|
|
|
#!/usr/bin/env python
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import sys
|
|
|
|
import ctypes
|
|
|
|
from functools import partial
|
|
|
|
from collections import namedtuple
|
|
|
|
import sys
|
|
|
|
|
|
|
|
if sys.version_info[0] < 3:
|
|
|
|
from collections import Sequence
|
|
|
|
else:
|
|
|
|
from collections.abc import Sequence
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import cv2 as cv
|
|
|
|
|
|
|
|
from tests_common import NewOpenCVTests, unittest
|
|
|
|
|
|
|
|
|
|
|
|
def is_numeric(dtype):
|
|
|
|
return np.issubdtype(dtype, np.integer) or np.issubdtype(dtype, np.floating)
|
|
|
|
|
|
|
|
|
|
|
|
def get_limits(dtype):
|
|
|
|
if not is_numeric(dtype):
|
|
|
|
return None, None
|
|
|
|
|
|
|
|
if np.issubdtype(dtype, np.integer):
|
|
|
|
info = np.iinfo(dtype)
|
|
|
|
else:
|
|
|
|
info = np.finfo(dtype)
|
|
|
|
return info.min, info.max
|
|
|
|
|
|
|
|
|
|
|
|
def get_conversion_error_msg(value, expected, actual):
|
|
|
|
return 'Conversion "{}" of type "{}" failed\nExpected: "{}" vs Actual "{}"'.format(
|
|
|
|
value, type(value).__name__, expected, actual
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def get_no_exception_msg(value):
|
|
|
|
return 'Exception is not risen for {} of type {}'.format(value, type(value).__name__)
|
|
|
|
|
|
|
|
class Bindings(NewOpenCVTests):
|
|
|
|
|
|
|
|
def test_inheritance(self):
|
|
|
|
bm = cv.StereoBM_create()
|
|
|
|
bm.getPreFilterCap() # from StereoBM
|
|
|
|
bm.getBlockSize() # from SteroMatcher
|
|
|
|
|
|
|
|
boost = cv.ml.Boost_create()
|
|
|
|
boost.getBoostType() # from ml::Boost
|
|
|
|
boost.getMaxDepth() # from ml::DTrees
|
|
|
|
boost.isClassifier() # from ml::StatModel
|
|
|
|
|
|
|
|
def test_raiseGeneralException(self):
|
|
|
|
with self.assertRaises((cv.error,),
|
|
|
|
msg='C++ exception is not propagated to Python in the right way') as cm:
|
|
|
|
cv.utils.testRaiseGeneralException()
|
|
|
|
self.assertEqual(str(cm.exception), 'exception text')
|
|
|
|
|
|
|
|
def test_redirectError(self):
|
|
|
|
try:
|
|
|
|
cv.imshow("", None) # This causes an assert
|
|
|
|
self.assertEqual("Dead code", 0)
|
|
|
|
except cv.error as _e:
|
|
|
|
pass
|
|
|
|
|
|
|
|
handler_called = [False]
|
|
|
|
|
|
|
|
def test_error_handler(status, func_name, err_msg, file_name, line):
|
|
|
|
handler_called[0] = True
|
|
|
|
|
|
|
|
cv.redirectError(test_error_handler)
|
|
|
|
try:
|
|
|
|
cv.imshow("", None) # This causes an assert
|
|
|
|
self.assertEqual("Dead code", 0)
|
|
|
|
except cv.error as _e:
|
|
|
|
self.assertEqual(handler_called[0], True)
|
|
|
|
pass
|
|
|
|
|
|
|
|
cv.redirectError(None)
|
|
|
|
try:
|
|
|
|
cv.imshow("", None) # This causes an assert
|
|
|
|
self.assertEqual("Dead code", 0)
|
|
|
|
except cv.error as _e:
|
|
|
|
pass
|
|
|
|
|
|
|
|
def test_overload_resolution_can_choose_correct_overload(self):
|
|
|
|
val = 123
|
|
|
|
point = (51, 165)
|
|
|
|
self.assertEqual(cv.utils.testOverloadResolution(val, point),
|
|
|
|
'overload (int={}, point=(x={}, y={}))'.format(val, *point),
|
|
|
|
"Can't select first overload if all arguments are provided as positional")
|
|
|
|
|
|
|
|
self.assertEqual(cv.utils.testOverloadResolution(val, point=point),
|
|
|
|
'overload (int={}, point=(x={}, y={}))'.format(val, *point),
|
|
|
|
"Can't select first overload if one of the arguments are provided as keyword")
|
|
|
|
|
|
|
|
self.assertEqual(cv.utils.testOverloadResolution(val),
|
|
|
|
'overload (int={}, point=(x=42, y=24))'.format(val),
|
|
|
|
"Can't select first overload if one of the arguments has default value")
|
|
|
|
|
|
|
|
rect = (1, 5, 10, 23)
|
|
|
|
self.assertEqual(cv.utils.testOverloadResolution(rect),
|
|
|
|
'overload (rect=(x={}, y={}, w={}, h={}))'.format(*rect),
|
|
|
|
"Can't select second overload if all arguments are provided")
|
|
|
|
|
|
|
|
def test_overload_resolution_fails(self):
|
|
|
|
def test_overload_resolution(msg, *args, **kwargs):
|
|
|
|
no_exception_msg = 'Overload resolution failed without any exception for: "{}"'.format(msg)
|
|
|
|
wrong_exception_msg = 'Overload resolution failed with wrong exception type for: "{}"'.format(msg)
|
|
|
|
with self.assertRaises((cv.error, Exception), msg=no_exception_msg) as cm:
|
|
|
|
res = cv.utils.testOverloadResolution(*args, **kwargs)
|
|
|
|
self.fail("Unexpected result for {}: '{}'".format(msg, res))
|
|
|
|
self.assertEqual(type(cm.exception), cv.error, wrong_exception_msg)
|
|
|
|
|
|
|
|
test_overload_resolution('wrong second arg type (keyword arg)', 5, point=(1, 2, 3))
|
|
|
|
test_overload_resolution('wrong second arg type', 5, 2)
|
|
|
|
test_overload_resolution('wrong first arg', 3.4, (12, 21))
|
|
|
|
test_overload_resolution('wrong first arg, no second arg', 4.5)
|
|
|
|
test_overload_resolution('wrong args number for first overload', 3, (12, 21), 123)
|
|
|
|
test_overload_resolution('wrong args number for second overload', (3, 12, 12, 1), (12, 21))
|
|
|
|
# One of the common problems
|
|
|
|
test_overload_resolution('rect with float coordinates', (4.5, 4, 2, 1))
|
|
|
|
test_overload_resolution('rect with wrong number of coordinates', (4, 4, 1))
|
|
|
|
|
|
|
|
def test_properties_with_reserved_keywords_names_are_transformed(self):
|
|
|
|
obj = cv.utils.ClassWithKeywordProperties(except_arg=23)
|
|
|
|
self.assertTrue(hasattr(obj, "lambda_"),
|
|
|
|
msg="Class doesn't have RW property with converted name")
|
|
|
|
try:
|
|
|
