Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1042 lines
35 KiB

/* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
* The name of Contributor may not be used to endorse or
* promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
* Copyright© 2009, Liu Liu All rights reserved.
*
* OpenCV functions for MSER extraction
*
* 1. there are two different implementation of MSER, one for grey image, one for color image
* 2. the grey image algorithm is taken from: Linear Time Maximally Stable Extremal Regions;
* the paper claims to be faster than union-find method;
* it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop.
* 3. the color image algorithm is taken from: Maximally Stable Colour Regions for Recognition and Match;
* it should be much slower than grey image method ( 3~4 times );
* the chi_table.h file is taken directly from paper's source code which is distributed under GPL.
* 4. though the name is *contours*, the result actually is a list of point set.
*/
#include "precomp.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include <limits>
namespace cv
{
using std::vector;
class MSER_Impl : public MSER
{
public:
struct Params
{
Params( int _delta=5, int _min_area=60, int _max_area=14400,
double _max_variation=0.25, double _min_diversity=.2,
int _max_evolution=200, double _area_threshold=1.01,
double _min_margin=0.003, int _edge_blur_size=5 )
{
delta = _delta;
minArea = _min_area;
maxArea = _max_area;
maxVariation = _max_variation;
minDiversity = _min_diversity;
maxEvolution = _max_evolution;
areaThreshold = _area_threshold;
minMargin = _min_margin;
edgeBlurSize = _edge_blur_size;
}
int delta;
int minArea;
int maxArea;
double maxVariation;
double minDiversity;
bool pass2Only;
int maxEvolution;
double areaThreshold;
double minMargin;
int edgeBlurSize;
};
explicit MSER_Impl(const Params& _params) : params(_params) {}
virtual ~MSER_Impl() {}
void setDelta(int delta) { params.delta = delta; }
int getDelta() const { return params.delta; }
void setMinArea(int minArea) { params.minArea = minArea; }
int getMinArea() const { return params.minArea; }
void setMaxArea(int maxArea) { params.maxArea = maxArea; }
int getMaxArea() const { return params.maxArea; }
void setPass2Only(bool f) { params.pass2Only = f; }
bool getPass2Only() const { return params.pass2Only; }
enum { DIR_SHIFT = 29, NEXT_MASK = ((1<<DIR_SHIFT)-1) };
struct Pixel
{
Pixel() : val(0) {}
Pixel(int _val) : val(_val) {}
int getGray(const Pixel* ptr0, const uchar* imgptr0, int mask) const
{
return imgptr0[this - ptr0] ^ mask;
}
int getNext() const { return (val & NEXT_MASK); }
void setNext(int next) { val = (val & ~NEXT_MASK) | next; }
int getDir() const { return (int)((unsigned)val >> DIR_SHIFT); }
void setDir(int dir) { val = (val & NEXT_MASK) | (dir << DIR_SHIFT); }
bool isVisited() const { return (val & ~NEXT_MASK) != 0; }
int val;
};
typedef int PPixel;
// the history of region grown
struct CompHistory
{
CompHistory() { shortcut = child = 0; stable = val = size = 0; }
CompHistory* shortcut;
CompHistory* child;
int stable; // when it ever stabled before, record the size
int val;
int size;
};
struct ConnectedComp
{
ConnectedComp()
{
init(0);
}
void init(int gray)
{
head = tail = 0;
history = 0;
size = 0;
grey_level = gray;
dvar = false;
var = 0;
}
// add history chunk to a connected component
void growHistory( CompHistory* h )
{
h->child = h;
if( !history )
{
h->shortcut = h;
h->stable = 0;
}
else
{
history->child = h;
h->shortcut = history->shortcut;
h->stable = history->stable;
}
h->val = grey_level;
h->size = size;
history = h;
}
// merging two connected components
static void
merge( const ConnectedComp* comp1,
