Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

701 lines
25 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include <opencv2/ts/cuda_test.hpp>
#include "opencv2/calib3d.hpp"
#define NUM_DIST_COEFF_TILT 14
/**
Some conventions:
- the first camera determines the world coordinate system
- y points down, hence top means minimal y value (negative) and
bottom means maximal y value (positive)
- the field of view plane is tilted around x such that it
intersects the xy-plane in a line with a large (positive)
y-value
- image sensor and object are both modelled in the halfspace
z > 0
**/
class cameraCalibrationTiltTest : public ::testing::Test {
protected:
cameraCalibrationTiltTest()
: m_toRadian(acos(-1.0)/180.0)
, m_toDegree(180.0/acos(-1.0))
{}
virtual void SetUp();
protected:
static const cv::Size m_imageSize;
static const double m_pixelSize;
static const double m_circleConfusionPixel;
static const double m_lensFocalLength;
static const double m_lensFNumber;
static const double m_objectDistance;
static const double m_planeTiltDegree;
static const double m_pointTargetDist;
static const int m_pointTargetNum;
/** image distance coresponding to working distance */
double m_imageDistance;
/** image tilt angle corresponding to the tilt of the object plane */
double m_imageTiltDegree;
/** center of the field of view, near and far plane */
std::vector<cv::Vec3d> m_fovCenter;
/** normal of the field of view, near and far plane */
std::vector<cv::Vec3d> m_fovNormal;
/** points on a plane calibration target */
std::vector<cv::Point3d> m_pointTarget;
/** rotations for the calibration target */
std::vector<cv::Vec3d> m_pointTargetRvec;
/** translations for the calibration target */
std::vector<cv::Vec3d> m_pointTargetTvec;
/** camera matrix */
cv::Matx33d m_cameraMatrix;
/** distortion coefficients */
cv::Vec<double, NUM_DIST_COEFF_TILT> m_distortionCoeff;
/** random generator */
cv::RNG m_rng;
/** degree to radian conversion factor */
const double m_toRadian;
/** radian to degree conversion factor */
const double m_toDegree;
/**
computes for a given distance of an image or object point
the distance of the corresponding object or image point
*/
double opticalMap(double dist) {
return m_lensFocalLength*dist/(dist - m_lensFocalLength);
}
/** magnification of the optical map */
double magnification(double dist) {
return m_lensFocalLength/(dist - m_lensFocalLength);
}
/**
Changes given distortion coefficients randomly by adding
a uniformly distributed random variable in [-max max]
\param coeff input
\param max limits for the random variables
*/
void randomDistortionCoeff(
cv::Vec<double, NUM_DIST_COEFF_TILT>& coeff,
const cv::Vec<double, NUM_DIST_COEFF_TILT>& max)
{
for (int i = 0; i < coeff.rows; ++i)
coeff(i) += m_rng.uniform(-max(i), max(i));
}
/** numerical jacobian */
void numericalDerivative(
cv::Mat& jac,
double eps,
const std::vector<cv::Point3d>& obj,
const cv::Vec3d& rvec,
const cv::Vec3d& tvec,
const cv::Matx33d& camera,
const cv::Vec<double, NUM_DIST_COEFF_TILT>& distor);
/** remove points with projection outside the sensor array */
void removeInvalidPoints(
std::vector<cv::Point2d>& imagePoints,
std::vector<cv::Point3d>& objectPoints);
