Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

208 lines
6.6 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include <string>
#include <algorithm>
#include <fstream>
using namespace cv;
using namespace std;
void loadImage(string path, Mat &img)
{
img = imread(path, -1);
ASSERT_FALSE(img.empty()) << "Could not load input image " << path;
}
void checkEqual(Mat img0, Mat img1, double threshold)
{
double max = 1.0;
minMaxLoc(abs(img0 - img1), NULL, &max);
ASSERT_FALSE(max > threshold) << max;
}
static vector<float> DEFAULT_VECTOR;
void loadExposureSeq(String path, vector<Mat>& images, vector<float>& times = DEFAULT_VECTOR)
{
ifstream list_file((path + "list.txt").c_str());
ASSERT_TRUE(list_file.is_open());
string name;
float val;
while(list_file >> name >> val) {
Mat img = imread(path + name);
ASSERT_FALSE(img.empty()) << "Could not load input image " << path + name;
images.push_back(img);
times.push_back(1 / val);
}
list_file.close();
}
void loadResponseCSV(String path, Mat& response)
{
response = Mat(256, 3, CV_32F);
ifstream resp_file(path.c_str());
for(int i = 0; i < 256; i++) {
for(int channel = 0; channel < 3; channel++) {
resp_file >> response.at<float>(i, channel);
resp_file.ignore(1);
}
}
resp_file.close();
}
TEST(Photo_Tonemap, regression)
{
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/tonemap/";
Mat img, expected, result;
loadImage(test_path + "image.hdr", img);
float gamma = 2.2f;
Ptr<Tonemap> linear = createTonemapLinear(gamma);
linear->process(img, result);
loadImage(test_path + "linear.png", expected);
result.convertTo(result, CV_8UC3, 255);
checkEqual(result, expected, 0);
Ptr<TonemapDrago> drago = createTonemapDrago(gamma);
drago->process(img, result);
loadImage(test_path + "drago.png", expected);
result.convertTo(result, CV_8UC3, 255);
checkEqual(result, expected, 0);
Ptr<TonemapDurand> durand = createTonemapDurand(gamma);
durand->process(img, result);
loadImage(test_path + "durand.png", expected);
result.convertTo(result, CV_8UC3, 255);
checkEqual(result, expected, 0);
Ptr<TonemapReinhardDevlin> reinhard_devlin = createTonemapReinhardDevlin(gamma);
reinhard_devlin->process(img, result);
loadImage(test_path + "reinharddevlin.png", expected);
result.convertTo(result, CV_8UC3, 255);
checkEqual(result, expected, 0);
Ptr<TonemapMantiuk> mantiuk = createTonemapMantiuk(gamma);
mantiuk->process(img, result);
loadImage(test_path + "mantiuk.png", expected);
result.convertTo(result, CV_8UC3, 255);
checkEqual(result, expected, 0);
}
TEST(Photo_AlignMTB, regression)
{
const int TESTS_COUNT = 100;
string folder = string(cvtest::TS::ptr()->get_data_path()) + "shared/";
string file_name = folder + "lena.png";
Mat img;
loadImage(file_name, img);
cvtColor(img, img, COLOR_RGB2GRAY);
int max_bits = 5;
int max_shift = 32;
srand(static_cast<unsigned>(time(0)));
int errors = 0;
Ptr<AlignMTB> align = createAlignMTB(max_bits);
for(int i = 0; i < TESTS_COUNT; i++) {
Point shift(rand() % max_shift, rand() % max_shift);
Mat res;
align->shiftMat(img, res, shift);
Point calc;
align->calculateShift(img, res, calc);
errors += (calc != -shift);
}
ASSERT_TRUE(errors < 5) << errors << " errors";
}
TEST(Photo_MergeMertens, regression)
{
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
vector<Mat> images;
loadExposureSeq((test_path + "exposures/").c_str() , images);
Ptr<MergeMertens> merge = createMergeMertens();
Mat result, expected;
loadImage(test_path + "merge/mertens.png", expected);
merge->process(images, result);
result.convertTo(result, CV_8UC3, 255);
checkEqual(expected, result, 0);
}
TEST(Photo_MergeDebevec, regression)
{
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
vector<Mat> images;
vector<float> times;
Mat response;
loadExposureSeq(test_path + "exposures/", images, times);
loadResponseCSV(test_path + "exposures/response.csv", response);
Ptr<MergeDebevec> merge = createMergeDebevec();
Mat result, expected;
loadImage(test_path + "merge/debevec.exr", expected);
merge->process(images, result, times, response);
checkEqual(expected, result, 1e-3f);
}
TEST(Photo_CalibrateDebevec, regression)
{
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
vector<Mat> images;
vector<float> times;
Mat expected, response;
loadExposureSeq(test_path + "exposures/", images, times);
loadResponseCSV(test_path + "calibrate/debevec.csv", expected);
Ptr<CalibrateDebevec> calibrate = createCalibrateDebevec();
srand(1);
calibrate->process(images, response, times);
checkEqual(expected, response, 1e-3f);
}