|
obj.lambda_ = 32
|
|
|
|
except Exception as e:
|
|
|
|
self.fail("Failed to set value to RW property. Error: {}".format(e))
|
|
|
|
|
|
|
|
self.assertTrue(hasattr(obj, "except_"),
|
|
|
|
msg="Class doesn't have readonly property with converted name")
|
|
|
|
self.assertEqual(obj.except_, 23,
|
|
|
|
msg="Can't access readonly property value")
|
|
|
|
with self.assertRaises(AttributeError):
|
|
|
|
obj.except_ = 32
|
|
|
|
|
|
|
|
def test_maketype(self):
|
|
|
|
data = {
|
|
|
|
cv.CV_8UC3: [cv.CV_8U, 3, cv.CV_8UC],
|
|
|
|
cv.CV_16SC1: [cv.CV_16S, 1, cv.CV_16SC],
|
|
|
|
cv.CV_32FC4: [cv.CV_32F, 4, cv.CV_32FC],
|
|
|
|
cv.CV_64FC2: [cv.CV_64F, 2, cv.CV_64FC],
|
|
|
|
cv.CV_8SC4: [cv.CV_8S, 4, cv.CV_8SC],
|
|
|
|
cv.CV_16UC2: [cv.CV_16U, 2, cv.CV_16UC],
|
|
|
|
cv.CV_32SC1: [cv.CV_32S, 1, cv.CV_32SC],
|
|
|
|
cv.CV_16FC3: [cv.CV_16F, 3, cv.CV_16FC],
|
|
|
|
}
|
|
|
|
for ref, (depth, channels, func) in data.items():
|
|
|
|
self.assertEqual(ref, cv.CV_MAKETYPE(depth, channels))
|
|
|
|
self.assertEqual(ref, func(channels))
|
|
|
|
|
|
|
|
|
|
|
|
class Arguments(NewOpenCVTests):
|
|
|
|
|
|
|
|
def _try_to_convert(self, conversion, value):
|
|
|
|
try:
|
|
|
|
result = conversion(value).lower()
|
|
|
|
except Exception as e:
|
|
|
|
self.fail(
|
|
|
|
'{} "{}" is risen for conversion {} of type {}'.format(
|
|
|
|
type(e).__name__, e, value, type(value).__name__
|
|
|
|
)
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
return result
|
|
|
|
|
|
|
|
def test_InputArray(self):
|
|
|
|
res1 = cv.utils.dumpInputArray(None)
|
|
|
|
# self.assertEqual(res1, "InputArray: noArray()") # not supported
|
|
|
|
self.assertEqual(res1, "InputArray: empty()=true kind=0x00010000 flags=0x01010000 total(-1)=0 dims(-1)=0 size(-1)=0x0 type(-1)=CV_8UC1")
|
|
|
|
res2_1 = cv.utils.dumpInputArray((1, 2))
|
|
|
|
self.assertEqual(res2_1, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=2 dims(-1)=2 size(-1)=1x2 type(-1)=CV_64FC1")
|
|
|
|
res2_2 = cv.utils.dumpInputArray(1.5) # Scalar(1.5, 1.5, 1.5, 1.5)
|
|
|
|
self.assertEqual(res2_2, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=4 dims(-1)=2 size(-1)=1x4 type(-1)=CV_64FC1")
|
|
|
|
a = np.array([[1, 2], [3, 4], [5, 6]])
|
|
|
|
res3 = cv.utils.dumpInputArray(a) # 32SC1
|
|
|
|
self.assertEqual(res3, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=6 dims(-1)=2 size(-1)=2x3 type(-1)=CV_32SC1")
|
|
|
|
a = np.array([[[1, 2], [3, 4], [5, 6]]], dtype='f')
|
|
|
|
res4 = cv.utils.dumpInputArray(a) # 32FC2
|
|
|
|
self.assertEqual(res4, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=3 dims(-1)=2 size(-1)=3x1 type(-1)=CV_32FC2")
|
|
|
|
a = np.array([[[1, 2]], [[3, 4]], [[5, 6]]], dtype=float)
|
|
|
|
res5 = cv.utils.dumpInputArray(a) # 64FC2
|
|
|
|
self.assertEqual(res5, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=3 dims(-1)=2 size(-1)=1x3 type(-1)=CV_64FC2")
|
|
|
|
a = np.zeros((2,3,4), dtype='f')
|
|
|
|
res6 = cv.utils.dumpInputArray(a)
|
|
|
|
self.assertEqual(res6, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=6 dims(-1)=2 size(-1)=3x2 type(-1)=CV_32FC4")
|
|
|
|
a = np.zeros((2,3,4,5), dtype='f')
|
|
|
|
res7 = cv.utils.dumpInputArray(a)
|
|
|
|
self.assertEqual(res7, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=120 dims(-1)=4 size(-1)=[2 3 4 5] type(-1)=CV_32FC1")
|
|
|
|
|
|
|
|
def test_InputArrayOfArrays(self):
|
|
|
|
res1 = cv.utils.dumpInputArrayOfArrays(None)
|
|
|
|
# self.assertEqual(res1, "InputArray: noArray()") # not supported
|
|
|
|
self.assertEqual(res1, "InputArrayOfArrays: empty()=true kind=0x00050000 flags=0x01050000 total(-1)=0 dims(-1)=1 size(-1)=0x0")
|
|
|
|
res2_1 = cv.utils.dumpInputArrayOfArrays((1, 2)) # { Scalar:all(1), Scalar::all(2) }
|
|
|
|
self.assertEqual(res2_1, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=2 dims(-1)=1 size(-1)=2x1 type(0)=CV_64FC1 dims(0)=2 size(0)=1x4")
|
|
|
|
res2_2 = cv.utils.dumpInputArrayOfArrays([1.5])
|
|
|
|
self.assertEqual(res2_2, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=1 dims(-1)=1 size(-1)=1x1 type(0)=CV_64FC1 dims(0)=2 size(0)=1x4")
|
|
|
|
a = np.array([[1, 2], [3, 4], [5, 6]])
|
|
|
|
b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
|
|
|
res3 = cv.utils.dumpInputArrayOfArrays([a, b])
|
|
|
|
self.assertEqual(res3, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=2 dims(-1)=1 size(-1)=2x1 type(0)=CV_32SC1 dims(0)=2 size(0)=2x3")
|
|
|
|
c = np.array([[[1, 2], [3, 4], [5, 6]]], dtype='f')
|
|
|
|
res4 = cv.utils.dumpInputArrayOfArrays([c, a, b])
|
|
|
|
self.assertEqual(res4, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=3 dims(-1)=1 size(-1)=3x1 type(0)=CV_32FC2 dims(0)=2 size(0)=3x1")
|
|
|
|
a = np.zeros((2,3,4), dtype='f')
|
|
|
|
res5 = cv.utils.dumpInputArrayOfArrays([a, b])
|
|
|
|
self.assertEqual(res5, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=2 dims(-1)=1 size(-1)=2x1 type(0)=CV_32FC4 dims(0)=2 size(0)=3x2")
|
|
|
|
# TODO: fix conversion error
|
|
|
|
#a = np.zeros((2,3,4,5), dtype='f')
|
|
|
|
#res6 = cv.utils.dumpInputArray([a, b])
|
|
|
|
#self.assertEqual(res6, "InputArrayOfArrays: empty()=false kind=0x00050000 flags=0x01050000 total(-1)=2 dims(-1)=1 size(-1)=2x1 type(0)=CV_32FC1 dims(0)=4 size(0)=[2 3 4 5]")
|
|
|
|
|
|
|
|
def test_unsupported_numpy_data_types_string_description(self):
|
|
|
|
for dtype in (object, str, np.complex128):
|
|
|
|
test_array = np.zeros((4, 4, 3), dtype=dtype)
|
|
|
|
