:param L2gradient:a flag, indicating whether a more accurate :math:`L_2` norm :math:`=\sqrt{(dI/dx)^2 + (dI/dy)^2}` should be used to calculate the image gradient magnitude ( ``L2gradient=true`` ), or whether the default :math:`L_1` norm :math:`=|dI/dx|+|dI/dy|` is enough ( ``L2gradient=false`` ).
The function finds edges in the input image ``image`` and marks them in the output map ``edges`` using the Canny algorithm. The smallest value between ``threshold1`` and ``threshold2`` is used for edge linking. The largest value is used to find initial segments of strong edges. See
* (Python) An example on how to use eigenvectors and eigenvalues to estimate image texture flow direction can be found at opencv_source_code/samples/python2/texture_flow.py
:param winSize:Half of the side length of the search window. For example, if ``winSize=Size(5,5)`` , then a :math:`5*2+1 \times 5*2+1 = 11 \times 11` search window is used.
:param zeroZone:Half of the size of the dead region in the middle of the search zone over which the summation in the formula below is not done. It is used sometimes to avoid possible singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such a size.
:param criteria:Criteria for termination of the iterative process of corner refinement. That is, the process of corner position refinement stops either after ``criteria.maxCount`` iterations or when the corner position moves by less than ``criteria.epsilon`` on some iteration.
:param qualityLevel:Parameter characterizing the minimal accepted quality of image corners. The parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue (see :ocv:func:`cornerMinEigenVal` ) or the Harris function response (see :ocv:func:`cornerHarris` ). The corners with the quality measure less than the product are rejected. For example, if the best corner has the quality measure = 1500, and the ``qualityLevel=0.01`` , then all the corners with the quality measure less than 15 are rejected.
:param mask:Optional region of interest. If the image is not empty (it needs to have the type ``CV_8UC1`` and the same size as ``image`` ), it specifies the region in which the corners are detected.
:param blockSize:Size of an average block for computing a derivative covariation matrix over each pixel neighborhood. See :ocv:func:`cornerEigenValsAndVecs` .
..note:: If the function is called with different values ``A`` and ``B`` of the parameter ``qualityLevel`` , and ``A`` > {B}, the vector of returned corners with ``qualityLevel=A`` will be the prefix of the output vector with ``qualityLevel=B`` .
:param method:Detection method to use. Currently, the only implemented method is ``CV_HOUGH_GRADIENT`` , which is basically *21HT* , described in [Yuen90]_.
:param dp:Inverse ratio of the accumulator resolution to the image resolution. For example, if ``dp=1`` , the accumulator has the same resolution as the input image. If ``dp=2`` , the accumulator has half as big width and height.
:param minDist:Minimum distance between the centers of the detected circles. If the parameter is too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is too large, some circles may be missed.
:param param1:First method-specific parameter. In case of ``CV_HOUGH_GRADIENT`` , it is the higher threshold of the two passed to the :ocv:func:`Canny` edge detector (the lower one is twice smaller).
:param param2:Second method-specific parameter. In case of ``CV_HOUGH_GRADIENT`` , it is the accumulator threshold for the circle centers at the detection stage. The smaller it is, the more false circles may be detected. Circles, corresponding to the larger accumulator values, will be returned first.
..note:: Usually the function detects the centers of circles well. However, it may fail to find correct radii. You can assist to the function by specifying the radius range ( ``minRadius`` and ``maxRadius`` ) if you know it. Or, you may ignore the returned radius, use only the center, and find the correct radius using an additional procedure.
:param lines:Output vector of lines. Each line is represented by a two-element vector :math:`(\rho, \theta)` . :math:`\rho` is the distance from the coordinate origin :math:`(0,0)` (top-left corner of the image). :math:`\theta` is the line rotation angle in radians ( :math:`0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}` ).
:param srn:For the multi-scale Hough transform, it is a divisor for the distance resolution ``rho`` . The coarse accumulator distance resolution is ``rho`` and the accurate accumulator resolution is ``rho/srn`` . If both ``srn=0`` and ``stn=0`` , the classical Hough transform is used. Otherwise, both these parameters should be positive.
