|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include "opencv2/photo.hpp"
|
|
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
#include "hdr_common.hpp"
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
|
|
|
|
class MergeDebevecImpl : public MergeDebevec
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
MergeDebevecImpl() :
|
|
|
|
name("MergeDebevec"),
|
|
|
|
weights(tringleWeights())
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
void process(InputArrayOfArrays src, OutputArray dst, InputArray _times, InputArray input_response)
|
|
|
|
{
|
|
|
|
std::vector<Mat> images;
|
|
|
|
src.getMatVector(images);
|
|
|
|
Mat times = _times.getMat();
|
|
|
|
|
|
|
|
CV_Assert(images.size() == times.total());
|
|
|
|
checkImageDimensions(images);
|
|
|
|
CV_Assert(images[0].depth() == CV_8U);
|
|
|
|
|
|
|
|
int channels = images[0].channels();
|
|
|
|
Size size = images[0].size();
|
|
|
|
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
|
|
|
|
|
|
|
|
dst.create(images[0].size(), CV_32FCC);
|
|
|
|
Mat result = dst.getMat();
|
|
|
|
|
|
|
|
Mat response = input_response.getMat();
|
|
|
|
|
|
|
|
if(response.empty()) {
|
|
|
|
response = linearResponse(channels);
|
|
|
|
response.at<Vec3f>(0) = response.at<Vec3f>(1);
|
|
|
|
}
|
|
|
|
log(response, response);
|
|
|
|
CV_Assert(response.rows == LDR_SIZE && response.cols == 1 &&
|
|
|
|
response.channels() == channels);
|
|
|
|
|
|
|
|
Mat exp_values(times);
|
|
|
|
log(exp_values, exp_values);
|
|
|
|
|
|
|
|
result = Mat::zeros(size, CV_32FCC);
|
|
|
|
std::vector<Mat> result_split;
|
|
|
|
split(result, result_split);
|
|
|
|
Mat weight_sum = Mat::zeros(size, CV_32F);
|
|
|
|
|
|
|
|
for(size_t i = 0; i < images.size(); i++) {
|
|
|
|
std::vector<Mat> splitted;
|
|
|
|
split(images[i], splitted);
|
|
|
|
|
|
|
|
Mat w = Mat::zeros(size, CV_32F);
|
|
|
|
for(int c = 0; c < channels; c++) {
|
|
|
|
LUT(splitted[c], weights, splitted[c]);
|
|
|
|
w += splitted[c];
|
|
|
|
}
|
|
|
|
w /= channels;
|
|
|
|
|
|
|
|
Mat response_img;
|
|
|
|
LUT(images[i], response, response_img);
|
|
|
|
split(response_img, splitted);
|
|
|
|
for(int c = 0; c < channels; c++) {
|
|
|
|
result_split[c] += w.mul(splitted[c] - exp_values.at<float>((int)i));
|
|
|
|
}
|
|
|
|
weight_sum += w;
|
|
|
|
}
|
|
|
|
weight_sum = 1.0f / weight_sum;
|
|
|
|
for(int c = 0; c < channels; c++) {
|
|
|
|
result_split[c] = result_split[c].mul(weight_sum);
|
|
|
|
}
|
|
|
|
merge(result_split, result);
|
|
|
|
exp(result, result);
|
|
|
|
}
|
|
|
|
|
|
|
|
void process(InputArrayOfArrays src, OutputArray dst, InputArray times)
|
|
|
|
{
|
|
|
|
process(src, dst, times, Mat());
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
String name;
|
|
|
|
Mat weights;
|
|
|
|
};
|
|
|
|
|
|
|
|
Ptr<MergeDebevec> createMergeDebevec()
|
|
|
|
{
|
|
|
|
return makePtr<MergeDebevecImpl>();
|
|
|
|
}
|
|
|
|
|
|
|
|
class MergeMertensImpl : public MergeMertens
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
MergeMertensImpl(float _wcon, float _wsat, float _wexp) :
|
|
|
|
name("MergeMertens"),
|
|
|
|
wcon(_wcon),
|
|
|
|
wsat(_wsat),
|
|
|
|
wexp(_wexp)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
void process(InputArrayOfArrays src, OutputArrayOfArrays dst, InputArray, InputArray)
