|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
|
|
|
ML_IMPL int
|
|
|
|
icvCmpIntegers (const void* a, const void* b) {return *(const int*)a - *(const int*)b;}
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* Cross-validation algorithms realizations *
|
|
|
|
\****************************************************************************************/
|
|
|
|
|
|
|
|
// Return pointer to trainIdx. Function DOES NOT FILL this matrix!
|
|
|
|
ML_IMPL
|
|
|
|
const CvMat* cvCrossValGetTrainIdxMatrix (const CvStatModel* estimateModel)
|
|
|
|
{
|
|
|
|
CvMat* result = NULL;
|
|
|
|
|
|
|
|
CV_FUNCNAME ("cvCrossValGetTrainIdxMatrix");
|
|
|
|
__BEGIN__
|
|
|
|
|
|
|
|
if (!CV_IS_CROSSVAL(estimateModel))
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel");
|
|
|
|
}
|
|
|
|
|
|
|
|
result = ((CvCrossValidationModel*)estimateModel)->sampleIdxTrain;
|
|
|
|
|
|
|
|
__END__
|
|
|
|
|
|
|
|
return result;
|
|
|
|
} // End of cvCrossValGetTrainIdxMatrix
|
|
|
|
|
|
|
|
/****************************************************************************************/
|
|
|
|
// Return pointer to checkIdx. Function DOES NOT FILL this matrix!
|
|
|
|
ML_IMPL
|
|
|
|
const CvMat* cvCrossValGetCheckIdxMatrix (const CvStatModel* estimateModel)
|
|
|
|
{
|
|
|
|
CvMat* result = NULL;
|
|
|
|
|
|
|
|
CV_FUNCNAME ("cvCrossValGetCheckIdxMatrix");
|
|
|
|
__BEGIN__
|
|
|
|
|
|
|
|
if (!CV_IS_CROSSVAL (estimateModel))
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel");
|
|
|
|
}
|
|
|
|
|
|
|
|
result = ((CvCrossValidationModel*)estimateModel)->sampleIdxEval;
|
|
|
|
|
|
|
|
__END__
|
|
|
|
|
|
|
|
return result;
|
|
|
|
} // End of cvCrossValGetCheckIdxMatrix
|
|
|
|
|
|
|
|
/****************************************************************************************/
|
|
|
|
// Create new Idx-matrix for next classifiers training and return code of result.
|
|
|
|
// Result is 0 if function can't make next step (error input or folds are finished),
|
|
|
|
// it is 1 if all was correct, and it is 2 if current fold wasn't' checked.
|
|
|
|
ML_IMPL
|
|
|
|
int cvCrossValNextStep (CvStatModel* estimateModel)
|
|
|
|
{
|
|
|
|
int result = 0;
|
|
|
|
|
|
|
|
CV_FUNCNAME ("cvCrossValGetNextTrainIdx");
|
|
|
|
__BEGIN__
|
|
|
|
|
|
|
|
CvCrossValidationModel* crVal = (CvCrossValidationModel*) estimateModel;
|
|
|
|
int k, fold;
|
|
|
|
|
|
|
|
if (!CV_IS_CROSSVAL (estimateModel))
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel");
|
|
|
|
}
|
|
|
|
|
|
|
|
fold = ++crVal->current_fold;
|
|
|
|
|
|
|
|
if (fold >= crVal->folds_all)
|
|
|
|
{
|
|
|
|
if (fold == crVal->folds_all)
|
|
|
|
EXIT;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsInternal, "All iterations has end long ago");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
k = crVal->folds[fold + 1] - crVal->folds[fold];
|
|
|
|
crVal->sampleIdxTrain->data.i = crVal->sampleIdxAll + crVal->folds[fold + 1];
|
|
|
|
crVal->sampleIdxTrain->cols = crVal->samples_all - k;
|
|
|
|
crVal->sampleIdxEval->data.i = crVal->sampleIdxAll + crVal->folds[fold];
|
|
|
|
crVal->sampleIdxEval->cols = k;
|
|
|
|
|
|
|
|
if (crVal->is_checked)
|
|
|
|
{
|
|
|
|
crVal->is_checked = 0;
|
|
|
|
result = 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
result = 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
__END__
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/****************************************************************************************/
|
|
|
|
// Do checking part of loop of cross-validations metod.