:param method:One of the following Hough transform variants:
***CV_HOUGH_STANDARD** classical or standard Hough transform. Every line is represented by two floating-point numbers :math:`(\rho, \theta)` , where :math:`\rho` is a distance between (0,0) point and the line, and :math:`\theta` is the angle between x-axis and the normal to the line. Thus, the matrix must be (the created sequence will be) of ``CV_32FC2`` type
***CV_HOUGH_PROBABILISTIC** probabilistic Hough transform (more efficient in case if the picture contains a few long linear segments). It returns line segments rather than the whole line. Each segment is represented by starting and ending points, and the matrix must be (the created sequence will be) of the ``CV_32SC4`` type.
* For the probabilistic Hough transform, it is the maximum gap between line segments lying on the same line to treat them as a single line segment (that is, to join them).
The function implements the standard or standard multi-scale Hough transform algorithm for line detection. See http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm for a good explanation of Hough transform.
See also the example in :ocv:func:`HoughLinesP` description.
:param lines:Output vector of lines. Each line is represented by a 4-element vector :math:`(x_1, y_1, x_2, y_2)` , where :math:`(x_1,y_1)` and :math:`(x_2, y_2)` are the ending points of each detected line segment.
:param _refine:The way found lines will be refined:
***LSD_REFINE_NONE** - No refinement applied.
***LSD_REFINE_STD** - Standard refinement is applied. E.g. breaking arches into smaller straighter line approximations.
***LSD_REFINE_ADV** - Advanced refinement. Number of false alarms is calculated, lines are refined through increase of precision, decrement in size, etc.
:param scale:The scale of the image that will be used to find the lines. Range (0..1].
:param sigma_scale:Sigma for Gaussian filter. It is computed as sigma = _sigma_scale/_scale.
:param quant:Bound to the quantization error on the gradient norm.
:param ang_th:Gradient angle tolerance in degrees.
:param log_eps:Detection threshold: -log10(NFA) > log_eps. Used only when advancent refinement is chosen.
:param density_th:Minimal density of aligned region points in the enclosing rectangle.
:param n_bins:Number of bins in pseudo-ordering of gradient modulus.
The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want to edit those, as to tailor it for their own application.
LineSegmentDetector::detect
---------------------------
Finds lines in the input image. See the lsd_lines.cpp sample for possible usage.
:param lines:A vector of Vec4i elements specifying the beginning and ending point of a line. Where Vec4i is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly oriented depending on the gradient.
:param width:Vector of widths of the regions, where the lines are found. E.g. Width of line.
:param prec:Vector of precisions with which the lines are found.
:param nfa:Vector containing number of false alarms in the line region, with precision of 10%. The bigger the value, logarithmically better the detection.
* -1 corresponds to 10 mean false alarms
* 0 corresponds to 1 mean false alarm
* 1 corresponds to 0.1 mean false alarms
This vector will be calculated only when the objects type is LSD_REFINE_ADV.
This is the output of the default parameters of the algorithm on the above shown image.
..image:: pics/building_lsd.png
..note::
* An example using the LineSegmentDetector can be found at opencv_source_code/samples/cpp/lsd_lines.cpp
:param image:Optional image, where the lines will be drawn. The image should be color(3-channel) in order for lines1 and lines2 to be drawn in the above mentioned colors.
..[Canny86] J. Canny. *A Computational Approach to Edge Detection*, IEEE Trans. on Pattern Analysis and Machine Intelligence, 8(6), pp. 679-698 (1986).
..[Matas00] Matas, J. and Galambos, C. and Kittler, J.V., *Robust Detection of Lines Using the Progressive Probabilistic Hough Transform*. CVIU 78 1, pp 119-137 (2000)
..[Shi94] J. Shi and C. Tomasi. *Good Features to Track*. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 593-600, June 1994.
..[Yuen90] Yuen, H. K. and Princen, J. and Illingworth, J. and Kittler, J., *Comparative study of Hough transform methods for circle finding*. Image Vision Comput. 8 1, pp 71–77 (1990)
..[Rafael12] Rafael Grompone von Gioi, Jérémie Jakubowicz, Jean-Michel Morel, and Gregory Randall, LSD: a Line Segment Detector, Image Processing On Line, vol. 2012. http://dx.doi.org/10.5201/ipol.2012.gjmr-lsd