|
|
|
|
{
|
|
|
|
process(src, dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
void process(InputArrayOfArrays src, OutputArray dst)
|
|
|
|
{
|
|
|
|
std::vector<Mat> images;
|
|
|
|
src.getMatVector(images);
|
|
|
|
checkImageDimensions(images);
|
|
|
|
|
|
|
|
int channels = images[0].channels();
|
|
|
|
CV_Assert(channels == 1 || channels == 3);
|
|
|
|
Size size = images[0].size();
|
|
|
|
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
|
|
|
|
|
|
|
|
std::vector<Mat> weights(images.size());
|
|
|
|
Mat weight_sum = Mat::zeros(size, CV_32F);
|
|
|
|
|
|
|
|
for(size_t i = 0; i < images.size(); i++) {
|
|
|
|
Mat img, gray, contrast, saturation, wellexp;
|
|
|
|
std::vector<Mat> splitted(channels);
|
|
|
|
|
|
|
|
images[i].convertTo(img, CV_32F, 1.0f/255.0f);
|
|
|
|
if(channels == 3) {
|
|
|
|
cvtColor(img, gray, COLOR_RGB2GRAY);
|
|
|
|
} else {
|
|
|
|
img.copyTo(gray);
|
|
|
|
}
|
|
|
|
split(img, splitted);
|
|
|
|
|
|
|
|
Laplacian(gray, contrast, CV_32F);
|
|
|
|
contrast = abs(contrast);
|
|
|
|
|
|
|
|
Mat mean = Mat::zeros(size, CV_32F);
|
|
|
|
for(int c = 0; c < channels; c++) {
|
|
|
|
mean += splitted[c];
|
|
|
|
}
|
|
|
|
mean /= channels;
|
|
|
|
|
|
|
|
saturation = Mat::zeros(size, CV_32F);
|
|
|
|
for(int c = 0; c < channels; c++) {
|
|
|
|
Mat deviation = splitted[c] - mean;
|
|
|
|
pow(deviation, 2.0f, deviation);
|
|
|
|
saturation += deviation;
|
|
|
|
}
|
|
|
|
sqrt(saturation, saturation);
|
|
|
|
|
|
|
|
wellexp = Mat::ones(size, CV_32F);
|
|
|
|
for(int c = 0; c < channels; c++) {
|
|
|
|
Mat exp = splitted[c] - 0.5f;
|
|
|
|
pow(exp, 2.0f, exp);
|
|
|
|
exp = -exp / 0.08f;
|
|
|
|
wellexp = wellexp.mul(exp);
|
|
|
|
}
|
|
|
|
|
|
|
|
pow(contrast, wcon, contrast);
|
|
|
|
pow(saturation, wsat, saturation);
|
|
|
|
pow(wellexp, wexp, wellexp);
|
|
|
|
|
|
|
|
weights[i] = contrast;
|
|
|
|
if(channels == 3) {
|
|
|
|
weights[i] = weights[i].mul(saturation);
|
|
|
|
}
|
|
|
|
weights[i] = weights[i].mul(wellexp);
|
|
|
|
weight_sum += weights[i];
|
|
|
|
}
|
|
|
|
int maxlevel = static_cast<int>(logf(static_cast<float>(min(size.width, size.height))) / logf(2.0f));
|
|
|
|
std::vector<Mat> res_pyr(maxlevel + 1);
|
|
|
|
|
|
|
|
for(size_t i = 0; i < images.size(); i++) {
|
|
|
|
weights[i] /= weight_sum;
|
|
|
|
Mat img;
|
|
|
|
images[i].convertTo(img, CV_32F, 1.0f/255.0f);
|
|
|
|
|
|
|
|
std::vector<Mat> img_pyr, weight_pyr;
|
|
|
|
buildPyramid(img, img_pyr, maxlevel);
|
|
|
|
buildPyramid(weights[i], weight_pyr, maxlevel);
|
|
|
|
|
|
|
|
for(int lvl = 0; lvl < maxlevel; lvl++) {
|
|
|
|
Mat up;
|
|
|
|
pyrUp(img_pyr[lvl + 1], up, img_pyr[lvl].size());
|
|
|
|
img_pyr[lvl] -= up;
|
|
|
|
}
|
|
|
|
for(int lvl = 0; lvl <= maxlevel; lvl++) {
|
|
|
|
std::vector<Mat> splitted(channels);
|
|
|
|
split(img_pyr[lvl], splitted);
|
|
|
|
for(int c = 0; c < channels; c++) {
|
|
|
|
splitted[c] = splitted[c].mul(weight_pyr[lvl]);
|
|
|
|
}
|
|
|
|
merge(splitted, img_pyr[lvl]);
|
|
|
|
if(res_pyr[lvl].empty()) {
|
|
|
|
res_pyr[lvl] = img_pyr[lvl];
|
|
|
|
} else {
|
|
|
|
res_pyr[lvl] += img_pyr[lvl];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for(int lvl = maxlevel; lvl > 0; lvl--) {
|
|
|
|
Mat up;
|
|
|
|
pyrUp(res_pyr[lvl], up, res_pyr[lvl - 1].size());
