Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

207 lines
5.2 KiB

#!/usr/bin/env python
"""Algorithm serialization test."""
from __future__ import print_function
import base64
import json
import tempfile
import os
import cv2 as cv
import numpy as np
from tests_common import NewOpenCVTests
class MyData:
def __init__(self):
self.A = 97
self.X = np.pi
self.name = 'mydata1234'
def write(self, fs, name):
fs.startWriteStruct(name, cv.FileNode_MAP|cv.FileNode_FLOW)
fs.write('A', self.A)
fs.write('X', self.X)
fs.write('name', self.name)
fs.endWriteStruct()
def read(self, node):
if (not node.empty()):
self.A = int(node.getNode('A').real())
self.X = node.getNode('X').real()
self.name = node.getNode('name').string()
else:
self.A = self.X = 0
self.name = ''
class filestorage_io_test(NewOpenCVTests):
strings_data = ['image1.jpg', 'Awesomeness', '../data/baboon.jpg']
R0 = np.eye(3,3)
T0 = np.zeros((3,1))
def write_data(self, fname):
fs = cv.FileStorage(fname, cv.FileStorage_WRITE)
R = self.R0
T = self.T0
m = MyData()
fs.write('iterationNr', 100)
fs.startWriteStruct('strings', cv.FileNode_SEQ)
for elem in self.strings_data:
fs.write('', elem)
fs.endWriteStruct()
fs.startWriteStruct('Mapping', cv.FileNode_MAP)
fs.write('One', 1)
fs.write('Two', 2)
fs.endWriteStruct()
fs.write('R_MAT', R)
fs.write('T_MAT', T)
m.write(fs, 'MyData')
fs.release()
def read_data_and_check(self, fname):
fs = cv.FileStorage(fname, cv.FileStorage_READ)
n = fs.getNode('iterationNr')
itNr = int(n.real())
self.assertEqual(itNr, 100)
n = fs.getNode('strings')
self.assertTrue(n.isSeq())
self.assertEqual(n.size(), len(self.strings_data))
for i in range(n.size()):
self.assertEqual(n.at(i).string(), self.strings_data[i])
n = fs.getNode('Mapping')
self.assertEqual(int(n.getNode('Two').real()), 2)
self.assertEqual(int(n.getNode('One').real()), 1)
R = fs.getNode('R_MAT').mat()
T = fs.getNode('T_MAT').mat()
self.assertEqual(cv.norm(R, self.R0, cv.NORM_INF), 0)
self.assertEqual(cv.norm(T, self.T0, cv.NORM_INF), 0)
m0 = MyData()
m = MyData()
m.read(fs.getNode('MyData'))
self.assertEqual(m.A, m0.A)
self.assertEqual(m.X, m0.X)
self.assertEqual(m.name, m0.name)
n = fs.getNode('NonExisting')
self.assertTrue(n.isNone())
fs.release()
def run_fs_test(self, ext):
fd, fname = tempfile.mkstemp(prefix="opencv_python_sample_filestorage", suffix=ext)
os.close(fd)
self.write_data(fname)
self.read_data_and_check(fname)
os.remove(fname)
def test_xml(self):
self.run_fs_test(".xml")
def test_yml(self):
self.run_fs_test(".yml")
def test_json(self):
self.run_fs_test(".json")
def test_base64(self):
fd, fname = tempfile.mkstemp(prefix="opencv_python_sample_filestorage_base64", suffix=".json")
os.close(fd)
np.random.seed(42)
self.write_base64_json(fname)
os.remove(fname)
@staticmethod
def get_normal_2d_mat():
rows = 10
cols = 20
cn = 3
image = np.zeros((rows, cols, cn), np.uint8)
image[:] = (1, 2, 127)
for i in range(rows):
for j in range(cols):
image[i, j, 1] = (i + j) % 256
return image
@staticmethod
def get_normal_nd_mat():
shape = (2, 2, 1, 2)
cn = 4
image = np.zeros(shape + (cn,), np.float64)
image[:] = (0.888, 0.111, 0.666, 0.444)
return image
@staticmethod
def get_empty_2d_mat():
shape = (0, 0)
cn = 1
image = np.zeros(shape + (cn,), np.uint8)
return image
@staticmethod
def get_random_mat():
rows = 8
cols = 16
cn = 1
image = np.random.rand(rows, cols, cn)
return image
@staticmethod
def decode(data):
# strip $base64$
encoded = data[8:]
if len(encoded) == 0:
return b''
# strip info about datatype and padding
return base64.b64decode(encoded)[24:]
def write_base64_json(self, fname):
fs = cv.FileStorage(fname, cv.FileStorage_WRITE_BASE64)
mats = {'normal_2d_mat': self.get_normal_2d_mat(),
'normal_nd_mat': self.get_normal_nd_mat(),
'empty_2d_mat': self.get_empty_2d_mat(),
'random_mat': self.get_random_mat()}
for name, mat in mats.items():
fs.write(name, mat)
fs.release()
data = {}
with open(fname) as file:
data = json.load(file)
for name, mat in mats.items():
buffer = b''
if mat.size != 0:
if hasattr(mat, 'tobytes'):
buffer = mat.tobytes()
else:
buffer = mat.tostring()
self.assertEqual(buffer, self.decode(data[name]['data']))
if __name__ == '__main__':
NewOpenCVTests.bootstrap()