|
|
|
|
ML_IMPL
|
|
|
|
void cvCrossValCheckClassifier (CvStatModel* estimateModel,
|
|
|
|
const CvStatModel* model,
|
|
|
|
const CvMat* trainData,
|
|
|
|
int sample_t_flag,
|
|
|
|
const CvMat* trainClasses)
|
|
|
|
{
|
|
|
|
CV_FUNCNAME ("cvCrossValCheckClassifier ");
|
|
|
|
__BEGIN__
|
|
|
|
|
|
|
|
CvCrossValidationModel* crVal = (CvCrossValidationModel*) estimateModel;
|
|
|
|
int i, j, k;
|
|
|
|
int* data;
|
|
|
|
float* responses_fl;
|
|
|
|
int step;
|
|
|
|
float* responses_result;
|
|
|
|
int* responses_i;
|
|
|
|
double te, te1;
|
|
|
|
double sum_c, sum_p, sum_pp, sum_cp, sum_cc, sq_err;
|
|
|
|
|
|
|
|
// Check input data to correct values.
|
|
|
|
if (!CV_IS_CROSSVAL (estimateModel))
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsBadArg,"First parameter point to not CvCrossValidationModel");
|
|
|
|
}
|
|
|
|
if (!CV_IS_STAT_MODEL (model))
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsBadArg, "Second parameter point to not CvStatModel");
|
|
|
|
}
|
|
|
|
if (!CV_IS_MAT (trainData))
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsBadArg, "Third parameter point to not CvMat");
|
|
|
|
}
|
|
|
|
if (!CV_IS_MAT (trainClasses))
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsBadArg, "Fifth parameter point to not CvMat");
|
|
|
|
}
|
|
|
|
if (crVal->is_checked)
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsInternal, "This iterations already was checked");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Initialize.
|
|
|
|
k = crVal->sampleIdxEval->cols;
|
|
|
|
data = crVal->sampleIdxEval->data.i;
|
|
|
|
|
|
|
|
// Eval tested feature vectors.
|
|
|
|
CV_CALL (cvStatModelMultiPredict (model, trainData, sample_t_flag,
|
|
|
|
crVal->predict_results, NULL, crVal->sampleIdxEval));
|
|
|
|
// Count number if correct results.
|
|
|
|
responses_result = crVal->predict_results->data.fl;
|
|
|
|
if (crVal->is_regression)
|
|
|
|
{
|
|
|
|
sum_c = sum_p = sum_pp = sum_cp = sum_cc = sq_err = 0;
|
|
|
|
if (CV_MAT_TYPE (trainClasses->type) == CV_32FC1)
|
|
|
|
{
|
|
|
|
responses_fl = trainClasses->data.fl;
|
|
|
|
step = trainClasses->rows == 1 ? 1 : trainClasses->step / sizeof(float);
|
|
|
|
for (i = 0; i < k; i++)
|
|
|
|
{
|
|
|
|
te = responses_result[*data];
|
|
|
|
te1 = responses_fl[*data * step];
|
|
|
|
sum_c += te1;
|
|
|
|
sum_p += te;
|
|
|
|
sum_cc += te1 * te1;
|
|
|
|
sum_pp += te * te;
|
|
|
|
sum_cp += te1 * te;
|
|
|
|
te -= te1;
|
|
|
|
sq_err += te * te;
|
|
|
|
|
|
|
|
data++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
responses_i = trainClasses->data.i;
|
|
|
|
step = trainClasses->rows == 1 ? 1 : trainClasses->step / sizeof(int);
|
|
|
|
for (i = 0; i < k; i++)
|
|
|
|
{
|
|
|
|
te = responses_result[*data];
|
|
|
|
te1 = responses_i[*data * step];
|
|
|
|
sum_c += te1;
|
|
|
|
sum_p += te;
|
|
|
|
sum_cc += te1 * te1;
|
|
|
|
sum_pp += te * te;
|
|
|
|
sum_cp += te1 * te;
|
|
|
|
te -= te1;
|
|
|
|
sq_err += te * te;
|
|
|
|
|
|
|
|
data++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Fixing new internal values of accuracy.