const ConnectedComp* comp2,
ConnectedComp* comp,
CompHistory* h,
Pixel* pix0 )
{
comp->grey_level = comp2->grey_level;
h->child = h;
// select the winner by size
if ( comp1->size < comp2->size )
std::swap(comp1, comp2);
if( !comp1->history )
{
h->shortcut = h;
h->stable = 0;
}
else
{
comp1->history->child = h;
h->shortcut = comp1->history->shortcut;
h->stable = comp1->history->stable;
}
if( comp2->history && comp2->history->stable > h->stable )
h->stable = comp2->history->stable;
h->val = comp1->grey_level;
h->size = comp1->size;
// put comp1 to history
comp->var = comp1->var;
comp->dvar = comp1->dvar;
if( comp1->size > 0 && comp2->size > 0 )
pix0[comp1->tail].setNext(comp2->head);
PPixel head = comp1->size > 0 ? comp1->head : comp2->head;
PPixel tail = comp2->size > 0 ? comp2->tail : comp1->tail;
// always made the newly added in the last of the pixel list (comp1 ... comp2)
comp->head = head;
comp->tail = tail;
comp->history = h;
comp->size = comp1->size + comp2->size;
}
float calcVariation( int delta ) const
{
if( !history )
return 1.f;
int val = grey_level;
CompHistory* shortcut = history->shortcut;
while( shortcut != shortcut->shortcut && shortcut->val + delta > val )
shortcut = shortcut->shortcut;
CompHistory* child = shortcut->child;
while( child != child->child && child->val + delta <= val )
{
shortcut = child;
child = child->child;
}
// get the position of history where the shortcut->val <= delta+val and shortcut->child->val >= delta+val
history->shortcut = shortcut;
return (float)(size - shortcut->size)/(float)shortcut->size;
// here is a small modification of MSER where cal ||R_{i}-R_{i-delta}||/||R_{i-delta}||
// in standard MSER, cal ||R_{i+delta}-R_{i-delta}||/||R_{i}||
// my calculation is simpler and much easier to implement
}
bool isStable(const Params& p)
{
// tricky part: it actually check the stablity of one-step back
if( !history || history->size <= p.minArea || history->size >= p.maxArea )
return false;
float div = (float)(history->size - history->stable)/(float)history->size;
float _var = calcVariation( p.delta );
bool _dvar = (var < _var) || (history->val + 1 < grey_level);
bool stable = _dvar && !dvar && _var < p.maxVariation && div > p.minDiversity;
var = _var;
dvar = _dvar;
if( stable )
history->stable = history->size;
return stable;
}
// convert the point set to CvSeq
Rect capture( const Pixel* pix0, int step, vector<Point>& region ) const
{
int xmin = INT_MAX, ymin = INT_MAX, xmax = INT_MIN, ymax = INT_MIN;
region.clear();
for( PPixel pix = head; pix != 0; pix = pix0[pix].getNext() )
{
int y = pix/step;
int x = pix - y*step;
xmin = std::min(xmin, x);
xmax = std::max(xmax, x);
ymin = std::min(ymin, y);
ymax = std::max(ymax, y);
region.push_back(Point(x, y));
}
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
}
PPixel head;
PPixel tail;
CompHistory* history;
int grey_level;
int size;
float var; // the current variation (most time is the variation of one-step back)
bool dvar; // the derivative of last var
};
void detectRegions( InputArray image,
std::vector<std::vector<Point> >& msers,
std::vector<Rect>& bboxes );
void detect( InputArray _src, vector<KeyPoint>& keypoints, InputArray _mask );
void preprocess1( const Mat& img, int* level_size )
{
memset(level_size, 0, 256*sizeof(level_size[0]));
int i, j, cols = img.cols, rows = img.rows;
int step = cols;
pixbuf.resize(step*rows);
heapbuf.resize(cols*rows + 256);
histbuf.resize(cols*rows);
Pixel borderpix;
borderpix.setDir(4);
for( j = 0; j < step; j++ )
{
pixbuf[j] = pixbuf[j + (rows-1)*step] = borderpix;
}
for( i = 1; i < rows-1; i++ )
{
const uchar* imgptr = img.ptr(i);
Pixel* pptr = &pixbuf[i*step];
pptr[0] = pptr[cols-1] = borderpix;
