:param criteria:The algorithm termination criteria, that is, the maximum number of iterations and/or the desired accuracy. The accuracy is specified as ``criteria.epsilon``. As soon as each of the cluster centers moves by less than ``criteria.epsilon`` on some iteration, the algorithm stops.
:param attempts:Flag to specify the number of times the algorithm is executed using different initial labelings. The algorithm returns the labels that yield the best compactness (see the last function parameter).
***KMEANS_USE_INITIAL_LABELS** During the first (and possibly the only) attempt, use the user-supplied labels instead of computing them from the initial centers. For the second and further attempts, use the random or semi-random centers. Use one of ``KMEANS_*_CENTERS`` flag to specify the exact method.
:param predicate:Equivalence predicate (pointer to a boolean function of two arguments or an instance of the class that has the method ``bool operator()(const _Tp& a, const _Tp& b)`` ). The predicate returns ``true`` when the elements are certainly in the same class, and returns ``false`` if they may or may not be in the same class.
..[Arthur2007] Arthur and S. Vassilvitskii “k-means++: the advantages of careful seeding”, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007