|
|
|
|
res_pyr[lvl - 1] += up;
|
|
|
|
}
|
|
|
|
dst.create(size, CV_32FCC);
|
|
|
|
res_pyr[0].copyTo(dst.getMat());
|
|
|
|
}
|
|
|
|
|
|
|
|
float getContrastWeight() const { return wcon; }
|
|
|
|
void setContrastWeight(float val) { wcon = val; }
|
|
|
|
|
|
|
|
float getSaturationWeight() const { return wsat; }
|
|
|
|
void setSaturationWeight(float val) { wsat = val; }
|
|
|
|
|
|
|
|
float getExposureWeight() const { return wexp; }
|
|
|
|
void setExposureWeight(float val) { wexp = val; }
|
|
|
|
|
|
|
|
void write(FileStorage& fs) const
|
|
|
|
{
|
|
|
|
fs << "name" << name
|
|
|
|
<< "contrast_weight" << wcon
|
|
|
|
<< "saturation_weight" << wsat
|
|
|
|
<< "exposure_weight" << wexp;
|
|
|
|
}
|
|
|
|
|
|
|
|
void read(const FileNode& fn)
|
|
|
|
{
|
|
|
|
FileNode n = fn["name"];
|
|
|
|
CV_Assert(n.isString() && String(n) == name);
|
|
|
|
wcon = fn["contrast_weight"];
|
|
|
|
wsat = fn["saturation_weight"];
|
|
|
|
wexp = fn["exposure_weight"];
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
String name;
|
|
|
|
float wcon, wsat, wexp;
|
|
|
|
};
|
|
|
|
|
|
|
|
Ptr<MergeMertens> createMergeMertens(float wcon, float wsat, float wexp)
|
|
|
|
{
|
|
|
|
return makePtr<MergeMertensImpl>(wcon, wsat, wexp);
|
|
|
|
}
|
|
|
|
|
|
|
|
class MergeRobertsonImpl : public MergeRobertson
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
MergeRobertsonImpl() :
|
|
|
|
name("MergeRobertson"),
|
|
|
|
weight(RobertsonWeights())
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
void process(InputArrayOfArrays src, OutputArray dst, InputArray _times, InputArray input_response)
|
|
|
|
{
|
|
|
|
std::vector<Mat> images;
|
|
|
|
src.getMatVector(images);
|
|
|
|
Mat times = _times.getMat();
|
|
|
|
|
|
|
|
CV_Assert(images.size() == times.total());
|
|
|
|
checkImageDimensions(images);
|
|
|
|
CV_Assert(images[0].depth() == CV_8U);
|
|
|
|
|
|
|
|
int channels = images[0].channels();
|
|
|
|
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
|
|
|
|
|
|
|
|
dst.create(images[0].size(), CV_32FCC);
|
|
|
|
Mat result = dst.getMat();
|
|
|
|
|
|
|
|
Mat response = input_response.getMat();
|
|
|
|
if(response.empty()) {
|
|
|
|
float middle = LDR_SIZE / 2.0f;
|
|
|
|
response = linearResponse(channels) / middle;
|
|
|
|
}
|
|
|
|
CV_Assert(response.rows == LDR_SIZE && response.cols == 1 &&
|
|
|
|
response.channels() == channels);
|
|
|
|
|
|
|
|
result = Mat::zeros(images[0].size(), CV_32FCC);
|
|
|
|
Mat wsum = Mat::zeros(images[0].size(), CV_32FCC);
|
|
|
|
for(size_t i = 0; i < images.size(); i++) {
|
|
|
|
Mat im, w;
|
|
|
|
LUT(images[i], weight, w);
|
|
|
|
LUT(images[i], response, im);
|
|
|
|
|
|
|
|
result += times.at<float>((int)i) * w.mul(im);
|
|
|
|
wsum += times.at<float>((int)i) * times.at<float>((int)i) * w;
|
|
|
|
}
|
|
|
|
result = result.mul(1 / wsum);
|
|
|
|
}
|
|
|
|
|
|
|
|
void process(InputArrayOfArrays src, OutputArray dst, InputArray times)
|
|
|
|
{
|
|
|
|
process(src, dst, times, Mat());
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
String name;
|
|
|
|
Mat weight;
|
|
|
|
};
|
|
|
|
|
|
|
|
Ptr<MergeRobertson> createMergeRobertson()
|
|
|
|
{
|
|
|
|
return makePtr<MergeRobertsonImpl>();
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|