msg = ".*type = {} is not supported".format(test_array.dtype)
|
|
|
|
if sys.version_info[0] < 3:
|
|
|
|
self.assertRaisesRegexp(
|
|
|
|
Exception, msg, cv.utils.dumpInputArray, test_array
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
Exception, msg, cv.utils.dumpInputArray, test_array
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_numpy_writeable_flag_is_preserved(self):
|
|
|
|
array = np.zeros((10, 10, 1), dtype=np.uint8)
|
|
|
|
array.setflags(write=False)
|
|
|
|
with self.assertRaises(Exception):
|
|
|
|
cv.rectangle(array, (0, 0), (5, 5), (255), 2)
|
|
|
|
|
|
|
|
def test_20968(self):
|
|
|
|
pixel = np.uint8([[[40, 50, 200]]])
|
|
|
|
_ = cv.cvtColor(pixel, cv.COLOR_RGB2BGR) # should not raise exception
|
|
|
|
|
|
|
|
def test_parse_to_bool_convertible(self):
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpBool)
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
for convertible_true in (True, 1, 64, np.int8(123), np.int16(11), np.int32(2),
|
|
|
|
np.int64(1), np.bool_(12)):
|
|
|
|
actual = try_to_convert(convertible_true)
|
|
|
|
self.assertEqual('bool: true', actual,
|
|
|
|
msg=get_conversion_error_msg(convertible_true, 'bool: true', actual))
|
|
|
|
|
|
|
|
for convertible_false in (False, 0, np.uint8(0), np.bool_(0), np.int_(0)):
|
|
|
|
actual = try_to_convert(convertible_false)
|
|
|
|
self.assertEqual('bool: false', actual,
|
|
|
|
msg=get_conversion_error_msg(convertible_false, 'bool: false', actual))
|
|
|
|
|
|
|
|
def test_parse_to_bool_not_convertible(self):
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
for not_convertible in (1.2, np.float32(2.3), 's', 'str', (1, 2), [1, 2], complex(1, 1),
|
|
|
|
complex(imag=2), complex(1.1), np.array([1, 0], dtype=bool)):
|
|
|
|
with self.assertRaises((TypeError, OverflowError),
|
|
|
|
msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpBool(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_to_bool_convertible_extra(self):
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpBool)
|
|
|
|
_, max_size_t = get_limits(ctypes.c_size_t)
|
|
|
|
for convertible_true in (-1, max_size_t):
|
|
|
|
actual = try_to_convert(convertible_true)
|
|
|
|
self.assertEqual('bool: true', actual,
|
|
|
|
msg=get_conversion_error_msg(convertible_true, 'bool: true', actual))
|
|
|
|
|
|
|
|
def test_parse_to_bool_not_convertible_extra(self):
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
for not_convertible in (np.array([False]), np.array([True])):
|
|
|
|
with self.assertRaises((TypeError, OverflowError),
|
|
|
|
msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpBool(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_to_int_convertible(self):
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpInt)
|
|
|
|
min_int, max_int = get_limits(ctypes.c_int)
|
|
|
|
for convertible in (-10, -1, 2, int(43.2), np.uint8(15), np.int8(33), np.int16(-13),
|
|
|
|
np.int32(4), np.int64(345), (23), min_int, max_int, np.int_(33)):
|
|
|
|
expected = 'int: {0:d}'.format(convertible)
|
|
|
|
actual = try_to_convert(convertible)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(convertible, expected, actual))
|
|
|
|
|
|
|
|
def test_parse_to_int_not_convertible(self):
|
|
|
|
min_int, max_int = get_limits(ctypes.c_int)
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
for not_convertible in (1.2, float(3), np.float32(4), np.double(45), 's', 'str',
|
|
|
|
np.array([1, 2]), (1,), [1, 2], min_int - 1, max_int + 1,
|
|
|
|
complex(1, 1), complex(imag=2), complex(1.1)):
|
|
|
|
with self.assertRaises((TypeError, OverflowError, ValueError),
|
|
|
|
msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpInt(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_to_int_not_convertible_extra(self):
|
|
|
|
for not_convertible in (np.bool_(True), True, False, np.float32(2.3),
|
|
|
|
np.array([3, ], dtype=int), np.array([-2, ], dtype=np.int32),
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
np.array([11, ], dtype=np.uint8)):
|
|
|
|
with self.assertRaises((TypeError, OverflowError),
|
|
|
|
msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpInt(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_to_int64_convertible(self):
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpInt64)
|
|
|
|
min_int64, max_int64 = get_limits(ctypes.c_longlong)
|
|
|
|
for convertible in (-10, -1, 2, int(43.2), np.uint8(15), np.int8(33), np.int16(-13),
|
|
|
|
np.int32(4), np.int64(345), (23), min_int64, max_int64, np.int_(33)):
|
|
|
|
expected = 'int64: {0:d}'.format(convertible)
|
|
|
|
actual = try_to_convert(convertible)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(convertible, expected, actual))
|
|
|
|
|
|
|
|
def test_parse_to_int64_not_convertible(self):
|
|
|
|
min_int64, max_int64 = get_limits(ctypes.c_longlong)
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
for not_convertible in (1.2, np.float32(4), float(3), np.double(45), 's', 'str',
|
|
|
|
np.array([1, 2]), (1,), [1, 2], min_int64 - 1, max_int64 + 1,
|
|
|
|
complex(1, 1), complex(imag=2), complex(1.1), np.bool_(True),
|
|
|
|
True, False, np.float32(2.3), np.array([3, ], dtype=int),
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
np.array([-2, ], dtype=np.int32), np.array([11, ], dtype=np.uint8)):
|
|
|
|
with self.assertRaises((TypeError, OverflowError, ValueError),
|
|
|
|
msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpInt64(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_to_size_t_convertible(self):
