|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2008, Xavier Delacour, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
// 2008-05-13, Xavier Delacour <xavier.delacour@gmail.com>
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
#if !defined _MSC_VER || defined __ICL || _MSC_VER >= 1300
|
|
|
|
|
|
|
|
#include "_kdtree.hpp"
|
|
|
|
#include "_featuretree.h"
|
|
|
|
|
|
|
|
class CvKDTreeWrap : public CvFeatureTree {
|
|
|
|
template <class __scalartype, int __cvtype>
|
|
|
|
struct deref {
|
|
|
|
typedef __scalartype scalar_type;
|
|
|
|
typedef double accum_type;
|
|
|
|
|
|
|
|
CvMat* mat;
|
|
|
|
deref(CvMat* _mat) : mat(_mat) {
|
|
|
|
assert(CV_ELEM_SIZE1(__cvtype) == sizeof(__scalartype));
|
|
|
|
}
|
|
|
|
scalar_type operator() (int i, int j) const {
|
|
|
|
return *((scalar_type*)(mat->data.ptr + i * mat->step) + j);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
#define dispatch_cvtype(mat, c) \
|
|
|
|
switch (CV_MAT_DEPTH((mat)->type)) { \
|
|
|
|
case CV_32F: \
|
|
|
|
{ typedef CvKDTree<int, deref<float, CV_32F> > tree_type; c; break; } \
|
|
|
|
case CV_64F: \
|
|
|
|
{ typedef CvKDTree<int, deref<double, CV_64F> > tree_type; c; break; } \
|
|
|
|
default: assert(0); \
|
|
|
|
}
|
|
|
|
|
|
|
|
CvMat* mat;
|
|
|
|
void* data;
|
|
|
|
|
|
|
|
template <class __treetype>
|
|
|
|
void find_nn(const CvMat* d, int k, int emax, CvMat* results, CvMat* dist) {
|
|
|
|
__treetype* tr = (__treetype*) data;
|
|
|
|
const uchar* dptr = d->data.ptr;
|
|
|
|
uchar* resultsptr = results->data.ptr;
|
|
|
|
uchar* distptr = dist->data.ptr;
|
|
|
|
typename __treetype::bbf_nn_pqueue nn;
|
|
|
|
|
|
|
|
assert(d->cols == tr->dims());
|
|
|
|
assert(results->rows == d->rows);
|
|
|
|
assert(results->rows == dist->rows);
|
|
|
|
assert(results->cols == k);
|
|
|
|
assert(dist->cols == k);
|
|
|
|
|
|
|
|
for (int j = 0; j < d->rows; ++j)
|
|
|
|
{
|
|
|
|
const typename __treetype::scalar_type* dj = (const typename __treetype::scalar_type*) dptr;
|
|
|
|
|
|
|
|
int* resultsj = (int*) resultsptr;
|
|
|
|
double* distj = (double*) distptr;
|
|
|
|
tr->find_nn_bbf(dj, k, emax, nn);
|
|
|
|
|
|
|
|
assert((int)nn.size() <= k);
|
|
|
|
for (unsigned int i = 0; i < nn.size(); ++i)
|
|
|
|
{
|
|
|
|
*resultsj++ = *nn[i].p;
|
|
|
|
*distj++ = nn[i].dist;
|
|
|
|
}
|
|
|
|
std::fill(resultsj, resultsj + k - nn.size(), -1);
|
|
|
|
std::fill(distj, distj + k - nn.size(), 0);
|
|
|
|
|
|
|
|
dptr += d->step;
|
|
|
|
resultsptr += results->step;
|
|
|
|
distptr += dist->step;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class __treetype>
|
|
|
|
int find_ortho_range(CvMat* bounds_min, CvMat* bounds_max,
|
|
|
|
CvMat* results) {
|
|
|
|
int rn = results->rows * results->cols;
|
|
|
|
std::vector<int> inbounds;
|
|
|
|
assert(CV_MAT_DEPTH(mat->type) == CV_32F || CV_MAT_DEPTH(mat->type) == CV_64F);
|
|
|
|
((__treetype*)data)->find_ortho_range((typename __treetype::scalar_type*)bounds_min->data.ptr,
|
|
|
|
(typename __treetype::scalar_type*)bounds_max->data.ptr,
|
|
|
|
inbounds);
|
|
|
|
std::copy(inbounds.begin(),
|
|
|
|
inbounds.begin() + std::min((int)inbounds.size(), rn),
|
|
|
|
(int*) results->data.ptr);
|
|
|
|
return (int)inbounds.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
CvKDTreeWrap(const CvKDTreeWrap& x);
|
|
|
|
CvKDTreeWrap& operator= (const CvKDTreeWrap& rhs);
|
|
|
|
public:
|
|
|
|
CvKDTreeWrap(CvMat* _mat) : mat(_mat) {
|
|
|
|
// * a flag parameter should tell us whether
|
|
|
|
// * (a) user ensures *mat outlives *this and is unchanged,
|
|
|
|
// * (b) we take reference and user ensures mat is unchanged,
|
|
|
|
// * (c) we copy data, (d) we own and release data.