|
|
|
|
crVal->sum_correct += sum_c;
|
|
|
|
crVal->sum_predict += sum_p;
|
|
|
|
crVal->sum_cc += sum_cc;
|
|
|
|
crVal->sum_pp += sum_pp;
|
|
|
|
crVal->sum_cp += sum_cp;
|
|
|
|
crVal->sq_error += sq_err;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (CV_MAT_TYPE (trainClasses->type) == CV_32FC1)
|
|
|
|
{
|
|
|
|
responses_fl = trainClasses->data.fl;
|
|
|
|
step = trainClasses->rows == 1 ? 1 : trainClasses->step / sizeof(float);
|
|
|
|
for (i = 0, j = 0; i < k; i++)
|
|
|
|
{
|
|
|
|
if (cvRound (responses_result[*data]) == cvRound (responses_fl[*data * step]))
|
|
|
|
j++;
|
|
|
|
data++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
responses_i = trainClasses->data.i;
|
|
|
|
step = trainClasses->rows == 1 ? 1 : trainClasses->step / sizeof(int);
|
|
|
|
for (i = 0, j = 0; i < k; i++)
|
|
|
|
{
|
|
|
|
if (cvRound (responses_result[*data]) == responses_i[*data * step])
|
|
|
|
j++;
|
|
|
|
data++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Fixing new internal values of accuracy.
|
|
|
|
crVal->correct_results += j;
|
|
|
|
}
|
|
|
|
// Fixing that this fold already checked.
|
|
|
|
crVal->all_results += k;
|
|
|
|
crVal->is_checked = 1;
|
|
|
|
|
|
|
|
__END__
|
|
|
|
} // End of cvCrossValCheckClassifier
|
|
|
|
|
|
|
|
/****************************************************************************************/
|
|
|
|
// Return current accuracy.
|
|
|
|
ML_IMPL
|
|
|
|
float cvCrossValGetResult (const CvStatModel* estimateModel,
|
|
|
|
float* correlation)
|
|
|
|
{
|
|
|
|
float result = 0;
|
|
|
|
|
|
|
|
CV_FUNCNAME ("cvCrossValGetResult");
|
|
|
|
__BEGIN__
|
|
|
|
|
|
|
|
double te, te1;
|
|
|
|
CvCrossValidationModel* crVal = (CvCrossValidationModel*)estimateModel;
|
|
|
|
|
|
|
|
if (!CV_IS_CROSSVAL (estimateModel))
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (crVal->all_results)
|
|
|
|
{
|
|
|
|
if (crVal->is_regression)
|
|
|
|
{
|
|
|
|
result = ((float)crVal->sq_error) / crVal->all_results;
|
|
|
|
if (correlation)
|
|
|
|
{
|
|
|
|
te = crVal->all_results * crVal->sum_cp -
|
|
|
|
crVal->sum_correct * crVal->sum_predict;
|
|
|
|
te *= te;
|
|
|
|
te1 = (crVal->all_results * crVal->sum_cc -
|
|
|
|
crVal->sum_correct * crVal->sum_correct) *
|
|
|
|
(crVal->all_results * crVal->sum_pp -
|
|
|
|
crVal->sum_predict * crVal->sum_predict);
|
|
|
|
*correlation = (float)(te / te1);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
result = ((float)crVal->correct_results) / crVal->all_results;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__END__
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/****************************************************************************************/
|
|
|
|
// Reset cross-validation EstimateModel to state the same as it was immidiatly after
|
|
|
|
// its creating.
|
|
|
|
ML_IMPL
|
|
|
|
void cvCrossValReset (CvStatModel* estimateModel)
|
|
|
|
{
|
|
|
|
CV_FUNCNAME ("cvCrossValReset");
|
|
|
|
__BEGIN__
|
|
|
|
|
|
|
|
CvCrossValidationModel* crVal = (CvCrossValidationModel*)estimateModel;
|
|
|
|
|
|
|
|
if (!CV_IS_CROSSVAL (estimateModel))
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel");
|
|
|
|
}
|
|
|
|
|
|
|
|
crVal->current_fold = -1;
|
|
|
|
crVal->is_checked = 1;
|
|
|
|
crVal->all_results = 0;
|
|
|
|
crVal->correct_results = 0;
|
|
|
|
crVal->sq_error = 0;
|
|
|
|
crVal->sum_correct = 0;
|
|
|
|
crVal->sum_predict = 0;
|
|
|
|
crVal->sum_cc = 0;
|
|
|
|
crVal->sum_pp = 0;
|
|
|
|
crVal->sum_cp = 0;
|
|
|
|
|
|
|
|
__END__
|
|
|
|
}
|
|
|
|
|
|
|
|
/****************************************************************************************/
|
|
|
|
// This function is standart CvStatModel field to release cross-validation EstimateModel.
