|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
|
|
|
|
TEST(ML_RTrees, getVotes)
|
|
|
|
{
|
|
|
|
int n = 12;
|
|
|
|
int count, i;
|
|
|
|
int label_size = 3;
|
|
|
|
int predicted_class = 0;
|
|
|
|
int max_votes = -1;
|
|
|
|
int val;
|
|
|
|
// RTrees for classification
|
|
|
|
Ptr<ml::RTrees> rt = cv::ml::RTrees::create();
|
|
|
|
|
|
|
|
//data
|
|
|
|
Mat data(n, 4, CV_32F);
|
|
|
|
randu(data, 0, 10);
|
|
|
|
|
|
|
|
//labels
|
|
|
|
Mat labels = (Mat_<int>(n,1) << 0,0,0,0, 1,1,1,1, 2,2,2,2);
|
|
|
|
|
|
|
|
rt->train(data, ml::ROW_SAMPLE, labels);
|
|
|
|
|
|
|
|
//run function
|
|
|
|
Mat test(1, 4, CV_32F);
|
|
|
|
Mat result;
|
|
|
|
randu(test, 0, 10);
|
|
|
|
rt->getVotes(test, result, 0);
|
|
|
|
|
|
|
|
//count vote amount and find highest vote
|
|
|
|
count = 0;
|
|
|
|
const int* result_row = result.ptr<int>(1);
|
|
|
|
for( i = 0; i < label_size; i++ )
|
|
|
|
{
|
|
|
|
val = result_row[i];
|
|
|
|
//predicted_class = max_votes < val? i;
|
|
|
|
if( max_votes < val )
|
|
|
|
{
|
|
|
|
max_votes = val;
|
|
|
|
predicted_class = i;
|
|
|
|
}
|
|
|
|
count += val;
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPECT_EQ(count, (int)rt->getRoots().size());
|
|
|
|
EXPECT_EQ(result.at<float>(0, predicted_class), rt->predict(test));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ML_RTrees, 11142_sample_weights_regression)
|
|
|
|
{
|
|
|
|
int n = 3;
|
|
|
|
// RTrees for regression
|
|
|
|
Ptr<ml::RTrees> rt = cv::ml::RTrees::create();
|
|
|
|
//simple regression problem of x -> 2x
|
|
|
|
Mat data = (Mat_<float>(n,1) << 1, 2, 3);
|
|
|
|
Mat values = (Mat_<float>(n,1) << 2, 4, 6);
|
|
|
|
Mat weights = (Mat_<float>(n, 1) << 10, 10, 10);
|
|
|
|
|
|
|
|
Ptr<TrainData> trainData = TrainData::create(data, ml::ROW_SAMPLE, values);
|
|
|
|
rt->train(trainData);
|
|
|
|
double error_without_weights = round(rt->getOOBError());
|
|
|
|
rt->clear();
|
|
|
|
Ptr<TrainData> trainDataWithWeights = TrainData::create(data, ml::ROW_SAMPLE, values, Mat(), Mat(), weights );
|
|
|
|
rt->train(trainDataWithWeights);
|
|
|
|
double error_with_weights = round(rt->getOOBError());
|
|
|
|
// error with weights should be larger than error without weights
|
|
|
|
EXPECT_GE(error_with_weights, error_without_weights);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ML_RTrees, 11142_sample_weights_classification)
|
|
|
|
{
|
|
|
|
int n = 12;
|
|
|
|
// RTrees for classification
|
|
|
|
Ptr<ml::RTrees> rt = cv::ml::RTrees::create();
|
|
|
|
|
|
|
|
Mat data(n, 4, CV_32F);
|
|
|
|
randu(data, 0, 10);
|
|
|
|
Mat labels = (Mat_<int>(n,1) << 0,0,0,0, 1,1,1,1, 2,2,2,2);
|
|
|
|
Mat weights = (Mat_<float>(n, 1) << 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10);
|
|
|
|
|
|
|
|
rt->train(data, ml::ROW_SAMPLE, labels);
|
|
|
|
rt->clear();
|
|
|
|
double error_without_weights = round(rt->getOOBError());
|
|
|
|
Ptr<TrainData> trainDataWithWeights = TrainData::create(data, ml::ROW_SAMPLE, labels, Mat(), Mat(), weights );
|
|
|
|
rt->train(data, ml::ROW_SAMPLE, labels);
|
|
|
|
double error_with_weights = round(rt->getOOBError());
|
|
|
|
std::cout << error_without_weights << std::endl;
|
|
|
|
std::cout << error_with_weights << std::endl;
|
|
|
|
// error with weights should be larger than error without weights
|
|
|
|
EXPECT_GE(error_with_weights, error_without_weights);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}} // namespace
|