/** add uniform distribute noise in [-halfWidthNoise, halfWidthNoise]
to the image points and remove out of range points */
void addNoiseRemoveInvalidPoints(
std::vector<cv::Point2f>& imagePoints,
std::vector<cv::Point3f>& objectPoints,
std::vector<cv::Point2f>& noisyImagePoints,
double halfWidthNoise);
};
/** Number of Pixel of the sensor */
const cv::Size cameraCalibrationTiltTest::m_imageSize(1600, 1200);
/** Size of a pixel in mm */
const double cameraCalibrationTiltTest::m_pixelSize(.005);
/** Diameter of the circle of confusion */
const double cameraCalibrationTiltTest::m_circleConfusionPixel(3);
/** Focal length of the lens */
const double cameraCalibrationTiltTest::m_lensFocalLength(16.4);
/** F-Number */
const double cameraCalibrationTiltTest::m_lensFNumber(8);
/** Working distance */
const double cameraCalibrationTiltTest::m_objectDistance(200);
/** Angle between optical axis and object plane normal */
const double cameraCalibrationTiltTest::m_planeTiltDegree(55);
/** the calibration target are points on a square grid with this side length */
const double cameraCalibrationTiltTest::m_pointTargetDist(5);
/** the calibration target has (2*n + 1) x (2*n + 1) points */
const int cameraCalibrationTiltTest::m_pointTargetNum(15);
void cameraCalibrationTiltTest::SetUp()
{
m_imageDistance = opticalMap(m_objectDistance);
m_imageTiltDegree = m_toDegree * atan2(
m_imageDistance * tan(m_toRadian * m_planeTiltDegree),
m_objectDistance);
// half sensor height
double tmp = .5 * (m_imageSize.height - 1) * m_pixelSize
* cos(m_toRadian * m_imageTiltDegree);
// y-Value of tilted sensor
double yImage[2] = {tmp, -tmp};
// change in z because of the tilt
tmp *= sin(m_toRadian * m_imageTiltDegree);
// z-values of the sensor lower and upper corner
double zImage[2] = {
m_imageDistance + tmp,
m_imageDistance - tmp};
// circle of confusion
double circleConfusion = m_circleConfusionPixel*m_pixelSize;
// aperture of the lense
double aperture = m_lensFocalLength/m_lensFNumber;
// near and far factor on the image side
double nearFarFactorImage[2] = {
aperture/(aperture - circleConfusion),
aperture/(aperture + circleConfusion)};
// on the object side - points that determin the field of
// view
std::vector<cv::Vec3d> fovBottomTop(6);
std::vector<cv::Vec3d>::iterator itFov = fovBottomTop.begin();
for (size_t iBottomTop = 0; iBottomTop < 2; ++iBottomTop)
{
// mapping sensor to field of view
*itFov = cv::Vec3d(0,yImage[iBottomTop],zImage[iBottomTop]);
*itFov *= magnification((*itFov)(2));
++itFov;
for (size_t iNearFar = 0; iNearFar < 2; ++iNearFar, ++itFov)
{
// scaling to the near and far distance on the
// image side
*itFov = cv::Vec3d(0,yImage[iBottomTop],zImage[iBottomTop]) *
nearFarFactorImage[iNearFar];
// scaling to the object side
*itFov *= magnification((*itFov)(2));
}
}
m_fovCenter.resize(3);
m_fovNormal.resize(3);
for (size_t i = 0; i < 3; ++i)
{
m_fovCenter[i] = .5*(fovBottomTop[i] + fovBottomTop[i+3]);
m_fovNormal[i] = fovBottomTop[i+3] - fovBottomTop[i];
m_fovNormal[i] = cv::normalize(m_fovNormal[i]);
m_fovNormal[i] = cv::Vec3d(
m_fovNormal[i](0),
-m_fovNormal[i](2),
m_fovNormal[i](1));
// one target position in each plane
m_pointTargetTvec.push_back(m_fovCenter[i]);
