|
|
|
|
// Convert the image to grayscale
|
|
|
|
cvtColor(src, src_gray, COLOR_BGR2GRAY);
|
|
|
|
//![convert_to_gray]
|
|
|
|
|
|
|
|
//![sobel]
|
|
|
|
/// Generate grad_x and grad_y
|
|
|
|
Mat grad_x, grad_y;
|
|
|
|
Mat abs_grad_x, abs_grad_y;
|
|
|
|
|
|
|
|
/// Gradient X
|
|
|
|
Sobel(src_gray, grad_x, ddepth, 1, 0, ksize, scale, delta, BORDER_DEFAULT);
|
|
|
|
|
|
|
|
/// Gradient Y
|
|
|
|
Sobel(src_gray, grad_y, ddepth, 0, 1, ksize, scale, delta, BORDER_DEFAULT);
|
|
|
|
//![sobel]
|
|
|
|
|
|
|
|
//![convert]
|
|
|
|
// converting back to CV_8U
|
|
|
|
convertScaleAbs(grad_x, abs_grad_x);
|
|
|
|
convertScaleAbs(grad_y, abs_grad_y);
|
|
|
|
//![convert]
|
|
|
|
|
|
|
|
//![blend]
|
|
|
|
/// Total Gradient (approximate)
|
|
|
|
addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);
|
|
|
|
//![blend]
|
|
|
|
|
|
|
|
//![display]
|
|
|
|
imshow(window_name, grad);
|
|
|
|
char key = (char)waitKey(0);
|
|
|
|
//![display]
|
|
|
|
|
|
|
|
if(key == 27)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (key == 'k' || key == 'K')
|
|
|
|
{
|
|
|
|
ksize = ksize < 30 ? ksize+2 : -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (key == 's' || key == 'S')
|
|
|
|
{
|
|
|
|
scale++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (key == 'd' || key == 'D')
|
|
|
|
{
|
|
|
|
delta++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (key == 'r' || key == 'R')
|
|
|
|
{
|
|
|
|
scale = 1;
|
|
|
|
ksize = -1;
|
|
|
|
delta = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|