Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

251 lines
6.9 KiB

#ifndef OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_HPP
#define OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_HPP
#include <iomanip>
struct PerfReport {
std::string name;
double avg_latency = 0.0;
double min_latency = 0.0;
double max_latency = 0.0;
double first_latency = 0.0;
double throughput = 0.0;
double elapsed = 0.0;
double warmup_time = 0.0;
int64_t num_late_frames = 0;
std::vector<double> latencies;
std::vector<int64_t> seq_ids;
std::string toStr(bool expanded = false) const;
};
std::string PerfReport::toStr(bool expand) const {
const auto to_double_str = [](double val) {
std::stringstream ss;
ss << std::fixed << std::setprecision(3) << val;
return ss.str();
};
std::stringstream ss;
ss << name << ": warm-up: " << to_double_str(warmup_time)
<< " ms, execution time: " << to_double_str(elapsed)
<< " ms, throughput: " << to_double_str(throughput)
<< " FPS, latency: first: " << to_double_str(first_latency)
<< " ms, min: " << to_double_str(min_latency)
<< " ms, avg: " << to_double_str(avg_latency)
<< " ms, max: " << to_double_str(max_latency)
<< " ms, frames: " << num_late_frames << "/" << seq_ids.back()+1 << " (dropped/all)";
if (expand) {
for (size_t i = 0; i < latencies.size(); ++i) {
ss << "\nFrame:" << i << "\nLatency: "
<< to_double_str(latencies[i]) << " ms";
}
}
return ss.str();
}
class StopCriterion {
public:
using Ptr = std::unique_ptr<StopCriterion>;
virtual void start() = 0;
virtual void iter() = 0;
virtual bool done() = 0;
virtual ~StopCriterion() = default;
};
class Pipeline {
public:
using Ptr = std::shared_ptr<Pipeline>;
Pipeline(std::string&& name,
cv::GComputation&& comp,
std::shared_ptr<DummySource>&& src,
StopCriterion::Ptr stop_criterion,
cv::GCompileArgs&& args,
const size_t num_outputs);
void compile();
void run();
const PerfReport& report() const;
const std::string& name() const { return m_name;}
virtual ~Pipeline() = default;
protected:
virtual void _compile() = 0;
virtual void run_iter() = 0;
virtual void init() {};
virtual void deinit() {};
void prepareOutputs();
std::string m_name;
cv::GComputation m_comp;
std::shared_ptr<DummySource> m_src;
StopCriterion::Ptr m_stop_criterion;
cv::GCompileArgs m_args;
size_t m_num_outputs;
PerfReport m_perf;
cv::GRunArgsP m_pipeline_outputs;
std::vector<cv::Mat> m_out_mats;
int64_t m_start_ts;
int64_t m_seq_id;
};
Pipeline::Pipeline(std::string&& name,
cv::GComputation&& comp,
std::shared_ptr<DummySource>&& src,
StopCriterion::Ptr stop_criterion,
cv::GCompileArgs&& args,
const size_t num_outputs)
: m_name(std::move(name)),
m_comp(std::move(comp)),
m_src(std::move(src)),
m_stop_criterion(std::move(stop_criterion)),
m_args(std::move(args)),
m_num_outputs(num_outputs) {
m_perf.name = m_name;
}
void Pipeline::compile() {
m_perf.warmup_time =
utils::measure<utils::double_ms_t>([this]() {
_compile();
});
}
void Pipeline::prepareOutputs() {
// NB: N-2 buffers + timestamp + seq_id.
m_out_mats.resize(m_num_outputs - 2);
for (auto& m : m_out_mats) {
m_pipeline_outputs += cv::gout(m);
}
m_pipeline_outputs += cv::gout(m_start_ts);
m_pipeline_outputs += cv::gout(m_seq_id);
}
void Pipeline::run() {
using namespace std::chrono;
// NB: Allocate outputs for execution
prepareOutputs();
// NB: Warm-up iteration invalidates source state
// so need to copy it
auto orig_src = m_src;
auto copy_src = std::make_shared<DummySource>(*m_src);
// NB: Use copy for warm-up iteration
m_src = copy_src;
// NB: Warm-up iteration
init();
run_iter();
deinit();
// NB: Calculate first latency
m_perf.first_latency = utils::double_ms_t{
microseconds{utils::timestamp<microseconds>() - m_start_ts}}.count();
// NB: Now use original source
m_src = orig_src;
// NB: Start measuring execution
init();
auto start = high_resolution_clock::now();
m_stop_criterion->start();
while (true) {
run_iter();
const auto latency = utils::double_ms_t{
microseconds{utils::timestamp<microseconds>() - m_start_ts}}.count();
m_perf.latencies.push_back(latency);
m_perf.seq_ids.push_back(m_seq_id);
m_stop_criterion->iter();
if (m_stop_criterion->done()) {
m_perf.elapsed = duration_cast<utils::double_ms_t>(
high_resolution_clock::now() - start).count();
deinit();
break;
}
}
m_perf.avg_latency = utils::avg(m_perf.latencies);
m_perf.min_latency = utils::min(m_perf.latencies);
m_perf.max_latency = utils::max(m_perf.latencies);
// NB: Count the number of dropped frames
int64_t prev_seq_id = m_perf.seq_ids[0];
for (size_t i = 1; i < m_perf.seq_ids.size(); ++i) {
m_perf.num_late_frames += m_perf.seq_ids[i] - prev_seq_id - 1;
prev_seq_id = m_perf.seq_ids[i];
}
m_perf.throughput = (m_perf.latencies.size() / m_perf.elapsed) * 1000;
}
const PerfReport& Pipeline::report() const {
return m_perf;
}
class StreamingPipeline : public Pipeline {
public:
using Pipeline::Pipeline;
private:
void _compile() override {
m_compiled =
m_comp.compileStreaming({m_src->descr_of()},
cv::GCompileArgs(m_args));
}
virtual void init() override {
m_compiled.setSource(m_src);
m_compiled.start();
}
virtual void deinit() override {
m_compiled.stop();
}
virtual void run_iter() override {
m_compiled.pull(cv::GRunArgsP{m_pipeline_outputs});
}
cv::GStreamingCompiled m_compiled;
};
class RegularPipeline : public Pipeline {
public:
using Pipeline::Pipeline;
private:
void _compile() override {
m_compiled =
m_comp.compile({m_src->descr_of()},
cv::GCompileArgs(m_args));
}
virtual void run_iter() override {
cv::gapi::wip::Data data;
m_src->pull(data);
m_compiled({data}, cv::GRunArgsP{m_pipeline_outputs});
}
cv::GCompiled m_compiled;
};
enum class PLMode {
REGULAR,
STREAMING
};
#endif // OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_HPP