cv::Vec3d rvec = cv::Vec3d(0,0,1).cross(m_fovNormal[i]);
rvec = cv::normalize(rvec);
rvec *= acos(m_fovNormal[i](2));
m_pointTargetRvec.push_back(rvec);
}
// calibration target
size_t num = 2*m_pointTargetNum + 1;
m_pointTarget.resize(num*num);
std::vector<cv::Point3d>::iterator itTarget = m_pointTarget.begin();
for (int iY = -m_pointTargetNum; iY <= m_pointTargetNum; ++iY)
{
for (int iX = -m_pointTargetNum; iX <= m_pointTargetNum; ++iX, ++itTarget)
{
*itTarget = cv::Point3d(iX, iY, 0) * m_pointTargetDist;
}
}
// oblique target positions
// approximate distance to the near and far plane
double dist = std::max(
std::abs(m_fovNormal[0].dot(m_fovCenter[0] - m_fovCenter[1])),
std::abs(m_fovNormal[0].dot(m_fovCenter[0] - m_fovCenter[2])));
// maximal angle such that target border "reaches" near and far plane
double maxAngle = atan2(dist, m_pointTargetNum*m_pointTargetDist);
std::vector<double> angle;
angle.push_back(-maxAngle);
angle.push_back(maxAngle);
cv::Matx33d baseMatrix;
cv::Rodrigues(m_pointTargetRvec.front(), baseMatrix);
for (std::vector<double>::const_iterator itAngle = angle.begin(); itAngle != angle.end(); ++itAngle)
{
cv::Matx33d rmat;
for (int i = 0; i < 2; ++i)
{
cv::Vec3d rvec(0,0,0);
rvec(i) = *itAngle;
cv::Rodrigues(rvec, rmat);
rmat = baseMatrix*rmat;
cv::Rodrigues(rmat, rvec);
m_pointTargetTvec.push_back(m_fovCenter.front());
m_pointTargetRvec.push_back(rvec);
}
}
// camera matrix
double cx = .5 * (m_imageSize.width - 1);
double cy = .5 * (m_imageSize.height - 1);
double f = m_imageDistance/m_pixelSize;
m_cameraMatrix = cv::Matx33d(
f,0,cx,
0,f,cy,
0,0,1);
// distortion coefficients
m_distortionCoeff = cv::Vec<double, NUM_DIST_COEFF_TILT>::all(0);
// tauX
m_distortionCoeff(12) = -m_toRadian*m_imageTiltDegree;
}
void cameraCalibrationTiltTest::numericalDerivative(
cv::Mat& jac,
double eps,
const std::vector<cv::Point3d>& obj,
const cv::Vec3d& rvec,
const cv::Vec3d& tvec,
const cv::Matx33d& camera,
const cv::Vec<double, NUM_DIST_COEFF_TILT>& distor)
{
cv::Vec3d r(rvec);
cv::Vec3d t(tvec);
cv::Matx33d cm(camera);
cv::Vec<double, NUM_DIST_COEFF_TILT> dc(distor);
double* param[10+NUM_DIST_COEFF_TILT] = {
&r(0), &r(1), &r(2),
&t(0), &t(1), &t(2),
&cm(0,0), &cm(1,1), &cm(0,2), &cm(1,2),
&dc(0), &dc(1), &dc(2), &dc(3), &dc(4), &dc(5), &dc(6),
&dc(7), &dc(8), &dc(9), &dc(10), &dc(11), &dc(12), &dc(13)};
std::vector<cv::Point2d> pix0, pix1;
double invEps = .5/eps;
for (int col = 0; col < 10+NUM_DIST_COEFF_TILT; ++col)
{
double save = *(param[col]);
*(param[col]) = save + eps;
cv::projectPoints(obj, r, t, cm, dc, pix0);
*(param[col]) = save - eps;
cv::projectPoints(obj, r, t, cm, dc, pix1);
*(param[col]) = save;
std::vector<cv::Point2d>::const_iterator it0 = pix0.begin();
std::vector<cv::Point2d>::const_iterator it1 = pix1.begin();
int row = 0;
for (;it0 != pix0.end(); ++it0, ++it1)
{
cv::Point2d d = invEps*(*it0 - *it1);
jac.at<double>(row, col) = d.x;
++row;
jac.at<double>(row, col) = d.y;
++row;
}
}
}
void cameraCalibrationTiltTest::removeInvalidPoints(
std::vector<cv::Point2d>& imagePoints,
std::vector<cv::Point3d>& objectPoints)
{
// remove object and imgage points out of range
std::vector<cv::Point2d>::iterator itImg = imagePoints.begin();