|
|
|
|
ML_IMPL
|
|
|
|
void cvReleaseCrossValidationModel (CvStatModel** model)
|
|
|
|
{
|
|
|
|
CvCrossValidationModel* pModel;
|
|
|
|
|
|
|
|
CV_FUNCNAME ("cvReleaseCrossValidationModel");
|
|
|
|
__BEGIN__
|
|
|
|
|
|
|
|
if (!model)
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsNullPtr, "");
|
|
|
|
}
|
|
|
|
|
|
|
|
pModel = (CvCrossValidationModel*)*model;
|
|
|
|
if (!pModel)
|
|
|
|
{
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (!CV_IS_CROSSVAL (pModel))
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsBadArg, "");
|
|
|
|
}
|
|
|
|
|
|
|
|
cvFree (&pModel->sampleIdxAll);
|
|
|
|
cvFree (&pModel->folds);
|
|
|
|
cvReleaseMat (&pModel->sampleIdxEval);
|
|
|
|
cvReleaseMat (&pModel->sampleIdxTrain);
|
|
|
|
cvReleaseMat (&pModel->predict_results);
|
|
|
|
|
|
|
|
cvFree (model);
|
|
|
|
|
|
|
|
__END__
|
|
|
|
} // End of cvReleaseCrossValidationModel.
|
|
|
|
|
|
|
|
/****************************************************************************************/
|
|
|
|
// This function create cross-validation EstimateModel.
|
|
|
|
ML_IMPL CvStatModel*
|
|
|
|
cvCreateCrossValidationEstimateModel(
|
|
|
|
int samples_all,
|
|
|
|
const CvStatModelParams* estimateParams,
|
|
|
|
const CvMat* sampleIdx)
|
|
|
|
{
|
|
|
|
CvStatModel* model = NULL;
|
|
|
|
CvCrossValidationModel* crVal = NULL;
|
|
|
|
|
|
|
|
CV_FUNCNAME ("cvCreateCrossValidationEstimateModel");
|
|
|
|
__BEGIN__
|
|
|
|
|
|
|
|
int k_fold = 10;
|
|
|
|
|
|
|
|
int i, j, k, s_len;
|
|
|
|
int samples_selected;
|
|
|
|
CvRNG rng;
|
|
|
|
CvRNG* prng;
|
|
|
|
int* res_s_data;
|
|
|
|
int* te_s_data;
|
|
|
|
int* folds;
|
|
|
|
|
|
|
|
rng = cvRNG(cvGetTickCount());
|
|
|
|
cvRandInt (&rng); cvRandInt (&rng); cvRandInt (&rng); cvRandInt (&rng);
|
|
|
|
// Check input parameters.
|
|
|
|
if (estimateParams)
|
|
|
|
k_fold = ((CvCrossValidationParams*)estimateParams)->k_fold;
|
|
|
|
if (!k_fold)
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsBadArg, "Error in parameters of cross-validation (k_fold == 0)!");
|
|
|
|
}
|
|
|
|
if (samples_all <= 0)
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsBadArg, "<samples_all> should be positive!");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Alloc memory and fill standart StatModel's fields.
|
|
|
|
CV_CALL (crVal = (CvCrossValidationModel*)cvCreateStatModel (
|
|
|
|
CV_STAT_MODEL_MAGIC_VAL | CV_CROSSVAL_MAGIC_VAL,
|
|
|
|
sizeof(CvCrossValidationModel),
|
|
|
|
cvReleaseCrossValidationModel,
|
|
|
|
NULL, NULL));
|
|
|
|
crVal->current_fold = -1;
|
|
|
|
crVal->folds_all = k_fold;
|
|
|
|
if (estimateParams && ((CvCrossValidationParams*)estimateParams)->is_regression)
|
|
|
|
crVal->is_regression = 1;
|
|
|
|
else
|
|
|
|
crVal->is_regression = 0;
|
|
|
|
if (estimateParams && ((CvCrossValidationParams*)estimateParams)->rng)
|
|
|
|
prng = ((CvCrossValidationParams*)estimateParams)->rng;
|
|
|
|
else
|
|
|
|
prng = &rng;
|
|
|
|
|
|
|
|
// Check and preprocess sample indices.