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpSizeT)
|
|
|
|
_, max_uint = get_limits(ctypes.c_uint)
|
|
|
|
for convertible in (2, max_uint, (12), np.uint8(34), np.int8(12), np.int16(23),
|
|
|
|
np.int32(123), np.int64(344), np.uint64(3), np.uint16(2), np.uint32(5),
|
|
|
|
np.uint(44)):
|
|
|
|
expected = 'size_t: {0:d}'.format(convertible).lower()
|
|
|
|
actual = try_to_convert(convertible)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(convertible, expected, actual))
|
|
|
|
|
|
|
|
def test_parse_to_size_t_not_convertible(self):
|
|
|
|
min_long, _ = get_limits(ctypes.c_long)
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
for not_convertible in (1.2, True, False, np.bool_(True), np.float32(4), float(3),
|
|
|
|
np.double(45), 's', 'str', np.array([1, 2]), (1,), [1, 2],
|
|
|
|
np.float64(6), complex(1, 1), complex(imag=2), complex(1.1),
|
|
|
|
-1, min_long, np.int8(-35)):
|
|
|
|
with self.assertRaises((TypeError, OverflowError),
|
|
|
|
msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpSizeT(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_to_size_t_convertible_extra(self):
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpSizeT)
|
|
|
|
_, max_size_t = get_limits(ctypes.c_size_t)
|
|
|
|
for convertible in (max_size_t,):
|
|
|
|
expected = 'size_t: {0:d}'.format(convertible).lower()
|
|
|
|
actual = try_to_convert(convertible)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(convertible, expected, actual))
|
|
|
|
|
|
|
|
def test_parse_to_size_t_not_convertible_extra(self):
|
|
|
|
for not_convertible in (np.bool_(True), True, False, np.array([123, ], dtype=np.uint8),):
|
|
|
|
with self.assertRaises((TypeError, OverflowError),
|
|
|
|
msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpSizeT(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_to_float_convertible(self):
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpFloat)
|
|
|
|
min_float, max_float = get_limits(ctypes.c_float)
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
for convertible in (2, -13, 1.24, np.float32(32.45), float(32), np.double(12.23),
|
|
|
|
np.float32(-12.3), np.float64(3.22), np.float_(-1.5), min_float,
|
|
|
|
max_float, np.inf, -np.inf, float('Inf'), -float('Inf'),
|
|
|
|
np.double(np.inf), np.double(-np.inf), np.double(float('Inf')),
|
|
|
|
np.double(-float('Inf'))):
|
|
|
|
expected = 'Float: {0:.2f}'.format(convertible).lower()
|
|
|
|
actual = try_to_convert(convertible)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(convertible, expected, actual))
|
|
|
|
|
|
|
|
# Workaround for Windows NaN tests due to Visual C runtime
|
|
|
|
# special floating point values (indefinite NaN)
|
|
|
|
for nan in (float('NaN'), np.nan, np.float32(np.nan), np.double(np.nan),
|
|
|
|
np.double(float('NaN'))):
|
|
|
|
actual = try_to_convert(nan)
|
|
|
|
self.assertIn('nan', actual, msg="Can't convert nan of type {} to float. "
|
|
|
|
"Actual: {}".format(type(nan).__name__, actual))
|
|
|
|
|
|
|
|
min_double, max_double = get_limits(ctypes.c_double)
|
|
|
|
for inf in (min_float * 10, max_float * 10, min_double, max_double):
|
|
|
|
expected = 'float: {}inf'.format('-' if inf < 0 else '')
|
|
|
|
actual = try_to_convert(inf)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(inf, expected, actual))
|
|
|
|
|
|
|
|
def test_parse_to_float_not_convertible(self):
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
for not_convertible in ('s', 'str', (12,), [1, 2], np.array([1, 2], dtype=float),
|
|
|
|
np.array([1, 2], dtype=np.double), complex(1, 1), complex(imag=2),
|
|
|
|
complex(1.1)):
|
|
|
|
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpFloat(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_to_float_not_convertible_extra(self):
|
|
|
|
for not_convertible in (np.bool_(False), True, False, np.array([123, ], dtype=int),
|
|
|
|
np.array([1., ]), np.array([False]),
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
np.array([True])):
|
|
|
|
with self.assertRaises((TypeError, OverflowError),
|
|
|
|
msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpFloat(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_to_double_convertible(self):
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpDouble)
|
|
|
|
min_float, max_float = get_limits(ctypes.c_float)
|
|
|
|
min_double, max_double = get_limits(ctypes.c_double)
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
for convertible in (2, -13, 1.24, np.float32(32.45), float(2), np.double(12.23),
|
|
|
|
np.float32(-12.3), np.float64(3.22), np.float_(-1.5), min_float,
|
|
|
|
max_float, min_double, max_double, np.inf, -np.inf, float('Inf'),
|
|
|
|
-float('Inf'), np.double(np.inf), np.double(-np.inf),
|
|
|
|
np.double(float('Inf')), np.double(-float('Inf'))):
|
|
|
|
expected = 'Double: {0:.2f}'.format(convertible).lower()
|
|
|
|
actual = try_to_convert(convertible)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(convertible, expected, actual))
|
|
|
|
|
|
|
|
# Workaround for Windows NaN tests due to Visual C runtime
|
|
|
|
# special floating point values (indefinite NaN)
|
|
|
|
for nan in (float('NaN'), np.nan, np.double(np.nan),
|
|
|
|
np.double(float('NaN'))):
|
|
|
|
actual = try_to_convert(nan)
|
|
|
|
self.assertIn('nan', actual, msg="Can't convert nan of type {} to double. "
|
|
|
|
"Actual: {}".format(type(nan).__name__, actual))
|
|