std::vector<cv::Point3d>::iterator itObj = objectPoints.begin();
while (itImg != imagePoints.end())
{
bool ok =
itImg->x >= 0 &&
itImg->x <= m_imageSize.width - 1.0 &&
itImg->y >= 0 &&
itImg->y <= m_imageSize.height - 1.0;
if (ok)
{
++itImg;
++itObj;
}
else
{
itImg = imagePoints.erase(itImg);
itObj = objectPoints.erase(itObj);
}
}
}
void cameraCalibrationTiltTest::addNoiseRemoveInvalidPoints(
std::vector<cv::Point2f>& imagePoints,
std::vector<cv::Point3f>& objectPoints,
std::vector<cv::Point2f>& noisyImagePoints,
double halfWidthNoise)
{
std::vector<cv::Point2f>::iterator itImg = imagePoints.begin();
std::vector<cv::Point3f>::iterator itObj = objectPoints.begin();
noisyImagePoints.clear();
noisyImagePoints.reserve(imagePoints.size());
while (itImg != imagePoints.end())
{
cv::Point2f pix = *itImg + cv::Point2f(
(float)m_rng.uniform(-halfWidthNoise, halfWidthNoise),
(float)m_rng.uniform(-halfWidthNoise, halfWidthNoise));
bool ok =
pix.x >= 0 &&
pix.x <= m_imageSize.width - 1.0 &&
pix.y >= 0 &&
pix.y <= m_imageSize.height - 1.0;
if (ok)
{
noisyImagePoints.push_back(pix);
++itImg;
++itObj;
}
else
{
itImg = imagePoints.erase(itImg);
itObj = objectPoints.erase(itObj);
}
}
}
TEST_F(cameraCalibrationTiltTest, projectPoints)
{
std::vector<cv::Point2d> imagePoints;
std::vector<cv::Point3d> objectPoints = m_pointTarget;
cv::Vec3d rvec = m_pointTargetRvec.front();
cv::Vec3d tvec = m_pointTargetTvec.front();
cv::Vec<double, NUM_DIST_COEFF_TILT> coeffNoiseHalfWidth(
.1, .1, // k1 k2
.01, .01, // p1 p2
.001, .001, .001, .001, // k3 k4 k5 k6
.001, .001, .001, .001, // s1 s2 s3 s4
.01, .01); // tauX tauY
for (size_t numTest = 0; numTest < 10; ++numTest)
{
// create random distortion coefficients
cv::Vec<double, NUM_DIST_COEFF_TILT> distortionCoeff = m_distortionCoeff;
randomDistortionCoeff(distortionCoeff, coeffNoiseHalfWidth);
// projection
cv::projectPoints(
objectPoints,
rvec,
tvec,
m_cameraMatrix,
distortionCoeff,
imagePoints);
// remove object and imgage points out of range
removeInvalidPoints(imagePoints, objectPoints);
int numPoints = (int)imagePoints.size();
int numParams = 10 + distortionCoeff.rows;
cv::Mat jacobian(2*numPoints, numParams, CV_64FC1);
// projection and jacobian
cv::projectPoints(
objectPoints,
rvec,
tvec,
m_cameraMatrix,
distortionCoeff,
imagePoints,
jacobian);
// numerical derivatives
cv::Mat numericJacobian(2*numPoints, numParams, CV_64FC1);
double eps = 1e-7;
numericalDerivative(
numericJacobian,
eps,
objectPoints,
rvec,
tvec,
m_cameraMatrix,
distortionCoeff);
#if 0
for (size_t row = 0; row < 2; ++row)
{
std::cout << "------ Row = " << row << " ------\n";
for (size_t i = 0; i < 10+NUM_DIST_COEFF_TILT; ++i)
{
std::cout << i
<< " jac = " << jacobian.at<double>(row,i)
<< " num = " << numericJacobian.at<double>(row,i)
<< " rel. diff = " << abs(numericJacobian.at<double>(row,i) - jacobian.at<double>(row,i))/abs(numericJacobian.at<double>(row,i))
<< "\n";
}
}
#endif
// relative difference for large values (rvec and tvec)
cv::Mat check = abs(jacobian(cv::Range::all(), cv::Range(0,6)) - numericJacobian(cv::Range::all(), cv::Range(0,6)))/
(1 + abs(jacobian(cv::Range::all(), cv::Range(0,6))));
double minVal, maxVal;
