Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

186 lines
6.5 KiB

#include <opencv2/dnn.hpp>
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
using namespace cv::dnn;
#include <fstream>
#include <iostream>
#include <cstdlib>
using namespace std;
const size_t inWidth = 300;
const size_t inHeight = 300;
const float inScaleFactor = 0.007843f;
const float meanVal = 127.5;
const char* classNames[] = {"background",
"aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair",
"cow", "diningtable", "dog", "horse",
"motorbike", "person", "pottedplant",
"sheep", "sofa", "train", "tvmonitor"};
const char* params
= "{ help | false | print usage }"
"{ proto | MobileNetSSD_deploy.prototxt | model configuration }"
"{ model | MobileNetSSD_deploy.caffemodel | model weights }"
"{ camera_device | 0 | camera device number }"
"{ video | | video or image for detection}"
"{ out | | path to output video file}"
"{ min_confidence | 0.2 | min confidence }"
"{ opencl | false | enable OpenCL }"
;
int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv, params);
parser.about("This sample uses MobileNet Single-Shot Detector "
"(https://arxiv.org/abs/1704.04861) "
"to detect objects on camera/video/image.\n"
".caffemodel model's file is available here: "
"https://github.com/chuanqi305/MobileNet-SSD\n"
"Default network is 300x300 and 20-classes VOC.\n");
if (parser.get<bool>("help") || argc == 1)
{
parser.printMessage();
return 0;
}
String modelConfiguration = parser.get<string>("proto");
String modelBinary = parser.get<string>("model");
CV_Assert(!modelConfiguration.empty() && !modelBinary.empty());
//! [Initialize network]
dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary);
//! [Initialize network]
if (parser.get<bool>("opencl"))
{
net.setPreferableTarget(DNN_TARGET_OPENCL);
}
if (net.empty())
{
cerr << "Can't load network by using the following files: " << endl;
cerr << "prototxt: " << modelConfiguration << endl;
cerr << "caffemodel: " << modelBinary << endl;
cerr << "Models can be downloaded here:" << endl;
cerr << "https://github.com/chuanqi305/MobileNet-SSD" << endl;
exit(-1);
}
VideoCapture cap;
if (!parser.has("video"))
{
int cameraDevice = parser.get<int>("camera_device");
cap = VideoCapture(cameraDevice);
if(!cap.isOpened())
{
cout << "Couldn't find camera: " << cameraDevice << endl;
return -1;
}
}
else
{
cap.open(parser.get<String>("video"));
if(!cap.isOpened())
{
cout << "Couldn't open image or video: " << parser.get<String>("video") << endl;
return -1;
}
}
//Acquire input size
Size inVideoSize((int) cap.get(CV_CAP_PROP_FRAME_WIDTH),
(int) cap.get(CV_CAP_PROP_FRAME_HEIGHT));
double fps = cap.get(CV_CAP_PROP_FPS);
int fourcc = static_cast<int>(cap.get(CV_CAP_PROP_FOURCC));
VideoWriter outputVideo;
outputVideo.open(parser.get<String>("out") ,
(fourcc != 0 ? fourcc : VideoWriter::fourcc('M','J','P','G')),
(fps != 0 ? fps : 10.0), inVideoSize, true);
for(;;)
{
Mat frame;
cap >> frame; // get a new frame from camera/video or read image
if (frame.empty())
{
waitKey();
break;
}
if (frame.channels() == 4)
cvtColor(frame, frame, COLOR_BGRA2BGR);
//! [Prepare blob]
Mat inputBlob = blobFromImage(frame, inScaleFactor,
Size(inWidth, inHeight),
Scalar(meanVal, meanVal, meanVal),
false, false); //Convert Mat to batch of images
//! [Prepare blob]
//! [Set input blob]
net.setInput(inputBlob); //set the network input
//! [Set input blob]
//! [Make forward pass]
Mat detection = net.forward(); //compute output
//! [Make forward pass]
vector<double> layersTimings;
double freq = getTickFrequency() / 1000;
double time = net.getPerfProfile(layersTimings) / freq;
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());
if (!outputVideo.isOpened())
{
putText(frame, format("FPS: %.2f ; time: %.2f ms", 1000.f/time, time),
Point(20,20), 0, 0.5, Scalar(0,0,255));
}
else
cout << "Inference time, ms: " << time << endl;
float confidenceThreshold = parser.get<float>("min_confidence");
for(int i = 0; i < detectionMat.rows; i++)
{
float confidence = detectionMat.at<float>(i, 2);
if(confidence > confidenceThreshold)
{
size_t objectClass = (size_t)(detectionMat.at<float>(i, 1));
int left = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols);
int top = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows);
int right = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols);
int bottom = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows);
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 255, 0));
String label = format("%s: %.2f", classNames[objectClass], confidence);
int baseLine = 0;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = max(top, labelSize.height);
rectangle(frame, Point(left, top - labelSize.height),
Point(left + labelSize.width, top + baseLine),
Scalar(255, 255, 255), CV_FILLED);
putText(frame, label, Point(left, top),
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0));
}
}
if (outputVideo.isOpened())
outputVideo << frame;
imshow("detections", frame);
if (waitKey(1) >= 0) break;
}
return 0;
} // main