|
|
|
|
if (sampleIdx)
|
|
|
|
{
|
|
|
|
int s_step;
|
|
|
|
int s_type = 0;
|
|
|
|
|
|
|
|
if (!CV_IS_MAT (sampleIdx))
|
|
|
|
CV_ERROR (CV_StsBadArg, "Invalid sampleIdx array");
|
|
|
|
|
|
|
|
if (sampleIdx->rows != 1 && sampleIdx->cols != 1)
|
|
|
|
CV_ERROR (CV_StsBadSize, "sampleIdx array must be 1-dimensional");
|
|
|
|
|
|
|
|
s_len = sampleIdx->rows + sampleIdx->cols - 1;
|
|
|
|
s_step = sampleIdx->rows == 1 ?
|
|
|
|
1 : sampleIdx->step / CV_ELEM_SIZE(sampleIdx->type);
|
|
|
|
|
|
|
|
s_type = CV_MAT_TYPE (sampleIdx->type);
|
|
|
|
|
|
|
|
switch (s_type)
|
|
|
|
{
|
|
|
|
case CV_8UC1:
|
|
|
|
case CV_8SC1:
|
|
|
|
{
|
|
|
|
uchar* s_data = sampleIdx->data.ptr;
|
|
|
|
|
|
|
|
// sampleIdx is array of 1's and 0's -
|
|
|
|
// i.e. it is a mask of the selected samples
|
|
|
|
if( s_len != samples_all )
|
|
|
|
CV_ERROR (CV_StsUnmatchedSizes,
|
|
|
|
"Sample mask should contain as many elements as the total number of samples");
|
|
|
|
|
|
|
|
samples_selected = 0;
|
|
|
|
for (i = 0; i < s_len; i++)
|
|
|
|
samples_selected += s_data[i * s_step] != 0;
|
|
|
|
|
|
|
|
if (samples_selected == 0)
|
|
|
|
CV_ERROR (CV_StsOutOfRange, "No samples is selected!");
|
|
|
|
}
|
|
|
|
s_len = samples_selected;
|
|
|
|
break;
|
|
|
|
case CV_32SC1:
|
|
|
|
if (s_len > samples_all)
|
|
|
|
CV_ERROR (CV_StsOutOfRange,
|
|
|
|
"sampleIdx array may not contain more elements than the total number of samples");
|
|
|
|
samples_selected = s_len;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
CV_ERROR (CV_StsUnsupportedFormat, "Unsupported sampleIdx array data type "
|
|
|
|
"(it should be 8uC1, 8sC1 or 32sC1)");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Alloc additional memory for internal Idx and fill it.
|
|
|
|
/*!!*/ CV_CALL (res_s_data = crVal->sampleIdxAll =
|
|
|
|
(int*)cvAlloc (2 * s_len * sizeof(int)));
|
|
|
|
|
|
|
|
if (s_type < CV_32SC1)
|
|
|
|
{
|
|
|
|
uchar* s_data = sampleIdx->data.ptr;
|
|
|
|
for (i = 0; i < s_len; i++)
|
|
|
|
if (s_data[i * s_step])
|
|
|
|
{
|
|
|
|
*res_s_data++ = i;
|
|
|
|
}
|
|
|
|
res_s_data = crVal->sampleIdxAll;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int* s_data = sampleIdx->data.i;
|
|
|
|
int out_of_order = 0;
|
|
|
|
|
|
|
|
for (i = 0; i < s_len; i++)
|
|
|
|
{
|
|
|
|
res_s_data[i] = s_data[i * s_step];
|
|
|
|
if (i > 0 && res_s_data[i] < res_s_data[i - 1])
|
|
|
|
out_of_order = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (out_of_order)
|
|
|
|
qsort (res_s_data, s_len, sizeof(res_s_data[0]), icvCmpIntegers);
|
|
|
|
|
|
|
|
if (res_s_data[0] < 0 ||
|
|
|
|
res_s_data[s_len - 1] >= samples_all)
|
|
|
|
CV_ERROR (CV_StsBadArg, "There are out-of-range sample indices");
|
|
|
|
for (i = 1; i < s_len; i++)
|
|
|
|
if (res_s_data[i] <= res_s_data[i - 1])
|
|
|
|
CV_ERROR (CV_StsBadArg, "There are duplicated");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else // if (sampleIdx)
|
|
|
|
{
|
|
|
|
// Alloc additional memory for internal Idx and fill it.