cv::minMaxIdx(check, &minVal, &maxVal);
EXPECT_LE(maxVal, .01);
// absolute difference for distortion and camera matrix
EXPECT_MAT_NEAR(jacobian(cv::Range::all(), cv::Range(6,numParams)), numericJacobian(cv::Range::all(), cv::Range(6,numParams)), 1e-5);
}
}
TEST_F(cameraCalibrationTiltTest, undistortPoints)
{
cv::Vec<double, NUM_DIST_COEFF_TILT> coeffNoiseHalfWidth(
.2, .1, // k1 k2
.01, .01, // p1 p2
.01, .01, .01, .01, // k3 k4 k5 k6
.001, .001, .001, .001, // s1 s2 s3 s4
.001, .001); // tauX tauY
double step = 99;
double toleranceBackProjection = 1e-5;
for (size_t numTest = 0; numTest < 10; ++numTest)
{
cv::Vec<double, NUM_DIST_COEFF_TILT> distortionCoeff = m_distortionCoeff;
randomDistortionCoeff(distortionCoeff, coeffNoiseHalfWidth);
// distorted points
std::vector<cv::Point2d> distorted;
for (double x = 0; x <= m_imageSize.width-1; x += step)
for (double y = 0; y <= m_imageSize.height-1; y += step)
distorted.push_back(cv::Point2d(x,y));
std::vector<cv::Point2d> normalizedUndistorted;
// undistort
cv::undistortPoints(distorted,
normalizedUndistorted,
m_cameraMatrix,
distortionCoeff);
// copy normalized points to 3D
std::vector<cv::Point3d> objectPoints;
for (std::vector<cv::Point2d>::const_iterator itPnt = normalizedUndistorted.begin();
itPnt != normalizedUndistorted.end(); ++itPnt)
objectPoints.push_back(cv::Point3d(itPnt->x, itPnt->y, 1));
// project
std::vector<cv::Point2d> imagePoints(objectPoints.size());
cv::projectPoints(objectPoints,
cv::Vec3d(0,0,0),
cv::Vec3d(0,0,0),
m_cameraMatrix,
distortionCoeff,
imagePoints);
EXPECT_MAT_NEAR(distorted, imagePoints, toleranceBackProjection);
}
}
template <typename INPUT, typename ESTIMATE>
void show(const std::string& name, const INPUT in, const ESTIMATE est)
{
std::cout << name << " = " << est << " (init = " << in
<< ", diff = " << est-in << ")\n";
}
template <typename INPUT>
void showVec(const std::string& name, const INPUT& in, const cv::Mat& est)
{
for (size_t i = 0; i < in.channels; ++i)
{
std::stringstream ss;
ss << name << "[" << i << "]";
show(ss.str(), in(i), est.at<double>(i));
}
}
/**
For given camera matrix and distortion coefficients
- project point target in different positions onto the sensor
- add pixel noise
- estimate camera modell with noisy measurements
- compare result with initial model parameter
Parameter are differently affected by the noise
*/
TEST_F(cameraCalibrationTiltTest, calibrateCamera)
{
cv::Vec<double, NUM_DIST_COEFF_TILT> coeffNoiseHalfWidth(
.2, .1, // k1 k2
.01, .01, // p1 p2
0, 0, 0, 0, // k3 k4 k5 k6
.001, .001, .001, .001, // s1 s2 s3 s4
.001, .001); // tauX tauY
double pixelNoiseHalfWidth = .5;
std::vector<cv::Point3f> pointTarget;
pointTarget.reserve(m_pointTarget.size());
for (std::vector<cv::Point3d>::const_iterator it = m_pointTarget.begin(); it != m_pointTarget.end(); ++it)
pointTarget.push_back(cv::Point3f(
(float)(it->x),
(float)(it->y),
(float)(it->z)));
for (size_t numTest = 0; numTest < 5; ++numTest)
{
// create random distortion coefficients
cv::Vec<double, NUM_DIST_COEFF_TILT> distortionCoeff = m_distortionCoeff;
randomDistortionCoeff(distortionCoeff, coeffNoiseHalfWidth);
// container for calibration data
std::vector<std::vector<cv::Point3f> > viewsObjectPoints;