for( j = 1; j < cols-1; j++ )
{
int val = imgptr[j];
level_size[val]++;
pptr[j].val = 0;
}
}
}
void preprocess2( const Mat& img, int* level_size )
{
int i;
for( i = 0; i < 128; i++ )
std::swap(level_size[i], level_size[255-i]);
if( !params.pass2Only )
{
int j, cols = img.cols, rows = img.rows;
int step = cols;
for( i = 1; i < rows-1; i++ )
{
Pixel* pptr = &pixbuf[i*step + 1];
for( j = 1; j < cols-1; j++ )
{
pptr[j].val = 0;
}
}
}
}
void pass( const Mat& img, vector<vector<Point> >& msers, vector<Rect>& bboxvec,
Size size, const int* level_size, int mask )
{
CompHistory* histptr = &histbuf[0];
int step = size.width;
Pixel *ptr0 = &pixbuf[0], *ptr = &ptr0[step+1];
const uchar* imgptr0 = img.ptr();
Pixel** heap[256];
ConnectedComp comp[257];
ConnectedComp* comptr = &comp[0];
heap[0] = &heapbuf[0];
heap[0][0] = 0;
for( int i = 1; i < 256; i++ )
{
heap[i] = heap[i-1] + level_size[i-1] + 1;
heap[i][0] = 0;
}
comptr->grey_level = 256;
comptr++;
comptr->grey_level = ptr->getGray(ptr0, imgptr0, mask);
ptr->setDir(1);
int dir[] = { 0, 1, step, -1, -step };
for( ;; )
{
int curr_gray = ptr->getGray(ptr0, imgptr0, mask);
int nbr_idx = ptr->getDir();
// take tour of all the 4 directions
for( ; nbr_idx <= 4; nbr_idx++ )
{
// get the neighbor
Pixel* ptr_nbr = ptr + dir[nbr_idx];
if( !ptr_nbr->isVisited() )
{
// set dir=1, next=0
ptr_nbr->val = 1 << DIR_SHIFT;
int nbr_gray = ptr_nbr->getGray(ptr0, imgptr0, mask);
if( nbr_gray < curr_gray )
{
// when the value of neighbor smaller than current
// push current to boundary heap and make the neighbor to be the current one
// create an empty comp
*(++heap[curr_gray]) = ptr;
ptr->val = (nbr_idx+1) << DIR_SHIFT;
ptr = ptr_nbr;
comptr++;
comptr->init(nbr_gray);
curr_gray = nbr_gray;
nbr_idx = 0;
continue;
}
// otherwise, push the neighbor to boundary heap
*(++heap[nbr_gray]) = ptr_nbr;
}
}
// set dir = nbr_idx, next = 0
ptr->val = nbr_idx << DIR_SHIFT;
int ptrofs = (int)(ptr - ptr0);
CV_Assert(ptrofs != 0);
// add a pixel to the pixel list
if( comptr->tail )
ptr0[comptr->tail].setNext(ptrofs);
else
comptr->head = ptrofs;
comptr->tail = ptrofs;
comptr->size++;
// get the next pixel from boundary heap
if( *heap[curr_gray] )
{
ptr = *heap[curr_gray];
heap[curr_gray]--;
}
else
{
for( curr_gray++; curr_gray < 256; curr_gray++ )
{
if( *heap[curr_gray] )
break;
}
if( curr_gray >= 256 )
break;
ptr = *heap[curr_gray];
heap[curr_gray]--;
if( curr_gray < comptr[-1].grey_level )
{
// check the stablity and push a new history, increase the grey level
if( comptr->isStable(params) )
{
msers.push_back(vector<Point>());
vector<Point>& mser = msers.back();
Rect box = comptr->capture( ptr0, step, mser );
bboxvec.push_back(box);
}
comptr->growHistory( histptr++ );
comptr[0].grey_level = curr_gray;
}
else
{
// keep merging top two comp in stack until the grey level >= pixel_val
for(;;)
{
comptr--;
ConnectedComp::merge(comptr+1, comptr, comptr, histptr++, ptr0);
if( curr_gray <= comptr[0].grey_level )
break;
if( curr_gray < comptr[-1].grey_level )
{
// check the stablity here otherwise it wouldn't be an ER
if( comptr->isStable(params) )
{
msers.push_back(vector<Point>());
vector<Point>& mser = msers.back();
Rect box = comptr->capture( ptr0, step, mser );
bboxvec.push_back(box);
}
comptr->growHistory( histptr++ );
comptr[0].grey_level = curr_gray;
break;
}
}
}
}
}
}
Mat tempsrc;
vector<Pixel> pixbuf;
vector<Pixel*> heapbuf;
vector<CompHistory> histbuf;
Params params;
};
/*
TODO:
the color MSER has not been completely refactored yet. We leave it mostly as-is,
with just enough changes to convert C structures to C++ ones and
add support for color images into MSER_Impl::detectAndLabel.