|
|
|
|
s_len = samples_all;
|
|
|
|
CV_CALL (res_s_data = crVal->sampleIdxAll = (int*)cvAlloc (2 * s_len * sizeof(int)));
|
|
|
|
for (i = 0; i < s_len; i++)
|
|
|
|
{
|
|
|
|
*res_s_data++ = i;
|
|
|
|
}
|
|
|
|
res_s_data = crVal->sampleIdxAll;
|
|
|
|
} // if (sampleIdx) ... else
|
|
|
|
|
|
|
|
// Resort internal Idx.
|
|
|
|
te_s_data = res_s_data + s_len;
|
|
|
|
for (i = s_len; i > 1; i--)
|
|
|
|
{
|
|
|
|
j = cvRandInt (prng) % i;
|
|
|
|
k = *(--te_s_data);
|
|
|
|
*te_s_data = res_s_data[j];
|
|
|
|
res_s_data[j] = k;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Duplicate resorted internal Idx.
|
|
|
|
// It will be used to simplify operation of getting trainIdx.
|
|
|
|
te_s_data = res_s_data + s_len;
|
|
|
|
for (i = 0; i < s_len; i++)
|
|
|
|
{
|
|
|
|
*te_s_data++ = *res_s_data++;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Cut sampleIdxAll to parts.
|
|
|
|
if (k_fold > 0)
|
|
|
|
{
|
|
|
|
if (k_fold > s_len)
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsBadArg,
|
|
|
|
"Error in parameters of cross-validation ('k_fold' > #samples)!");
|
|
|
|
}
|
|
|
|
folds = crVal->folds = (int*) cvAlloc ((k_fold + 1) * sizeof (int));
|
|
|
|
*folds++ = 0;
|
|
|
|
for (i = 1; i < k_fold; i++)
|
|
|
|
{
|
|
|
|
*folds++ = cvRound (i * s_len * 1. / k_fold);
|
|
|
|
}
|
|
|
|
*folds = s_len;
|
|
|
|
folds = crVal->folds;
|
|
|
|
|
|
|
|
crVal->max_fold_size = (s_len - 1) / k_fold + 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
k = -k_fold;
|
|
|
|
crVal->max_fold_size = k;
|
|
|
|
if (k >= s_len)
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsBadArg,
|
|
|
|
"Error in parameters of cross-validation (-'k_fold' > #samples)!");
|
|
|
|
}
|
|
|
|
crVal->folds_all = k = (s_len - 1) / k + 1;
|
|
|
|
|
|
|
|
folds = crVal->folds = (int*) cvAlloc ((k + 1) * sizeof (int));
|
|
|
|
for (i = 0; i < k; i++)
|
|
|
|
{
|
|
|
|
*folds++ = -i * k_fold;
|
|
|
|
}
|
|
|
|
*folds = s_len;
|
|
|
|
folds = crVal->folds;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Prepare other internal fields to working.
|
|
|
|
CV_CALL (crVal->predict_results = cvCreateMat (1, samples_all, CV_32FC1));
|
|
|
|
CV_CALL (crVal->sampleIdxEval = cvCreateMatHeader (1, 1, CV_32SC1));
|
|
|
|
CV_CALL (crVal->sampleIdxTrain = cvCreateMatHeader (1, 1, CV_32SC1));
|
|
|
|
crVal->sampleIdxEval->cols = 0;
|
|
|
|
crVal->sampleIdxTrain->cols = 0;
|
|
|
|
crVal->samples_all = s_len;
|
|
|
|
crVal->is_checked = 1;
|
|
|
|
|
|
|
|
crVal->getTrainIdxMat = cvCrossValGetTrainIdxMatrix;
|
|
|
|
crVal->getCheckIdxMat = cvCrossValGetCheckIdxMatrix;
|
|
|
|
crVal->nextStep = cvCrossValNextStep;
|
|
|
|
crVal->check = cvCrossValCheckClassifier;
|
|
|
|
crVal->getResult = cvCrossValGetResult;
|
|
|
|
crVal->reset = cvCrossValReset;
|
|
|
|
|
|
|
|
model = (CvStatModel*)crVal;
|
|
|
|
|
|
|
|
__END__
|
|
|
|
|
|
|
|
if (!model)
|
|
|
|
{
|
|
|
|
cvReleaseCrossValidationModel ((CvStatModel**)&crVal);
|
|
|
|
}
|
|
|
|
|
|
|
|
return model;
|
|
|
|
} // End of cvCreateCrossValidationEstimateModel