std::vector<std::vector<cv::Point2f> > viewsImagePoints;
std::vector<std::vector<cv::Point2f> > viewsNoisyImagePoints;
// simulate calibration data with projectPoints
std::vector<cv::Vec3d>::const_iterator itRvec = m_pointTargetRvec.begin();
std::vector<cv::Vec3d>::const_iterator itTvec = m_pointTargetTvec.begin();
// loop over different views
for (;itRvec != m_pointTargetRvec.end(); ++ itRvec, ++itTvec)
{
std::vector<cv::Point3f> objectPoints(pointTarget);
std::vector<cv::Point2f> imagePoints;
std::vector<cv::Point2f> noisyImagePoints;
// project calibration target to sensor
cv::projectPoints(
objectPoints,
*itRvec,
*itTvec,
m_cameraMatrix,
distortionCoeff,
imagePoints);
// remove invisible points
addNoiseRemoveInvalidPoints(
imagePoints,
objectPoints,
noisyImagePoints,
pixelNoiseHalfWidth);
// add data for view
viewsNoisyImagePoints.push_back(noisyImagePoints);
viewsImagePoints.push_back(imagePoints);
viewsObjectPoints.push_back(objectPoints);
}
// Output
std::vector<cv::Mat> outRvecs, outTvecs;
cv::Mat outCameraMatrix(3, 3, CV_64F, cv::Scalar::all(1)), outDistCoeff;
// Stopping criteria
cv::TermCriteria stop(
cv::TermCriteria::COUNT+cv::TermCriteria::EPS,
50000,
1e-14);
// modell coice
int flag =
cv::CALIB_FIX_ASPECT_RATIO |
// cv::CALIB_RATIONAL_MODEL |
cv::CALIB_FIX_K3 |
// cv::CALIB_FIX_K6 |
cv::CALIB_THIN_PRISM_MODEL |
cv::CALIB_TILTED_MODEL;
// estimate
double backProjErr = cv::calibrateCamera(
viewsObjectPoints,
viewsNoisyImagePoints,
m_imageSize,
outCameraMatrix,
outDistCoeff,
outRvecs,
outTvecs,
flag,
stop);
EXPECT_LE(backProjErr, pixelNoiseHalfWidth);
#if 0
std::cout << "------ estimate ------\n";
std::cout << "back projection error = " << backProjErr << "\n";
std::cout << "points per view = {" << viewsObjectPoints.front().size();
for (size_t i = 1; i < viewsObjectPoints.size(); ++i)
std::cout << ", " << viewsObjectPoints[i].size();
std::cout << "}\n";
show("fx", m_cameraMatrix(0,0), outCameraMatrix.at<double>(0,0));
show("fy", m_cameraMatrix(1,1), outCameraMatrix.at<double>(1,1));
show("cx", m_cameraMatrix(0,2), outCameraMatrix.at<double>(0,2));
show("cy", m_cameraMatrix(1,2), outCameraMatrix.at<double>(1,2));
showVec("distor", distortionCoeff, outDistCoeff);
#endif
if (pixelNoiseHalfWidth > 0)
{
double tolRvec = pixelNoiseHalfWidth;
double tolTvec = m_objectDistance * tolRvec;
// back projection error
for (size_t i = 0; i < viewsNoisyImagePoints.size(); ++i)
{
double dRvec = norm(
m_pointTargetRvec[i] -
cv::Vec3d(
outRvecs[i].at<double>(0),
outRvecs[i].at<double>(1),
outRvecs[i].at<double>(2)));
// std::cout << dRvec << " " << tolRvec << "\n";
EXPECT_LE(dRvec,
tolRvec);
double dTvec = norm(
m_pointTargetTvec[i] -
cv::Vec3d(
outTvecs[i].at<double>(0),
outTvecs[i].at<double>(1),
outTvecs[i].at<double>(2)));
// std::cout << dTvec << " " << tolTvec << "\n";
EXPECT_LE(dTvec,
tolTvec);
std::vector<cv::Point2f> backProjection;
cv::projectPoints(
viewsObjectPoints[i],
outRvecs[i],
outTvecs[i],
outCameraMatrix,
outDistCoeff,
backProjection);
EXPECT_MAT_NEAR(backProjection, viewsNoisyImagePoints[i], 1.5*pixelNoiseHalfWidth);
EXPECT_MAT_NEAR(backProjection, viewsImagePoints[i], 1.5*pixelNoiseHalfWidth);
}
}
pixelNoiseHalfWidth *= .25;
}
}