*/
const int TABLE_SIZE = 400;
static const float chitab3[]=
{
0.f, 0.0150057f, 0.0239478f, 0.0315227f,
0.0383427f, 0.0446605f, 0.0506115f, 0.0562786f,
0.0617174f, 0.0669672f, 0.0720573f, 0.0770099f,
0.081843f, 0.0865705f, 0.0912043f, 0.0957541f,
0.100228f, 0.104633f, 0.108976f, 0.113261f,
0.117493f, 0.121676f, 0.125814f, 0.12991f,
0.133967f, 0.137987f, 0.141974f, 0.145929f,
0.149853f, 0.15375f, 0.15762f, 0.161466f,
0.165287f, 0.169087f, 0.172866f, 0.176625f,
0.180365f, 0.184088f, 0.187794f, 0.191483f,
0.195158f, 0.198819f, 0.202466f, 0.2061f,
0.209722f, 0.213332f, 0.216932f, 0.220521f,
0.2241f, 0.22767f, 0.231231f, 0.234783f,
0.238328f, 0.241865f, 0.245395f, 0.248918f,
0.252435f, 0.255947f, 0.259452f, 0.262952f,
0.266448f, 0.269939f, 0.273425f, 0.276908f,
0.280386f, 0.283862f, 0.287334f, 0.290803f,
0.29427f, 0.297734f, 0.301197f, 0.304657f,
0.308115f, 0.311573f, 0.315028f, 0.318483f,
0.321937f, 0.32539f, 0.328843f, 0.332296f,
0.335749f, 0.339201f, 0.342654f, 0.346108f,
0.349562f, 0.353017f, 0.356473f, 0.35993f,
0.363389f, 0.366849f, 0.37031f, 0.373774f,
0.377239f, 0.380706f, 0.384176f, 0.387648f,
0.391123f, 0.3946f, 0.39808f, 0.401563f,
0.405049f, 0.408539f, 0.412032f, 0.415528f,
0.419028f, 0.422531f, 0.426039f, 0.429551f,
0.433066f, 0.436586f, 0.440111f, 0.44364f,
0.447173f, 0.450712f, 0.454255f, 0.457803f,
0.461356f, 0.464915f, 0.468479f, 0.472049f,
0.475624f, 0.479205f, 0.482792f, 0.486384f,
0.489983f, 0.493588f, 0.4972f, 0.500818f,
0.504442f, 0.508073f, 0.511711f, 0.515356f,
0.519008f, 0.522667f, 0.526334f, 0.530008f,
0.533689f, 0.537378f, 0.541075f, 0.54478f,
0.548492f, 0.552213f, 0.555942f, 0.55968f,
0.563425f, 0.56718f, 0.570943f, 0.574715f,
0.578497f, 0.582287f, 0.586086f, 0.589895f,
0.593713f, 0.597541f, 0.601379f, 0.605227f,
0.609084f, 0.612952f, 0.61683f, 0.620718f,
0.624617f, 0.628526f, 0.632447f, 0.636378f,
0.64032f, 0.644274f, 0.648239f, 0.652215f,
0.656203f, 0.660203f, 0.664215f, 0.668238f,
0.672274f, 0.676323f, 0.680384f, 0.684457f,
0.688543f, 0.692643f, 0.696755f, 0.700881f,
0.70502f, 0.709172f, 0.713339f, 0.717519f,
0.721714f, 0.725922f, 0.730145f, 0.734383f,
0.738636f, 0.742903f, 0.747185f, 0.751483f,
0.755796f, 0.760125f, 0.76447f, 0.768831f,
0.773208f, 0.777601f, 0.782011f, 0.786438f,
0.790882f, 0.795343f, 0.799821f, 0.804318f,
0.808831f, 0.813363f, 0.817913f, 0.822482f,
0.827069f, 0.831676f, 0.836301f, 0.840946f,
