|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
|
|
|
|
// Digital Ltd. LLC
|
|
|
|
//
|
|
|
|
// All rights reserved.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
|
|
// in the documentation and/or other materials provided with the
|
|
|
|
// distribution.
|
|
|
|
// * Neither the name of Industrial Light & Magic nor the names of
|
|
|
|
// its contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
//
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef INCLUDED_IMATHROOTS_H
|
|
|
|
#define INCLUDED_IMATHROOTS_H
|
|
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// Functions to solve linear, quadratic or cubic equations
|
|
|
|
//
|
|
|
|
//---------------------------------------------------------------------
|
|
|
|
|
|
|
|
#include <ImathMath.h>
|
|
|
|
#include <complex>
|
|
|
|
|
|
|
|
namespace Imath {
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------
|
|
|
|
// Find the real solutions of a linear, quadratic or cubic equation:
|
|
|
|
//
|
|
|
|
// function equation solved
|
|
|
|
//
|
|
|
|
// solveLinear (a, b, x) a * x + b == 0
|
|
|
|
// solveQuadratic (a, b, c, x) a * x*x + b * x + c == 0
|
|
|
|
// solveNormalizedCubic (r, s, t, x) x*x*x + r * x*x + s * x + t == 0
|
|
|
|
// solveCubic (a, b, c, d, x) a * x*x*x + b * x*x + c * x + d == 0
|
|
|
|
//
|
|
|
|
// Return value:
|
|
|
|
//
|
|
|
|
// 3 three real solutions, stored in x[0], x[1] and x[2]
|
|
|
|
// 2 two real solutions, stored in x[0] and x[1]
|
|
|
|
// 1 one real solution, stored in x[1]
|
|
|
|
// 0 no real solutions
|
|
|
|
// -1 all real numbers are solutions
|
|
|
|
//
|
|
|
|
// Notes:
|
|
|
|
//
|
|
|
|
// * It is possible that an equation has real solutions, but that the
|
|
|
|
// solutions (or some intermediate result) are not representable.
|
|
|
|
// In this case, either some of the solutions returned are invalid
|
|
|
|
// (nan or infinity), or, if floating-point exceptions have been
|
|
|
|
// enabled with Iex::mathExcOn(), an Iex::MathExc exception is
|
|
|
|
// thrown.
|
|
|
|
//
|
|
|
|
// * Cubic equations are solved using Cardano's Formula; even though
|
|
|
|
// only real solutions are produced, some intermediate results are
|
|
|
|
// complex (std::complex<T>).
|
|
|
|
//
|
|
|
|
//--------------------------------------------------------------------------
|
|
|
|
|
|
|
|
template <class T> int solveLinear (T a, T b, T &x);
|
|
|
|
template <class T> int solveQuadratic (T a, T b, T c, T x[2]);
|
|
|
|
template <class T> int solveNormalizedCubic (T r, T s, T t, T x[3]);
|
|
|
|
template <class T> int solveCubic (T a, T b, T c, T d, T x[3]);
|
|
|
|
|
|
|
|
|
|
|
|
//---------------
|
|
|
|
// Implementation
|
|
|
|
//---------------
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
int
|
|
|
|
solveLinear (T a, T b, T &x)
|
|
|
|
{
|
|
|
|
if (a != 0)
|
|
|
|
{
|
|
|
|
x = -b / a;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
else if (b != 0)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
int
|
|
|
|
solveQuadratic (T a, T b, T c, T x[2])
|
|
|
|
{
|
|
|
|
if (a == 0)
|
|
|
|
{
|
|
|
|
return solveLinear (b, c, x[0]);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
T D = b * b - 4 * a * c;
|
|
|
|
|
|
|
|
if (D > 0)
|
|
|
|
{
|
|
|
|
T s = Math<T>::sqrt (D);
|
|
|
|
T q = -(b + (b > 0 ? 1 : -1) * s) / T(2);
|
|
|
|
|
|
|
|
x[0] = q / a;
|
|
|
|
x[1] = c / q;
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
if (D == 0)
|
|
|
|
{
|
|
|
|
x[0] = -b / (2 * a);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
int
|
|
|
|
solveNormalizedCubic (T r, T s, T t, T x[3])
|
|
|
|
{
|
|
|
|
T p = (3 * s - r * r) / 3;
|
|
|
|
T q = 2 * r * r * r / 27 - r * s / 3 + t;
|
|
|
|
T p3 = p / 3;
|
|
|
|
T q2 = q / 2;
|
|
|
|
T D = p3 * p3 * p3 + q2 * q2;
|
|
|
|
|
|
|
|
if (D == 0 && p3 == 0)
|
|
|
|
{
|
|
|
|
x[0] = -r / 3;
|
|
|
|
x[1] = -r / 3;
|
|
|
|
x[2] = -r / 3;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::complex<T> u = std::pow (-q / 2 + std::sqrt (std::complex<T> (D)),
|
|
|
|
T (1) / T (3));
|
|
|
|
|
|
|
|
std::complex<T> v = -p / (T (3) * u);
|
|
|
|
|
|
|
|
const T sqrt3 = T (1.73205080756887729352744634150587); // enough digits
|
|
|
|
// for long double
|
|
|
|
std::complex<T> y0 (u + v);
|
|
|
|
|
|
|
|
std::complex<T> y1 (-(u + v) / T (2) +
|
|
|
|
(u - v) / T (2) * std::complex<T> (0, sqrt3));
|
|
|
|
|
|
|
|
std::complex<T> y2 (-(u + v) / T (2) -
|
|
|
|
(u - v) / T (2) * std::complex<T> (0, sqrt3));
|
|
|
|
|
|
|
|
if (D > 0)
|
|
|
|
{
|
|
|
|
x[0] = y0.real() - r / 3;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
else if (D == 0)
|
|
|
|
{
|
|
|
|
x[0] = y0.real() - r / 3;
|
|
|
|
x[1] = y1.real() - r / 3;
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
x[0] = y0.real() - r / 3;
|
|
|
|
x[1] = y1.real() - r / 3;
|
|
|
|
x[2] = y2.real() - r / 3;
|
|
|
|
return 3;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
int
|
|
|
|
solveCubic (T a, T b, T c, T d, T x[3])
|
|
|
|
{
|
|
|
|
if (a == 0)
|
|
|
|
{
|
|
|
|
return solveQuadratic (b, c, d, x);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
return solveNormalizedCubic (b / a, c / a, d / a, x);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} // namespace Imath
|
|
|
|
|
|
|
|
#endif
|