mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
130 lines
4.0 KiB
130 lines
4.0 KiB
13 years ago
|
/**
|
||
|
* @file SURF_Homography
|
||
|
* @brief SURF detector + descriptor + FLANN Matcher + FindHomography
|
||
|
* @author A. Huaman
|
||
|
*/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <iostream>
|
||
|
#include "opencv2/core/core.hpp"
|
||
|
#include "opencv2/features2d/features2d.hpp"
|
||
|
#include "opencv2/highgui/highgui.hpp"
|
||
|
#include "opencv2/calib3d/calib3d.hpp"
|
||
|
|
||
|
using namespace cv;
|
||
|
|
||
|
void readme();
|
||
|
|
||
|
/**
|
||
|
* @function main
|
||
|
* @brief Main function
|
||
|
*/
|
||
|
int main( int argc, char** argv )
|
||
|
{
|
||
|
if( argc != 3 )
|
||
|
{ readme(); return -1; }
|
||
|
|
||
|
Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
|
||
|
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
|
||
|
|
||
|
if( !img_1.data || !img_2.data )
|
||
|
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
|
||
|
|
||
|
//-- Step 1: Detect the keypoints using SURF Detector
|
||
|
int minHessian = 400;
|
||
|
|
||
|
SurfFeatureDetector detector( minHessian );
|
||
|
|
||
|
std::vector<KeyPoint> keypoints_1, keypoints_2;
|
||
|
|
||
|
detector.detect( img_1, keypoints_1 );
|
||
|
detector.detect( img_2, keypoints_2 );
|
||
|
|
||
|
//-- Step 2: Calculate descriptors (feature vectors)
|
||
|
SurfDescriptorExtractor extractor;
|
||
|
|
||
|
Mat descriptors_1, descriptors_2;
|
||
|
|
||
|
extractor.compute( img_1, keypoints_1, descriptors_1 );
|
||
|
extractor.compute( img_2, keypoints_2, descriptors_2 );
|
||
|
|
||
|
//-- Step 3: Matching descriptor vectors using FLANN matcher
|
||
|
FlannBasedMatcher matcher;
|
||
|
std::vector< DMatch > matches;
|
||
|
matcher.match( descriptors_1, descriptors_2, matches );
|
||
|
|
||
|
double max_dist = 0; double min_dist = 100;
|
||
|
|
||
|
//-- Quick calculation of max and min distances between keypoints
|
||
|
for( int i = 0; i < descriptors_1.rows; i++ )
|
||
|
{ double dist = matches[i].distance;
|
||
|
if( dist < min_dist ) min_dist = dist;
|
||
|
if( dist > max_dist ) max_dist = dist;
|
||
|
}
|
||
|
|
||
|
printf("-- Max dist : %f \n", max_dist );
|
||
|
printf("-- Min dist : %f \n", min_dist );
|
||
|
|
||
|
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
|
||
|
std::vector< DMatch > good_matches;
|
||
|
|
||
|
for( int i = 0; i < descriptors_1.rows; i++ )
|
||
|
{ if( matches[i].distance < 3*min_dist )
|
||
|
{ good_matches.push_back( matches[i]); }
|
||
|
}
|
||
|
|
||
|
Mat img_matches;
|
||
|
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
|
||
|
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
|
||
|
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
|
||
|
|
||
|
|
||
|
//-- Localize the object from img_1 in img_2
|
||
|
std::vector<Point2f> obj;
|
||
|
std::vector<Point2f> scene;
|
||
|
|
||
|
for( int i = 0; i < good_matches.size(); i++ )
|
||
|
{
|
||
|
//-- Get the keypoints from the good matches
|
||
|
obj.push_back( keypoints_1[ good_matches[i].queryIdx ].pt );
|
||
|
scene.push_back( keypoints_2[ good_matches[i].trainIdx ].pt );
|
||
|
}
|
||
|
|
||
|
Mat H = findHomography( obj, scene, CV_RANSAC );
|
||
|
|
||
|
//-- Get the corners from the image_1 ( the object to be "detected" )
|
||
|
Point2f obj_corners[4] = { cvPoint(0,0), cvPoint( img_1.cols, 0 ), cvPoint( img_1.cols, img_1.rows ), cvPoint( 0, img_1.rows ) };
|
||
|
Point scene_corners[4];
|
||
|
|
||
|
//-- Map these corners in the scene ( image_2)
|
||
|
for( int i = 0; i < 4; i++ )
|
||
|
{
|
||
|
double x = obj_corners[i].x;
|
||
|
double y = obj_corners[i].y;
|
||
|
|
||
|
double Z = 1./( H.at<double>(2,0)*x + H.at<double>(2,1)*y + H.at<double>(2,2) );
|
||
|
double X = ( H.at<double>(0,0)*x + H.at<double>(0,1)*y + H.at<double>(0,2) )*Z;
|
||
|
double Y = ( H.at<double>(1,0)*x + H.at<double>(1,1)*y + H.at<double>(1,2) )*Z;
|
||
|
scene_corners[i] = cvPoint( cvRound(X) + img_1.cols, cvRound(Y) );
|
||
|
}
|
||
|
|
||
|
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
|
||
|
line( img_matches, scene_corners[0], scene_corners[1], Scalar(0, 255, 0), 2 );
|
||
|
line( img_matches, scene_corners[1], scene_corners[2], Scalar( 0, 255, 0), 2 );
|
||
|
line( img_matches, scene_corners[2], scene_corners[3], Scalar( 0, 255, 0), 2 );
|
||
|
line( img_matches, scene_corners[3], scene_corners[0], Scalar( 0, 255, 0), 2 );
|
||
|
|
||
|
//-- Show detected matches
|
||
|
imshow( "Good Matches & Object detection", img_matches );
|
||
|
|
||
|
waitKey(0);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @function readme
|
||
|
*/
|
||
|
void readme()
|
||
|
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
|