Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

93 lines
3.7 KiB

#!/usr/bin/python
"""
Tracking of rotating point.
Rotation speed is constant.
Both state and measurements vectors are 1D (a point angle),
Measurement is the real point angle + gaussian noise.
The real and the estimated points are connected with yellow line segment,
the real and the measured points are connected with red line segment.
(if Kalman filter works correctly,
the yellow segment should be shorter than the red one).
Pressing any key (except ESC) will reset the tracking with a different speed.
Pressing ESC will stop the program.
"""
from opencv.cv import *
from opencv.highgui import *
from math import cos, sin, sqrt
if __name__ == "__main__":
A = [ [1, 1], [0, 1] ]
img = cvCreateImage( cvSize(500,500), 8, 3 )
kalman = cvCreateKalman( 2, 1, 0 )
state = cvCreateMat( 2, 1, CV_32FC1 ) # (phi, delta_phi)
process_noise = cvCreateMat( 2, 1, CV_32FC1 )
measurement = cvCreateMat( 1, 1, CV_32FC1 )
rng = cvRNG(-1)
code = -1L
cvZero( measurement )
cvNamedWindow( "Kalman", 1 )
while True:
cvRandArr( rng, state, CV_RAND_NORMAL, cvRealScalar(0), cvRealScalar(0.1) )
kalman.transition_matrix[:] = A
cvSetIdentity( kalman.measurement_matrix, cvRealScalar(1) )
cvSetIdentity( kalman.process_noise_cov, cvRealScalar(1e-5) )
cvSetIdentity( kalman.measurement_noise_cov, cvRealScalar(1e-1) )
cvSetIdentity( kalman.error_cov_post, cvRealScalar(1))
cvRandArr( rng, kalman.state_post, CV_RAND_NORMAL, cvRealScalar(0), cvRealScalar(0.1) )
while True:
def calc_point(angle):
return cvPoint( cvRound(img.width/2 + img.width/3*cos(angle)),
cvRound(img.height/2 - img.width/3*sin(angle)))
state_angle = state[0]
state_pt = calc_point(state_angle)
prediction = cvKalmanPredict( kalman )
predict_angle = prediction[0,0]
predict_pt = calc_point(predict_angle)
cvRandArr( rng, measurement, CV_RAND_NORMAL, cvRealScalar(0),
cvRealScalar(sqrt(kalman.measurement_noise_cov[0,0])) )
# generate measurement
cvMatMulAdd( kalman.measurement_matrix, state, measurement, measurement )
measurement_angle = measurement[0,0]
measurement_pt = calc_point(measurement_angle)
# plot points
def draw_cross( center, color, d ):
cvLine( img, cvPoint( center.x - d, center.y - d ),
cvPoint( center.x + d, center.y + d ), color, 1, CV_AA, 0)
cvLine( img, cvPoint( center.x + d, center.y - d ),
cvPoint( center.x - d, center.y + d ), color, 1, CV_AA, 0 )
cvZero( img )
draw_cross( state_pt, CV_RGB(255,255,255), 3 )
draw_cross( measurement_pt, CV_RGB(255,0,0), 3 )
draw_cross( predict_pt, CV_RGB(0,255,0), 3 )
cvLine( img, state_pt, measurement_pt, CV_RGB(255,0,0), 3, CV_AA, 0 )
cvLine( img, state_pt, predict_pt, CV_RGB(255,255,0), 3, CV_AA, 0 )
cvKalmanCorrect( kalman, measurement )
cvRandArr( rng, process_noise, CV_RAND_NORMAL, cvRealScalar(0),
cvRealScalar(sqrt(kalman.process_noise_cov[0,0])))
cvMatMulAdd( kalman.transition_matrix, state, process_noise, state )
cvShowImage( "Kalman", img )
code = str(cvWaitKey( 100 ))
if( code != '-1'):
break
if( code == '\x1b' or code == 'q' or code == 'Q' ):
break
cvDestroyWindow("Kalman")