|
|
|
|
|
|
def test_parse_to_double_not_convertible(self):
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
for not_convertible in ('s', 'str', (12,), [1, 2], np.array([1, 2], dtype=np.float32),
|
|
|
|
np.array([1, 2], dtype=np.double), complex(1, 1), complex(imag=2),
|
|
|
|
complex(1.1)):
|
|
|
|
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpDouble(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_to_double_not_convertible_extra(self):
|
|
|
|
for not_convertible in (np.bool_(False), True, False, np.array([123, ], dtype=int),
|
|
|
|
np.array([1., ]), np.array([False]),
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
np.array([12.4], dtype=np.double), np.array([True])):
|
|
|
|
with self.assertRaises((TypeError, OverflowError),
|
|
|
|
msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpDouble(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_to_cstring_convertible(self):
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpCString)
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
for convertible in ('', 's', 'str', str(123), ('char'), np.str_('test2')):
|
|
|
|
expected = 'string: ' + convertible
|
|
|
|
actual = try_to_convert(convertible)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(convertible, expected, actual))
|
|
|
|
|
|
|
|
def test_parse_to_cstring_not_convertible(self):
|
|
|
|
for not_convertible in ((12,), ('t', 'e', 's', 't'), np.array(['123', ]),
|
|
|
|
np.array(['t', 'e', 's', 't']), 1, -1.4, True, False, None):
|
|
|
|
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpCString(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_to_string_convertible(self):
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpString)
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
for convertible in (None, '', 's', 'str', str(123), np.str_('test2')):
|
|
|
|
expected = 'string: ' + (convertible if convertible else '')
|
|
|
|
actual = try_to_convert(convertible)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(convertible, expected, actual))
|
|
|
|
|
|
|
|
def test_parse_to_string_not_convertible(self):
|
|
|
|
for not_convertible in ((12,), ('t', 'e', 's', 't'), np.array(['123', ]),
|
|
|
|
np.array(['t', 'e', 's', 't']), 1, True, False):
|
|
|
|
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpString(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_to_rect_convertible(self):
|
|
|
|
Rect = namedtuple('Rect', ('x', 'y', 'w', 'h'))
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpRect)
|
|
|
|
for convertible in ((1, 2, 4, 5), [5, 3, 10, 20], np.array([10, 20, 23, 10]),
|
|
|
|
Rect(10, 30, 40, 55), tuple(np.array([40, 20, 24, 20])),
|
|
|
|
list(np.array([20, 40, 30, 35]))):
|
|
|
|
expected = 'rect: (x={}, y={}, w={}, h={})'.format(*convertible)
|
|
|
|
actual = try_to_convert(convertible)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(convertible, expected, actual))
|
|
|
|
|
|
|
|
def test_parse_to_rect_not_convertible(self):
|
|
|
|
for not_convertible in (np.empty(shape=(4, 1)), (), [], np.array([]), (12, ),
|
|
|
|
[3, 4, 5, 10, 123], {1: 2, 3:4, 5:10, 6:30},
|
|
|
|
'1234', np.array([1, 2, 3, 4], dtype=np.float32),
|
|
|
|
np.array([[1, 2], [3, 4], [5, 6], [6, 8]]), (1, 2, 5, 1.5)):
|
|
|
|
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpRect(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_to_rotated_rect_convertible(self):
|
|
|
|
RotatedRect = namedtuple('RotatedRect', ('center', 'size', 'angle'))
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpRotatedRect)
|
|
|
|
for convertible in (((2.5, 2.5), (10., 20.), 12.5), [[1.5, 10.5], (12.5, 51.5), 10],
|
|
|
|
RotatedRect((10, 40), np.array([10.5, 20.5]), 5),
|
|
|
|
np.array([[10, 6], [50, 50], 5.5], dtype=object)):
|
|
|
|
center, size, angle = convertible
|
|
|
|
expected = 'rotated_rect: (c_x={:.6f}, c_y={:.6f}, w={:.6f},' \
|
|
|
|
' h={:.6f}, a={:.6f})'.format(center[0], center[1],
|
|
|
|
size[0], size[1], angle)
|
|
|
|
actual = try_to_convert(convertible)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(convertible, expected, actual))
|
|
|
|
|
|
|
|
|
|
|
|
def test_wrap_rotated_rect(self):
|
|
|
|
center = (34.5, 52.)
|
|
|
|
size = (565.0, 140.0)
|
|
|
|
angle = -177.5
|
|
|
|
rect1 = cv.RotatedRect(center, size, angle)
|
|
|
|
self.assertEqual(rect1.center, center)
|
|
|
|
self.assertEqual(rect1.size, size)
|
|
|
|
self.assertEqual(rect1.angle, angle)
|
|
|
|
|
|
|
|
pts = [[ 319.7845, -5.6109037],
|
|
|
|
[ 313.6778, 134.25586],
|
|
|
|
[-250.78448, 109.6109],
|
|
|
|
[-244.6778, -30.25586]]
|
|
|
|
self.assertLess(np.max(np.abs(rect1.points() - pts)), 1e-4)
|
|
|
|
|
|
|
|
rect2 = cv.RotatedRect(pts[0], pts[1], pts[2])
|
|
|
|
_, inter_pts = cv.rotatedRectangleIntersection(rect1, rect2)
|
|
|
|
self.assertLess(np.max(np.abs(inter_pts.reshape(-1, 2) - pts)), 1e-4)
|
|
|
|
|
|
|
|
|
|
|
|
def test_parse_to_rotated_rect_not_convertible(self):
|
|
|
|
for not_convertible in ([], (), np.array([]), (123, (45, 34), 1), {1: 2, 3: 4}, 123,
|
|
|
|
np.array([[123, 123, 14], [1, 3], 56], dtype=object), '123'):
|
|
|
|
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpRotatedRect(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_to_term_criteria_convertible(self):
|
|
|
|
TermCriteria = namedtuple('TermCriteria', ('type', 'max_count', 'epsilon'))
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpTermCriteria)
|
|
|
|
