mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
74 lines
2.3 KiB
74 lines
2.3 KiB
13 years ago
|
'''
|
||
|
Feature homography
|
||
|
==================
|
||
|
|
||
|
Example of using features2d framework for interactive video homography matching.
|
||
|
|
||
|
Keys
|
||
|
----
|
||
|
SPACE - set reference frame
|
||
|
ESC - exit
|
||
|
'''
|
||
|
|
||
|
import numpy as np
|
||
|
import cv2
|
||
|
import video
|
||
|
from common import draw_str
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
|
||
|
print __doc__
|
||
|
|
||
|
detector = cv2.FeatureDetector_create('ORB')
|
||
|
extractor = cv2.DescriptorExtractor_create('ORB')
|
||
|
matcher = cv2.DescriptorMatcher_create('BruteForce-Hamming') # 'BruteForce-Hamming' # FlannBased
|
||
|
|
||
|
ref_desc = None
|
||
|
ref_kp = None
|
||
|
|
||
|
green, red = (0, 255, 0), (0, 0, 255)
|
||
|
|
||
|
cap = video.create_capture(0)
|
||
|
while True:
|
||
|
ret, img = cap.read()
|
||
|
vis = img.copy()
|
||
|
kp = detector.detect(img)
|
||
|
|
||
|
for p in kp:
|
||
|
x, y = np.int32(p.pt)
|
||
|
r = int(0.5*p.size)
|
||
|
cv2.circle(vis, (x, y), r, (0, 255, 0))
|
||
|
draw_str(vis, (20, 20), 'feature_n: %d' % len(kp))
|
||
|
|
||
|
desc = extractor.compute(img, kp)
|
||
|
if ref_desc is not None:
|
||
|
raw_matches = matcher.knnMatch(desc, ref_desc, 2)
|
||
|
eps = 1e-5
|
||
|
matches = [(m1.trainIdx, m1.queryIdx) for m1, m2 in raw_matches if (m1.distance+eps) / (m2.distance+eps) < 0.7]
|
||
|
match_n = len(matches)
|
||
|
|
||
|
inliner_n = 0
|
||
|
if match_n > 10:
|
||
|
p0 = np.float32( [ref_kp[i].pt for i, j in matches] )
|
||
|
p1 = np.float32( [kp[j].pt for i, j in matches] )
|
||
|
|
||
|
H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 10.0)
|
||
|
inlier_n = sum(status)
|
||
|
if inlier_n > 10:
|
||
|
for (x1, y1), (x2, y2), inlier in zip(np.int32(p0), np.int32(p1), status):
|
||
|
cv2.line(vis, (x1, y1), (x2, y2), (red, green)[inlier])
|
||
|
|
||
|
h, w = img.shape[:2]
|
||
|
overlay = cv2.warpPerspective(ref_img, H, (w, h))
|
||
|
vis = cv2.addWeighted(vis, 0.5, overlay, 0.5, 0.0)
|
||
|
draw_str(vis, (20, 40), 'matched: %d ( %d outliers )' % (match_n, match_n-inlier_n))
|
||
|
|
||
|
cv2.imshow('img', vis)
|
||
|
ch = cv2.waitKey(1)
|
||
|
if ch == ord(' '):
|
||
|
ref_desc = desc
|
||
|
ref_kp = kp
|
||
|
ref_img = img.copy()
|
||
|
if ch == 27:
|
||
|
break
|