0.84561f, 0.850295f, 0.854999f, 0.859724f,
0.864469f, 0.869235f, 0.874022f, 0.878831f,
0.883661f, 0.888513f, 0.893387f, 0.898284f,
0.903204f, 0.908146f, 0.913112f, 0.918101f,
0.923114f, 0.928152f, 0.933214f, 0.938301f,
0.943413f, 0.94855f, 0.953713f, 0.958903f,
0.964119f, 0.969361f, 0.974631f, 0.979929f,
0.985254f, 0.990608f, 0.99599f, 1.0014f,
1.00684f, 1.01231f, 1.01781f, 1.02335f,
1.02891f, 1.0345f, 1.04013f, 1.04579f,
1.05148f, 1.05721f, 1.06296f, 1.06876f,
1.07459f, 1.08045f, 1.08635f, 1.09228f,
1.09826f, 1.10427f, 1.11032f, 1.1164f,
1.12253f, 1.1287f, 1.1349f, 1.14115f,
1.14744f, 1.15377f, 1.16015f, 1.16656f,
1.17303f, 1.17954f, 1.18609f, 1.19269f,
1.19934f, 1.20603f, 1.21278f, 1.21958f,
1.22642f, 1.23332f, 1.24027f, 1.24727f,
1.25433f, 1.26144f, 1.26861f, 1.27584f,
1.28312f, 1.29047f, 1.29787f, 1.30534f,
1.31287f, 1.32046f, 1.32812f, 1.33585f,
1.34364f, 1.3515f, 1.35943f, 1.36744f,
1.37551f, 1.38367f, 1.39189f, 1.4002f,
1.40859f, 1.41705f, 1.42561f, 1.43424f,
1.44296f, 1.45177f, 1.46068f, 1.46967f,
1.47876f, 1.48795f, 1.49723f, 1.50662f,
1.51611f, 1.52571f, 1.53541f, 1.54523f,
1.55517f, 1.56522f, 1.57539f, 1.58568f,
1.59611f, 1.60666f, 1.61735f, 1.62817f,
1.63914f, 1.65025f, 1.66152f, 1.67293f,
1.68451f, 1.69625f, 1.70815f, 1.72023f,
1.73249f, 1.74494f, 1.75757f, 1.77041f,
1.78344f, 1.79669f, 1.81016f, 1.82385f,
1.83777f, 1.85194f, 1.86635f, 1.88103f,
1.89598f, 1.91121f, 1.92674f, 1.94257f,
1.95871f, 1.97519f, 1.99201f, 2.0092f,
2.02676f, 2.04471f, 2.06309f, 2.08189f,
2.10115f, 2.12089f, 2.14114f, 2.16192f,
2.18326f, 2.2052f, 2.22777f, 2.25101f,
2.27496f, 2.29966f, 2.32518f, 2.35156f,
2.37886f, 2.40717f, 2.43655f, 2.46709f,
2.49889f, 2.53206f, 2.56673f, 2.60305f,
2.64117f, 2.6813f, 2.72367f, 2.76854f,
2.81623f, 2.86714f, 2.92173f, 2.98059f,
3.04446f, 3.1143f, 3.19135f, 3.27731f,
3.37455f, 3.48653f, 3.61862f, 3.77982f,
3.98692f, 4.2776f, 4.77167f, 133.333f
};
struct MSCRNode;
struct TempMSCR
{
MSCRNode* head;
MSCRNode* tail;
double m; // the margin used to prune area later
int size;
};
struct MSCRNode
{
MSCRNode* shortcut;
// to make the finding of root less painful
MSCRNode* prev;
MSCRNode* next;
// a point double-linked list
TempMSCR* tmsr;
// the temporary msr (set to NULL at every re-initialise)
TempMSCR* gmsr;
// the global msr (once set, never to NULL)
int index;
// the index of the node, at this point, it should be x at the first 16-bits, and y at the last 16-bits.