for convertible in ((1, 10, 1e-3), [2, 30, 1e-1], np.array([10, 20, 0.5], dtype=object),
|
|
|
|
TermCriteria(0, 5, 0.1)):
|
|
|
|
expected = 'term_criteria: (type={}, max_count={}, epsilon={:.6f}'.format(*convertible)
|
|
|
|
actual = try_to_convert(convertible)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(convertible, expected, actual))
|
|
|
|
|
|
|
|
def test_parse_to_term_criteria_not_convertible(self):
|
|
|
|
for not_convertible in ([], (), np.array([]), [1, 4], (10,), (1.5, 34, 0.1),
|
|
|
|
{1: 5, 3: 5, 10: 10}, '145'):
|
|
|
|
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpTermCriteria(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_to_range_convertible_to_all(self):
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpRange)
|
|
|
|
for convertible in ((), [], np.array([])):
|
|
|
|
expected = 'range: all'
|
|
|
|
actual = try_to_convert(convertible)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(convertible, expected, actual))
|
|
|
|
|
|
|
|
def test_parse_to_range_convertible(self):
|
|
|
|
Range = namedtuple('Range', ('start', 'end'))
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpRange)
|
|
|
|
for convertible in ((10, 20), [-1, 3], np.array([10, 24]), Range(-4, 6)):
|
|
|
|
expected = 'range: (s={}, e={})'.format(*convertible)
|
|
|
|
actual = try_to_convert(convertible)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(convertible, expected, actual))
|
|
|
|
|
|
|
|
def test_parse_to_range_not_convertible(self):
|
|
|
|
for not_convertible in ((1, ), [40, ], np.array([1, 4, 6]), {'a': 1, 'b': 40},
|
|
|
|
(1.5, 13.5), [3, 6.7], np.array([6.3, 2.1]), '14, 4'):
|
|
|
|
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpRange(not_convertible)
|
|
|
|
|
|
|
|
def test_reserved_keywords_are_transformed(self):
|
|
|
|
default_lambda_value = 2
|
|
|
|
default_from_value = 3
|
|
|
|
format_str = "arg={}, lambda={}, from={}"
|
|
|
|
self.assertEqual(
|
|
|
|
cv.utils.testReservedKeywordConversion(20), format_str.format(20, default_lambda_value, default_from_value)
|
|
|
|
)
|
|
|
|
self.assertEqual(
|
|
|
|
cv.utils.testReservedKeywordConversion(10, lambda_=10), format_str.format(10, 10, default_from_value)
|
|
|
|
)
|
|
|
|
self.assertEqual(
|
|
|
|
cv.utils.testReservedKeywordConversion(10, from_=10), format_str.format(10, default_lambda_value, 10)
|
|
|
|
)
|
|
|
|
self.assertEqual(
|
|
|
|
cv.utils.testReservedKeywordConversion(20, lambda_=-4, from_=12), format_str.format(20, -4, 12)
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_parse_vector_int_convertible(self):
|
|
|
|
np.random.seed(123098765)
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpVectorOfInt)
|
|
|
|
arr = np.random.randint(-20, 20, 40).astype(np.int32).reshape(10, 2, 2)
|
|
|
|
int_min, int_max = get_limits(ctypes.c_int)
|
|
|
|
for convertible in ((int_min, 1, 2, 3, int_max), [40, 50], tuple(),
|
|
|
|
np.array([int_min, -10, 24, int_max], dtype=np.int32),
|
|
|
|
np.array([10, 230, 12], dtype=np.uint8), arr[:, 0, 1],):
|
|
|
|
expected = "[" + ", ".join(map(str, convertible)) + "]"
|
|
|
|
actual = try_to_convert(convertible)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(convertible, expected, actual))
|
|
|
|
|
|
|
|
def test_parse_vector_int_not_convertible(self):
|
|
|
|
np.random.seed(123098765)
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
arr = np.random.randint(-20, 20, 40).astype(np.float32).reshape(10, 2, 2)
|
|
|
|
int_min, int_max = get_limits(ctypes.c_int)
|
|
|
|
test_dict = {1: 2, 3: 10, 10: 20}
|
|
|
|
for not_convertible in ((int_min, 1, 2.5, 3, int_max), [True, 50], 'test', test_dict,
|
|
|
|
reversed([1, 2, 3]),
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
np.array([int_min, -10, 24, [1, 2]], dtype=object),
|
|
|
|
np.array([[1, 2], [3, 4]]), arr[:, 0, 1],):
|
|
|
|
with self.assertRaises(TypeError, msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpVectorOfInt(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_vector_double_convertible(self):
|
|
|
|
np.random.seed(1230965)
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpVectorOfDouble)
|
|
|
|
arr = np.random.randint(-20, 20, 40).astype(np.int32).reshape(10, 2, 2)
|
|
|
|
for convertible in ((1, 2.12, 3.5), [40, 50], tuple(),
|
|
|
|
np.array([-10, 24], dtype=np.int32),
|
|
|
|
np.array([-12.5, 1.4], dtype=np.double),
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
np.array([10, 230, 12], dtype=np.float32), arr[:, 0, 1], ):
|
|
|
|
expected = "[" + ", ".join(map(lambda v: "{:.2f}".format(v), convertible)) + "]"
|
|
|
|
actual = try_to_convert(convertible)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(convertible, expected, actual))
|
|
|
|
|
|
|
|
def test_parse_vector_double_not_convertible(self):
|
|
|
|
test_dict = {1: 2, 3: 10, 10: 20}
|
|
|
|
for not_convertible in (('t', 'e', 's', 't'), [True, 50.55], 'test', test_dict,
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
np.array([-10.1, 24.5, [1, 2]], dtype=object),
|
|
|
|
np.array([[1, 2], [3, 4]]),):
|
|
|
|
with self.assertRaises(TypeError, msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpVectorOfDouble(not_convertible)
|
|
|
|
|
|
|
|
def test_parse_vector_rect_convertible(self):
|
|
|
|
np.random.seed(1238765)
|
|
|
|
try_to_convert = partial(self._try_to_convert, cv.utils.dumpVectorOfRect)
|
|
|
|
arr_of_rect_int32 = np.random.randint(5, 20, 4 * 3).astype(np.int32).reshape(3, 4)
|
|
|
|