|
|
|
|
|
|
|
|
std::vector<int> tmp(mat->rows);
|
|
|
|
for (unsigned int j = 0; j < tmp.size(); ++j)
|
|
|
|
tmp[j] = j;
|
|
|
|
|
|
|
|
dispatch_cvtype(mat, data = new tree_type
|
|
|
|
(&tmp[0], &tmp[0] + tmp.size(), mat->cols,
|
|
|
|
tree_type::deref_type(mat)));
|
|
|
|
}
|
|
|
|
~CvKDTreeWrap() {
|
|
|
|
dispatch_cvtype(mat, delete (tree_type*) data);
|
|
|
|
}
|
|
|
|
|
|
|
|
int dims() {
|
|
|
|
int d = 0;
|
|
|
|
dispatch_cvtype(mat, d = ((tree_type*) data)->dims());
|
|
|
|
return d;
|
|
|
|
}
|
|
|
|
int type() {
|
|
|
|
return mat->type;
|
|
|
|
}
|
|
|
|
|
|
|
|
void FindFeatures(const CvMat* desc, int k, int emax, CvMat* results, CvMat* dist) {
|
|
|
|
cv::Ptr<CvMat> tmp_desc;
|
|
|
|
|
|
|
|
if (desc->cols != dims())
|
|
|
|
CV_Error(CV_StsUnmatchedSizes, "desc columns be equal feature dimensions");
|
|
|
|
if (results->rows != desc->rows && results->cols != k)
|
|
|
|
CV_Error(CV_StsUnmatchedSizes, "results and desc must be same height");
|
|
|
|
if (dist->rows != desc->rows && dist->cols != k)
|
|
|
|
CV_Error(CV_StsUnmatchedSizes, "dist and desc must be same height");
|
|
|
|
if (CV_MAT_TYPE(results->type) != CV_32SC1)
|
|
|
|
CV_Error(CV_StsUnsupportedFormat, "results must be CV_32SC1");
|
|
|
|
if (CV_MAT_TYPE(dist->type) != CV_64FC1)
|
|
|
|
CV_Error(CV_StsUnsupportedFormat, "dist must be CV_64FC1");
|
|
|
|
|
|
|
|
if (CV_MAT_TYPE(type()) != CV_MAT_TYPE(desc->type)) {
|
|
|
|
tmp_desc = cvCreateMat(desc->rows, desc->cols, type());
|
|
|
|
cvConvert(desc, tmp_desc);
|
|
|
|
desc = tmp_desc;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(CV_MAT_TYPE(desc->type) == CV_MAT_TYPE(mat->type));
|
|
|
|
assert(CV_MAT_TYPE(dist->type) == CV_64FC1);
|
|
|
|
assert(CV_MAT_TYPE(results->type) == CV_32SC1);
|
|
|
|
|
|
|
|
dispatch_cvtype(mat, find_nn<tree_type>
|
|
|
|
(desc, k, emax, results, dist));
|
|
|
|
}
|
|
|
|
int FindOrthoRange(CvMat* bounds_min, CvMat* bounds_max,
|
|
|
|
CvMat* results) {
|
|
|
|
bool free_bounds = false;
|
|
|
|
int count = -1;
|
|
|
|
|
|
|
|
if (bounds_min->cols * bounds_min->rows != dims() ||
|
|
|
|
bounds_max->cols * bounds_max->rows != dims())
|
|
|
|
CV_Error(CV_StsUnmatchedSizes, "bounds_{min,max} must 1 x dims or dims x 1");
|
|
|
|
if (CV_MAT_TYPE(bounds_min->type) != CV_MAT_TYPE(bounds_max->type))
|
|
|
|
CV_Error(CV_StsUnmatchedFormats, "bounds_{min,max} must have same type");
|
|
|
|
if (CV_MAT_TYPE(results->type) != CV_32SC1)
|
|
|
|
CV_Error(CV_StsUnsupportedFormat, "results must be CV_32SC1");
|
|
|
|
|
|
|
|
if (CV_MAT_TYPE(bounds_min->type) != CV_MAT_TYPE(type())) {
|
|
|
|
free_bounds = true;
|
|
|
|
|
|
|
|
CvMat* old_bounds_min = bounds_min;
|
|
|
|
bounds_min = cvCreateMat(bounds_min->rows, bounds_min->cols, type());
|
|
|
|
cvConvert(old_bounds_min, bounds_min);
|
|
|
|
|
|
|
|
CvMat* old_bounds_max = bounds_max;
|
|
|
|
bounds_max = cvCreateMat(bounds_max->rows, bounds_max->cols, type());
|
|
|
|
cvConvert(old_bounds_max, bounds_max);
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(CV_MAT_TYPE(bounds_min->type) == CV_MAT_TYPE(mat->type));
|
|
|
|
assert(CV_MAT_TYPE(bounds_min->type) == CV_MAT_TYPE(bounds_max->type));
|
|
|
|
assert(bounds_min->rows * bounds_min->cols == dims());
|
|
|
|
assert(bounds_max->rows * bounds_max->cols == dims());
|
|
|
|
|
|
|
|
dispatch_cvtype(mat, count = find_ortho_range<tree_type>
|
|
|
|
(bounds_min, bounds_max,results));
|
|
|
|
|
|
|
|
if (free_bounds) {
|
|
|
|
cvReleaseMat(&bounds_min);
|
|
|
|
cvReleaseMat(&bounds_max);
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
CvFeatureTree* cvCreateKDTree(CvMat* desc) {
|
|
|
|
|
|
|
|
if (CV_MAT_TYPE(desc->type) != CV_32FC1 &&
|
|
|
|
CV_MAT_TYPE(desc->type) != CV_64FC1)
|
|
|
|
CV_Error(CV_StsUnsupportedFormat, "descriptors must be either CV_32FC1 or CV_64FC1");
|
|
|
|
|
|
|
|
return new CvKDTreeWrap(desc);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|