Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

296 lines
13 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include <string>
#include <iostream>
//#define SHOW_TIME
#ifdef SHOW_TIME
#include <ctime>
#define F(x) x
#else
#define F(x)
#endif
using namespace cv;
using namespace std;
struct CV_GpuMatchTemplateTest: cvtest::BaseTest
{
CV_GpuMatchTemplateTest() {}
void run(int)
{
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE);
if (!double_ok)
{
// For sqrIntegral
ts->printf(cvtest::TS::CONSOLE, "\nCode and device double support is required (CC >= 1.3)");
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
return;
}
Mat image, templ;
Mat dst_gold;
gpu::GpuMat dst;
int n, m, h, w;
F(clock_t t;)
RNG& rng = ts->get_rng();
for (int cn = 1; cn <= 4; ++cn)
{
F(ts->printf(cvtest::TS::CONSOLE, "cn: %d\n", cn);)
for (int i = 0; i <= 0; ++i)
{
n = rng.uniform(30, 100);
m = rng.uniform(30, 100);
h = rng.uniform(5, n - 1);
w = rng.uniform(5, m - 1);
gen(image, n, m, CV_8U, cn);
gen(templ, h, w, CV_8U, cn);
F(t = clock();)
matchTemplate(image, templ, dst_gold, CV_TM_SQDIFF);
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;)
F(cout << "cpu:" << clock() - t << endl;)
F(t = clock();)
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_SQDIFF);
F(cout << "gpu_block: " << clock() - t << endl;)
if (!check(dst_gold, Mat(dst), 5 * h * w * 1e-4f, "SQDIFF 8U")) return;
gen(image, n, m, CV_8U, cn);
gen(templ, h, w, CV_8U, cn);
F(t = clock();)
matchTemplate(image, templ, dst_gold, CV_TM_SQDIFF_NORMED);
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;)
F(cout << "cpu:" << clock() - t << endl;)
F(t = clock();)
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_SQDIFF_NORMED);
F(cout << "gpu_block: " << clock() - t << endl;)
if (!check(dst_gold, Mat(dst), h * w * 1e-5f, "SQDIFF_NOREMD 8U")) return;
gen(image, n, m, CV_8U, cn);
gen(templ, h, w, CV_8U, cn);
F(t = clock();)
matchTemplate(image, templ, dst_gold, CV_TM_CCORR);
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;)
F(cout << "cpu:" << clock() - t << endl;)
F(t = clock();)
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCORR);
F(cout << "gpu_block: " << clock() - t << endl;)
if (!check(dst_gold, Mat(dst), 5 * h * w * cn * cn * 1e-5f, "CCORR 8U")) return;
gen(image, n, m, CV_8U, cn);
gen(templ, h, w, CV_8U, cn);
F(t = clock();)
matchTemplate(image, templ, dst_gold, CV_TM_CCORR_NORMED);
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;)
F(cout << "cpu:" << clock() - t << endl;)
F(t = clock();)
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCORR_NORMED);
F(cout << "gpu_block: " << clock() - t << endl;)
if (!check(dst_gold, Mat(dst), h * w * 1e-6f, "CCORR_NORMED 8U")) return;
gen(image, n, m, CV_8U, cn);
gen(templ, h, w, CV_8U, cn);
F(t = clock();)
matchTemplate(image, templ, dst_gold, CV_TM_CCOEFF);
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;)
F(cout << "cpu:" << clock() - t << endl;)
F(t = clock();)
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCOEFF);
F(cout << "gpu_block: " << clock() - t << endl;)
if (!check(dst_gold, Mat(dst), 5 * h * w * cn * cn * 1e-5f, "CCOEFF 8U")) return;
gen(image, n, m, CV_8U, cn);
gen(templ, h, w, CV_8U, cn);
F(t = clock();)
matchTemplate(image, templ, dst_gold, CV_TM_CCOEFF_NORMED);
F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;)
F(cout << "cpu:" << clock() - t << endl;)
F(t = clock();)
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCOEFF_NORMED);
F(cout << "gpu_block: " << clock() - t << endl;)
if (!check(dst_gold, Mat(dst), h * w * 1e-6f, "CCOEFF_NORMED 8U")) return;
gen(image, n, m, CV_32F, cn);
gen(templ, h, w, CV_32F, cn);
F(t = clock();)
matchTemplate(image, templ, dst_gold, CV_TM_SQDIFF);
F(cout << "depth: 32F cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;)