arr_of_rect_cast = np.random.randint(10, 40, 4 * 5).astype(np.uint8).reshape(5, 4)
|
|
|
|
for convertible in (((1, 2, 3, 4), (10, -20, 30, 10)), arr_of_rect_int32, arr_of_rect_cast,
|
|
|
|
arr_of_rect_int32.astype(np.int8), [[5, 3, 1, 4]],
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
((np.int8(4), np.uint8(10), int(32), np.int16(55)),)):
|
|
|
|
expected = "[" + ", ".join(map(lambda v: "[x={}, y={}, w={}, h={}]".format(*v), convertible)) + "]"
|
|
|
|
actual = try_to_convert(convertible)
|
|
|
|
self.assertEqual(expected, actual,
|
|
|
|
msg=get_conversion_error_msg(convertible, expected, actual))
|
|
|
|
|
|
|
|
def test_parse_vector_rect_not_convertible(self):
|
|
|
|
np.random.seed(1238765)
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
arr = np.random.randint(5, 20, 4 * 3).astype(np.float32).reshape(3, 4)
|
|
|
|
for not_convertible in (((1, 2, 3, 4), (10.5, -20, 30.1, 10)), arr,
|
|
|
|
[[5, 3, 1, 4], []],
|
Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
2 years ago
|
|
|
((float(4), np.uint8(10), int(32), np.int16(55)),)):
|
|
|
|
with self.assertRaises(TypeError, msg=get_no_exception_msg(not_convertible)):
|
|
|
|
_ = cv.utils.dumpVectorOfRect(not_convertible)
|
|
|
|
|
|
|
|
def test_vector_general_return(self):
|
|
|
|
expected_number_of_mats = 5
|
|
|
|
expected_shape = (10, 10, 3)
|
|
|
|
expected_type = np.uint8
|
|
|
|
mats = cv.utils.generateVectorOfMat(5, 10, 10, cv.CV_8UC3)
|
|
|
|
self.assertTrue(isinstance(mats, tuple),
|
|
|
|
"Vector of Mats objects should be returned as tuple. Got: {}".format(type(mats)))
|
|
|
|
self.assertEqual(len(mats), expected_number_of_mats, "Returned array has wrong length")
|
|
|
|
for mat in mats:
|
|
|
|
self.assertEqual(mat.shape, expected_shape, "Returned Mat has wrong shape")
|
|
|
|
self.assertEqual(mat.dtype, expected_type, "Returned Mat has wrong elements type")
|
|
|
|
empty_mats = cv.utils.generateVectorOfMat(0, 10, 10, cv.CV_32FC1)
|
|
|
|
self.assertTrue(isinstance(empty_mats, tuple),
|
|
|
|
"Empty vector should be returned as empty tuple. Got: {}".format(type(mats)))
|
|
|
|
self.assertEqual(len(empty_mats), 0, "Vector of size 0 should be returned as tuple of length 0")
|
|
|
|
|
|
|
|
def test_vector_fast_return(self):
|
|
|
|
expected_shape = (5, 4)
|
|
|
|
rects = cv.utils.generateVectorOfRect(expected_shape[0])
|
|
|
|
self.assertTrue(isinstance(rects, np.ndarray),
|
|
|
|
"Vector of rectangles should be returned as numpy array. Got: {}".format(type(rects)))
|
|
|
|
self.assertEqual(rects.dtype, np.int32, "Vector of rectangles has wrong elements type")
|
|
|
|
self.assertEqual(rects.shape, expected_shape, "Vector of rectangles has wrong shape")
|
|
|
|
empty_rects = cv.utils.generateVectorOfRect(0)
|
|
|
|
self.assertTrue(isinstance(empty_rects, tuple),
|
|
|
|
"Empty vector should be returned as empty tuple. Got: {}".format(type(empty_rects)))
|
|
|
|
self.assertEqual(len(empty_rects), 0, "Vector of size 0 should be returned as tuple of length 0")
|
|
|
|
|
|
|
|
expected_shape = (10,)
|
|
|
|
ints = cv.utils.generateVectorOfInt(expected_shape[0])
|
|
|
|
self.assertTrue(isinstance(ints, np.ndarray),
|
|
|
|
"Vector of integers should be returned as numpy array. Got: {}".format(type(ints)))
|
|
|
|
self.assertEqual(ints.dtype, np.int32, "Vector of integers has wrong elements type")
|
|
|
|
self.assertEqual(ints.shape, expected_shape, "Vector of integers has wrong shape.")
|
|
|
|
|
|
|
|
def test_result_rotated_rect_issue_20930(self):
|
|
|
|
rr = cv.utils.testRotatedRect(10, 20, 100, 200, 45)
|
|
|
|
self.assertTrue(isinstance(rr, tuple), msg=type(rr))
|
|
|
|
self.assertEqual(len(rr), 3)
|
|
|
|
|
|
|
|
rrv = cv.utils.testRotatedRectVector(10, 20, 100, 200, 45)
|
|
|
|
self.assertTrue(isinstance(rrv, tuple), msg=type(rrv))
|
|
|
|
self.assertEqual(len(rrv), 10)
|
|
|
|
|
|
|
|
rr = rrv[0]
|
|
|
|
self.assertTrue(isinstance(rr, tuple), msg=type(rrv))
|
|
|
|
self.assertEqual(len(rr), 3)
|
|
|
|
|
|
|
|
def test_nested_function_availability(self):
|
|
|
|
self.assertTrue(hasattr(cv.utils, "nested"),
|
|
|
|
msg="Module is not generated for nested namespace")
|
|
|
|
self.assertTrue(hasattr(cv.utils.nested, "testEchoBooleanFunction"),
|
|
|
|
msg="Function in nested module is not available")
|
|
|
|
|
|
|
|
if sys.version_info[0] < 3:
|
|
|
|
# Nested submodule is managed only by the global submodules dictionary
|
|
|
|
# and parent native module
|
|
|
|
expected_ref_count = 2
|
|
|
|
else:
|
|
|
|
# Nested submodule is managed by the global submodules dictionary,
|
|
|
|
# parent native module and Python part of the submodule
|
|
|
|
expected_ref_count = 3
|
|
|
|
|
|
|
|
# `getrefcount` temporary increases reference counter by 1
|
|
|
|
actual_ref_count = sys.getrefcount(cv.utils.nested) - 1
|
|
|
|
|
|
|
|
self.assertEqual(actual_ref_count, expected_ref_count,
|
|
|
|
msg="Nested submodule reference counter has wrong value\n"
|
|
|
|
"Expected: {}. Actual: {}".format(expected_ref_count, actual_ref_count))
|
|
|
|
for flag in (True, False):
|
|
|
|
self.assertEqual(flag, cv.utils.nested.testEchoBooleanFunction(flag),
|
|
|
|
msg="Function in nested module returns wrong result")
|
|
|
|
|
|
|
|
def test_class_from_submodule_has_global_alias(self):
|
|
|
|
self.assertTrue(hasattr(cv.ml, "Boost"),
|
|
|
|
msg="Class is not registered in the submodule")
|
|
|
|
self.assertTrue(hasattr(cv, "ml_Boost"),
|
|
|
|
msg="Class from submodule doesn't have alias in the "
|
|
|
|