int rank;
int reinit;
int size, sizei;
double dt, di;
double s;
};
struct MSCREdge
{
double chi;
MSCRNode* left;
MSCRNode* right;
};
static double ChiSquaredDistance( const uchar* x, const uchar* y )
{
return (double)((x[0]-y[0])*(x[0]-y[0]))/(double)(x[0]+y[0]+1e-10)+
(double)((x[1]-y[1])*(x[1]-y[1]))/(double)(x[1]+y[1]+1e-10)+
(double)((x[2]-y[2])*(x[2]-y[2]))/(double)(x[2]+y[2]+1e-10);
}
static void initMSCRNode( MSCRNode* node )
{
node->gmsr = node->tmsr = NULL;
node->reinit = 0xffff;
node->rank = 0;
node->sizei = node->size = 1;
node->prev = node->next = node->shortcut = node;
}
// the preprocess to get the edge list with proper gaussian blur
static int preprocessMSER_8uC3( MSCRNode* node,
MSCREdge* edge,
double* total,
const Mat& src,
Mat& dx,
Mat& dy,
int Ne,
int edgeBlurSize )
{
int srccpt = (int)(src.step-src.cols*3);
const uchar* srcptr = src.ptr();
const uchar* lastptr = srcptr+3;
double* dxptr = dx.ptr<double>();
for ( int i = 0; i < src.rows; i++ )
{
for ( int j = 0; j < src.cols-1; j++ )
{
*dxptr = ChiSquaredDistance( srcptr, lastptr );
dxptr++;
srcptr += 3;
lastptr += 3;
}
srcptr += srccpt+3;
lastptr += srccpt+3;
}
srcptr = src.ptr();
lastptr = srcptr+src.step;
double* dyptr = dy.ptr<double>();
for ( int i = 0; i < src.rows-1; i++ )
{
for ( int j = 0; j < src.cols; j++ )
{
*dyptr = ChiSquaredDistance( srcptr, lastptr );
dyptr++;
srcptr += 3;
lastptr += 3;
}
srcptr += srccpt;
lastptr += srccpt;
}
// get dx and dy and blur it
if ( edgeBlurSize >= 1 )
{
GaussianBlur( dx, dx, Size(edgeBlurSize, edgeBlurSize), 0 );
GaussianBlur( dy, dy, Size(edgeBlurSize, edgeBlurSize), 0 );
}
dxptr = dx.ptr<double>();
dyptr = dy.ptr<double>();
// assian dx, dy to proper edge list and initialize mscr node
// the nasty code here intended to avoid extra loops
MSCRNode* nodeptr = node;
initMSCRNode( nodeptr );
nodeptr->index = 0;
*total += edge->chi = *dxptr;
dxptr++;
edge->left = nodeptr;
edge->right = nodeptr+1;
edge++;
nodeptr++;
for ( int i = 1; i < src.cols-1; i++ )
{
initMSCRNode( nodeptr );
nodeptr->index = i;
*total += edge->chi = *dxptr;
dxptr++;
edge->left = nodeptr;
edge->right = nodeptr+1;
edge++;
nodeptr++;
}
initMSCRNode( nodeptr );
nodeptr->index = src.cols-1;
nodeptr++;
for ( int i = 1; i < src.rows-1; i++ )
{
initMSCRNode( nodeptr );
nodeptr->index = i<<16;
*total += edge->chi = *dyptr;
dyptr++;
edge->left = nodeptr-src.cols;
edge->right = nodeptr;
edge++;
*total += edge->chi = *dxptr;
dxptr++;
edge->left = nodeptr;
edge->right = nodeptr+1;
edge++;
nodeptr++;
for ( int j = 1; j < src.cols-1; j++ )
{
initMSCRNode( nodeptr );
nodeptr->index = (i<<16)|j;
*total += edge->chi = *dyptr;
dyptr++;
edge->left = nodeptr-src.cols;
edge->right = nodeptr;
edge++;
*total += edge->chi = *dxptr;
dxptr++;
edge->left = nodeptr;
edge->right = nodeptr+1;
edge++;
nodeptr++;
}
initMSCRNode( nodeptr );
nodeptr->index = (i<<16)|(src.cols-1);
*total += edge->chi = *dyptr;
dyptr++;
edge->left = nodeptr-src.cols;
edge->right = nodeptr;
edge++;
nodeptr++;
}
initMSCRNode( nodeptr );
nodeptr->index = (src.rows-1)<<16;
*total += edge->chi = *dxptr;
dxptr++;
edge->left = nodeptr;
edge->right = nodeptr+1;
edge++;
*total += edge->chi = *dyptr;
dyptr++;