F(cout << "cpu:" << clock() - t << endl;)
F(t = clock();)
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_SQDIFF);
F(cout << "gpu_block: " << clock() - t << endl;)
if (!check(dst_gold, Mat(dst), 0.25f * h * w * 1e-5f, "SQDIFF 32F")) return;
gen(image, n, m, CV_32F, cn);
gen(templ, h, w, CV_32F, cn);
F(t = clock();)
matchTemplate(image, templ, dst_gold, CV_TM_CCORR);
F(cout << "depth: 32F cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;)
F(cout << "cpu:" << clock() - t << endl;)
F(t = clock();)
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCORR);
F(cout << "gpu_block: " << clock() - t << endl;)
if (!check(dst_gold, Mat(dst), 0.25f * h * w * 1e-5f, "CCORR 32F")) return;
}
}
}
void gen(Mat& a, int rows, int cols, int depth, int cn)
{
RNG rng;
a.create(rows, cols, CV_MAKETYPE(depth, cn));
if (depth == CV_8U)
rng.fill(a, RNG::UNIFORM, Scalar::all(1), Scalar::all(10));
else if (depth == CV_32F)
rng.fill(a, RNG::UNIFORM, Scalar::all(0.001f), Scalar::all(1.f));
}
bool check(const Mat& a, const Mat& b, float max_err, const string& method="")
{
if (a.size() != b.size())
{
ts->printf(cvtest::TS::CONSOLE, "bad size, method=%s\n", method.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
return false;
}
//for (int i = 0; i < a.rows; ++i)
//{
// for (int j = 0; j < a.cols; ++j)
// {
// float a_ = a.at<float>(i, j);
// float b_ = b.at<float>(i, j);
// if (fabs(a_ - b_) > max_err)
// {
// ts->printf(cvtest::TS::CONSOLE, "a=%f, b=%f, i=%d, j=%d\n", a_, b_, i, j);
// cin.get();
// }
// }
//}
float err = (float)norm(a, b, NORM_INF);
if (err > max_err)
{
ts->printf(cvtest::TS::CONSOLE, "bad accuracy: %f, method=%s\n", err, method.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
return false;
}
return true;
}
};
TEST(matchTemplate, accuracy) { CV_GpuMatchTemplateTest test; test.safe_run(); }
struct CV_GpuMatchTemplateFindPatternInBlackTest: cvtest::BaseTest
{
CV_GpuMatchTemplateFindPatternInBlackTest() {}
void run(int)
{
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE);
if (!double_ok)
{
// For sqrIntegral
ts->printf(cvtest::TS::CONSOLE, "\nCode and device double support is required (CC >= 1.3)");
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
return;
}
Mat image = imread(std::string(ts->get_data_path()) + "matchtemplate/black.png");
if (image.empty())
{
ts->printf(cvtest::TS::CONSOLE, "can't open file '%s'", (std::string(ts->get_data_path())
+ "matchtemplate/black.png").c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
Mat pattern = imread(std::string(ts->get_data_path()) + "matchtemplate/cat.png");
if (pattern.empty())
{
ts->printf(cvtest::TS::CONSOLE, "can't open file '%s'", (std::string(ts->get_data_path())
+ "matchtemplate/cat.png").c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
gpu::GpuMat d_image(image);
gpu::GpuMat d_pattern(pattern);
gpu::GpuMat d_result;
double maxValue;
Point maxLoc;
Point maxLocGold(284, 12);
gpu::matchTemplate(d_image, d_pattern, d_result, CV_TM_CCOEFF_NORMED);
gpu::minMaxLoc(d_result, NULL, &maxValue, NULL, &maxLoc );
if (maxLoc != maxLocGold)
{
ts->printf(cvtest::TS::CONSOLE, "bad match (CV_TM_CCOEFF_NORMED): %d %d, must be at: %d %d",
maxLoc.x, maxLoc.y, maxLocGold.x, maxLocGold.y);
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
return;
}
gpu::matchTemplate(d_image, d_pattern, d_result, CV_TM_CCORR_NORMED);
gpu::minMaxLoc(d_result, NULL, &maxValue, NULL, &maxLoc );
if (maxLoc != maxLocGold)
{
ts->printf(cvtest::TS::CONSOLE, "bad match (CV_TM_CCORR_NORMED): %d %d, must be at: %d %d",
maxLoc.x, maxLoc.y, maxLocGold.x, maxLocGold.y);
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
return;
}
}
};
TEST(matchTemplate, find_pattern_in_black) { CV_GpuMatchTemplateFindPatternInBlackTest test; test.safe_run(); }