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* Extended interface with backcalls for models *
|
|
|
|
\****************************************************************************************/
|
|
|
|
ML_IMPL float
|
|
|
|
cvCrossValidation (const CvMat* trueData,
|
|
|
|
int tflag,
|
|
|
|
const CvMat* trueClasses,
|
|
|
|
CvStatModel* (*createClassifier) (const CvMat*,
|
|
|
|
int,
|
|
|
|
const CvMat*,
|
|
|
|
const CvClassifierTrainParams*,
|
|
|
|
const CvMat*,
|
|
|
|
const CvMat*,
|
|
|
|
const CvMat*,
|
|
|
|
const CvMat*),
|
|
|
|
const CvClassifierTrainParams* estimateParams,
|
|
|
|
const CvClassifierTrainParams* trainParams,
|
|
|
|
const CvMat* compIdx,
|
|
|
|
const CvMat* sampleIdx,
|
|
|
|
CvStatModel** pCrValModel,
|
|
|
|
const CvMat* typeMask,
|
|
|
|
const CvMat* missedMeasurementMask)
|
|
|
|
{
|
|
|
|
CvCrossValidationModel* crVal = NULL;
|
|
|
|
float result = 0;
|
|
|
|
CvStatModel* pClassifier = NULL;
|
|
|
|
|
|
|
|
CV_FUNCNAME ("cvCrossValidation");
|
|
|
|
__BEGIN__
|
|
|
|
|
|
|
|
const CvMat* trainDataIdx;
|
|
|
|
int samples_all;
|
|
|
|
|
|
|
|
// checking input data
|
|
|
|
if ((createClassifier) == NULL)
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsNullPtr, "Null pointer to functiion which create classifier");
|
|
|
|
}
|
|
|
|
if (pCrValModel && *pCrValModel && !CV_IS_CROSSVAL(*pCrValModel))
|
|
|
|
{
|
|
|
|
CV_ERROR (CV_StsBadArg,
|
|
|
|
"<pCrValModel> point to not cross-validation model");
|
|
|
|
}
|
|
|
|
|
|
|
|
// initialization
|
|
|
|
if (pCrValModel && *pCrValModel)
|
|
|
|
{
|
|
|
|
crVal = (CvCrossValidationModel*)*pCrValModel;
|
|
|
|
crVal->reset ((CvStatModel*)crVal);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
samples_all = ((tflag) ? trueData->rows : trueData->cols);
|
|
|
|
CV_CALL (crVal = (CvCrossValidationModel*)
|
|
|
|
cvCreateCrossValidationEstimateModel (samples_all, estimateParams, sampleIdx));
|
|
|
|
}
|
|
|
|
|
|
|
|
CV_CALL (trainDataIdx = crVal->getTrainIdxMat ((CvStatModel*)crVal));
|
|
|
|
|
|
|
|
// operation loop
|
|
|
|
for (; crVal->nextStep((CvStatModel*)crVal) != 0; )
|
|
|
|
{
|
|
|
|
CV_CALL (pClassifier = createClassifier (trueData, tflag, trueClasses,
|
|
|
|
trainParams, compIdx, trainDataIdx, typeMask, missedMeasurementMask));
|
|
|
|
CV_CALL (crVal->check ((CvStatModel*)crVal, pClassifier,
|
|
|
|
trueData, tflag, trueClasses));
|
|
|
|
|
|
|
|
pClassifier->release (&pClassifier);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get result and fill output field.
|
|
|
|
CV_CALL (result = crVal->getResult ((CvStatModel*)crVal, 0));
|
|
|
|
|
|
|
|
if (pCrValModel && !*pCrValModel)
|
|
|
|
*pCrValModel = (CvStatModel*)crVal;
|
|
|
|
|
|
|
|
__END__
|
|
|
|
|
|
|
|
// Free all memory that should be freed.
|
|
|
|
if (pClassifier)
|
|
|
|
pClassifier->release (&pClassifier);
|
|
|
|
if (crVal && (!pCrValModel || !*pCrValModel))
|
|
|
|
crVal->release ((CvStatModel**)&crVal);
|
|
|
|
|
|
|
|
return result;
|
|
|
|
} // End of cvCrossValidation
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* End of file */
|