edge->left = nodeptr-src.cols;
edge->right = nodeptr;
edge++;
nodeptr++;
for ( int i = 1; i < src.cols-1; i++ )
{
initMSCRNode( nodeptr );
nodeptr->index = ((src.rows-1)<<16)|i;
*total += edge->chi = *dxptr;
dxptr++;
edge->left = nodeptr;
edge->right = nodeptr+1;
edge++;
*total += edge->chi = *dyptr;
dyptr++;
edge->left = nodeptr-src.cols;
edge->right = nodeptr;
edge++;
nodeptr++;
}
initMSCRNode( nodeptr );
nodeptr->index = ((src.rows-1)<<16)|(src.cols-1);
*total += edge->chi = *dyptr;
edge->left = nodeptr-src.cols;
edge->right = nodeptr;
return Ne;
}
class LessThanEdge
{
public:
bool operator()(const MSCREdge& a, const MSCREdge& b) const { return a.chi < b.chi; }
};
// to find the root of one region
static MSCRNode* findMSCR( MSCRNode* x )
{
MSCRNode* prev = x;
MSCRNode* next;
for ( ; ; )
{
next = x->shortcut;
x->shortcut = prev;
if ( next == x ) break;
prev= x;
x = next;
}
MSCRNode* root = x;
for ( ; ; )
{
prev = x->shortcut;
x->shortcut = root;
if ( prev == x ) break;
x = prev;
}
return root;
}
// the stable mscr should be:
// bigger than minArea and smaller than maxArea
// differ from its ancestor more than minDiversity
static bool MSCRStableCheck( MSCRNode* x, const MSER_Impl::Params& params )
{
if ( x->size <= params.minArea || x->size >= params.maxArea )
return false;
if ( x->gmsr == NULL )
return true;
double div = (double)(x->size-x->gmsr->size)/(double)x->size;
return div > params.minDiversity;
}
static void
extractMSER_8uC3( const Mat& src,
vector<vector<Point> >& msers,
vector<Rect>& bboxvec,
const MSER_Impl::Params& params )
{
bboxvec.clear();
MSCRNode* map = (MSCRNode*)cvAlloc( src.cols*src.rows*sizeof(map[0]) );
int Ne = src.cols*src.rows*2-src.cols-src.rows;
MSCREdge* edge = (MSCREdge*)cvAlloc( Ne*sizeof(edge[0]) );
TempMSCR* mscr = (TempMSCR*)cvAlloc( src.cols*src.rows*sizeof(mscr[0]) );
double emean = 0;
Mat dx( src.rows, src.cols-1, CV_64FC1 );
Mat dy( src.rows-1, src.cols, CV_64FC1 );
Ne = preprocessMSER_8uC3( map, edge, &emean, src, dx, dy, Ne, params.edgeBlurSize );
emean = emean / (double)Ne;
std::sort(edge, edge + Ne, LessThanEdge());
MSCREdge* edge_ub = edge+Ne;
MSCREdge* edgeptr = edge;
TempMSCR* mscrptr = mscr;
// the evolution process
for ( int i = 0; i < params.maxEvolution; i++ )
{
double k = (double)i/(double)params.maxEvolution*(TABLE_SIZE-1);
int ti = cvFloor(k);
double reminder = k-ti;
double thres = emean*(chitab3[ti]*(1-reminder)+chitab3[ti+1]*reminder);
// to process all the edges in the list that chi < thres
while ( edgeptr < edge_ub && edgeptr->chi < thres )
{
MSCRNode* lr = findMSCR( edgeptr->left );
MSCRNode* rr = findMSCR( edgeptr->right );
// get the region root (who is responsible)
if ( lr != rr )
{
// rank idea take from: N-tree Disjoint-Set Forests for Maximally Stable Extremal Regions
if ( rr->rank > lr->rank )
{
MSCRNode* tmp;
CV_SWAP( lr, rr, tmp );
} else if ( lr->rank == rr->rank ) {
// at the same rank, we will compare the size
if ( lr->size > rr->size )
{
MSCRNode* tmp;
CV_SWAP( lr, rr, tmp );
}
lr->rank++;
}
rr->shortcut = lr;
lr->size += rr->size;
// join rr to the end of list lr (lr is a endless double-linked list)
lr->prev->next = rr;
lr->prev = rr->prev;
rr->prev->next = lr;
rr->prev = lr;
// area threshold force to reinitialize
if ( lr->size > (lr->size-rr->size)*params.areaThreshold )
{
lr->sizei = lr->size;
lr->reinit = i;
if ( lr->tmsr != NULL )
{
lr->tmsr->m = lr->dt-lr->di;
lr->tmsr = NULL;
}
lr->di = edgeptr->chi;
lr->s = 1e10;
}
lr->dt = edgeptr->chi;
if ( i > lr->reinit )
{
double s = (double)(lr->size-lr->sizei)/(lr->dt-lr->di);
if ( s < lr->s )
{
// skip the first one and check stablity
if ( i > lr->reinit+1 && MSCRStableCheck( lr, params ) )
{
if ( lr->tmsr == NULL )
{
lr->gmsr = lr->tmsr = mscrptr;
mscrptr++;
}
lr->tmsr->size = lr->size;
lr->tmsr->head = lr;
lr->tmsr->tail = lr->prev;
lr->tmsr->m = 0;
}
lr->s = s;
}
}
}
edgeptr++;
}
if ( edgeptr >= edge_ub )
break;
}
for ( TempMSCR* ptr = mscr; ptr < mscrptr; ptr++ )
// to prune area with margin less than minMargin
if ( ptr->m > params.minMargin )
{
MSCRNode* lpt = ptr->head;
int xmin = INT_MAX, ymin = INT_MAX, xmax = INT_MIN, ymax = INT_MIN;
msers.push_back(vector<Point>());
vector<Point>& mser = msers.back();
for ( int i = 0; i < ptr->size; i++ )
{
Point pt;
pt.x = (lpt->index)&0xffff;
pt.y = (lpt->index)>>16;
xmin = std::min(xmin, pt.x);
xmax = std::max(xmax, pt.x);
ymin = std::min(ymin, pt.y);
ymax = std::max(ymax, pt.y);
lpt = lpt->next;
mser.push_back(pt);
}
bboxvec.push_back(Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1));
}
cvFree( &mscr );
cvFree( &edge );
cvFree( &map );
}
void MSER_Impl::detectRegions( InputArray _src, vector<vector<Point> >& msers, vector<Rect>& bboxes )
{
Mat src = _src.getMat();
size_t npix = src.total();
msers.clear();
bboxes.clear();
if( npix == 0 )
return;
Size size = src.size();
if( src.type() == CV_8U )
{
int level_size[256];
if( !src.isContinuous() )
{
src.copyTo(tempsrc);
src = tempsrc;
}
// darker to brighter (MSER+)
preprocess1( src, level_size );
if( !params.pass2Only )
pass( src, msers, bboxes, size, level_size, 0 );
// brighter to darker (MSER-)
preprocess2( src, level_size );
pass( src, msers, bboxes, size, level_size, 255 );
}
else
{
CV_Assert( src.type() == CV_8UC3 || src.type() == CV_8UC4 );
extractMSER_8uC3( src, msers, bboxes, params );
}
}
void MSER_Impl::detect( InputArray _image, vector<KeyPoint>& keypoints, InputArray _mask )
{
vector<Rect> bboxes;
vector<vector<Point> > msers;
Mat mask = _mask.getMat();
detectRegions(_image, msers, bboxes);
int i, ncomps = (int)msers.size();
keypoints.clear();
for( i = 0; i < ncomps; i++ )
{
Rect r = bboxes[i];
// TODO check transformation from MSER region to KeyPoint
RotatedRect rect = fitEllipse(Mat(msers[i]));
float diam = std::sqrt(rect.size.height*rect.size.width);
if( diam > std::numeric_limits<float>::epsilon() && r.contains(rect.center) &&
(mask.empty() || mask.at<uchar>(cvRound(rect.center.y), cvRound(rect.center.x)) != 0) )
keypoints.push_back( KeyPoint(rect.center, diam) );
}
}
Ptr<MSER> MSER::create( int _delta, int _min_area, int _max_area,
double _max_variation, double _min_diversity,
int _max_evolution, double _area_threshold,
double _min_margin, int _edge_blur_size )
{
return makePtr<MSER_Impl>(
MSER_Impl::Params(_delta, _min_area, _max_area,
_max_variation, _min_diversity,
_max_evolution, _area_threshold,
_min_margin, _edge_blur_size));
}
}