"global module")
|
|
|
|
self.assertEqual(cv.ml.Boost, cv.ml_Boost,
|
|
|
|
msg="Classes from submodules and global module don't refer "
|
|
|
|
"to the same type")
|
|
|
|
|
|
|
|
def test_inner_class_has_global_alias(self):
|
|
|
|
self.assertTrue(hasattr(cv.SimpleBlobDetector, "Params"),
|
|
|
|
msg="Class is not registered as inner class")
|
|
|
|
self.assertTrue(hasattr(cv, "SimpleBlobDetector_Params"),
|
|
|
|
msg="Inner class doesn't have alias in the global module")
|
|
|
|
self.assertEqual(cv.SimpleBlobDetector.Params, cv.SimpleBlobDetector_Params,
|
|
|
|
msg="Inner class and class in global module don't refer "
|
|
|
|
"to the same type")
|
|
|
|
|
|
|
|
def test_export_class_with_different_name(self):
|
|
|
|
self.assertTrue(hasattr(cv.utils.nested, "ExportClassName"),
|
|
|
|
msg="Class with export alias is not registered in the submodule")
|
|
|
|
self.assertTrue(hasattr(cv, "utils_nested_ExportClassName"),
|
|
|
|
msg="Class with export alias doesn't have alias in the "
|
|
|
|
"global module")
|
|
|
|
self.assertEqual(cv.utils.nested.ExportClassName.originalName(), "OriginalClassName")
|
|
|
|
|
|
|
|
instance = cv.utils.nested.ExportClassName.create()
|
|
|
|
self.assertTrue(isinstance(instance, cv.utils.nested.ExportClassName),
|
|
|
|
msg="Factory function returns wrong class instance: {}".format(type(instance)))
|
|
|
|
self.assertTrue(hasattr(cv.utils.nested, "ExportClassName_create"),
|
|
|
|
msg="Factory function should have alias in the same module as the class")
|
|
|
|
# self.assertFalse(hasattr(cv.utils.nested, "OriginalClassName_create"),
|
|
|
|
# msg="Factory function should not be registered with original class name, "\
|
|
|
|
# "when class has different export name")
|
|
|
|
|
|
|
|
def test_export_inner_class_of_class_exported_with_different_name(self):
|
|
|
|
if not hasattr(cv.utils.nested, "ExportClassName"):
|
|
|
|
raise unittest.SkipTest(
|
|
|
|
"Outer class with export alias is not registered in the submodule")
|
|
|
|
|
|
|
|
self.assertTrue(hasattr(cv.utils.nested.ExportClassName, "Params"),
|
|
|
|
msg="Inner class with export alias is not registered in "
|
|
|
|
"the outer class")
|
|
|
|
self.assertTrue(hasattr(cv, "utils_nested_ExportClassName_Params"),
|
|
|
|
msg="Inner class with export alias is not registered in "
|
|
|
|
"global module")
|
|
|
|
params = cv.utils.nested.ExportClassName.Params()
|
|
|
|
params.int_value = 45
|
|
|
|
params.float_value = 4.5
|
|
|
|
|
|
|
|
instance = cv.utils.nested.ExportClassName.create(params)
|
|
|
|
self.assertTrue(isinstance(instance, cv.utils.nested.ExportClassName),
|
|
|
|
msg="Factory function returns wrong class instance: {}".format(type(instance)))
|
|
|
|
self.assertEqual(
|
|
|
|
params.int_value, instance.getIntParam(),
|
|
|
|
msg="Class initialized with wrong integer parameter. Expected: {}. Actual: {}".format(
|
|
|
|
params.int_value, instance.getIntParam()
|
|
|
|
)
|
|
|
|
)
|
|
|
|
self.assertEqual(
|
|
|
|
params.float_value, instance.getFloatParam(),
|
|
|
|
msg="Class initialized with wrong integer parameter. Expected: {}. Actual: {}".format(
|
|
|
|
params.float_value, instance.getFloatParam()
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_named_arguments_without_parameters(self):
|
|
|
|
src = np.ones((5, 5, 3), dtype=np.uint8)
|
|
|
|
arguments_dump, src_copy = cv.utils.copyMatAndDumpNamedArguments(src)
|
|
|
|
np.testing.assert_equal(src, src_copy)
|
|
|
|
self.assertEqual(arguments_dump, 'lambda=-1, sigma=0.0')
|
|
|
|
|
|
|
|
def test_named_arguments_without_output_argument(self):
|
|
|
|
src = np.zeros((2, 2, 3), dtype=np.uint8)
|
|
|
|
arguments_dump, src_copy = cv.utils.copyMatAndDumpNamedArguments(
|
|
|
|
src, lambda_=15, sigma=3.5
|
|
|
|
)
|
|
|
|
np.testing.assert_equal(src, src_copy)
|
|
|
|
self.assertEqual(arguments_dump, 'lambda=15, sigma=3.5')
|
|
|
|
|
|
|
|
def test_named_arguments_with_output_argument(self):
|
|
|
|
src = np.zeros((3, 3, 3), dtype=np.uint8)
|
|
|
|
dst = np.ones_like(src)
|
|
|
|
arguments_dump, src_copy = cv.utils.copyMatAndDumpNamedArguments(
|
|
|
|
src, dst, lambda_=25, sigma=5.5
|
|
|
|
)
|
|
|
|
np.testing.assert_equal(src, src_copy)
|
|
|
|
np.testing.assert_equal(dst, src_copy)
|
|
|
|
self.assertEqual(arguments_dump, 'lambda=25, sigma=5.5')
|
|
|
|
|
|
|
|
|
|
|
|
class CanUsePurePythonModuleFunction(NewOpenCVTests):
|
|
|
|
def test_can_get_ocv_version(self):
|
|
|
|
import sys
|
|
|
|
if sys.version_info[0] < 3:
|
|
|
|
raise unittest.SkipTest('Python 2.x is not supported')
|
|
|
|
|
|
|
|
self.assertEqual(cv.misc.get_ocv_version(), cv.__version__,
|
|
|
|
"Can't get package version using Python misc module")
|
|
|
|
|
|
|
|
def test_native_method_can_be_patched(self):
|
|
|
|
import sys
|
|
|
|
|
|
|
|
if sys.version_info[0] < 3:
|
|
|
|
raise unittest.SkipTest('Python 2.x is not supported')
|
|
|
|
|
|
|
|
res = cv.utils.testOverwriteNativeMethod(10)
|
|
|
|
self.assertTrue(isinstance(res, Sequence),
|
|
|
|
msg="Overwritten method should return sequence. "
|
|
|
|
"Got: {} of type {}".format(res, type(res)))
|
|
|
|
self.assertSequenceEqual(res, (11, 10),
|
|
|
|
msg="Failed to overwrite native method")
|
|
|
|
res = cv.utils._native.testOverwriteNativeMethod(123)
|
|
|
|
self.assertEqual(res, 123, msg="Failed to call native method implementation")
|
|
|
|
|
|
|
|
def test_default_matx_argument(self):
|
|
|
|
res = cv.utils.dumpVec2i()
|
|
|
|
self.assertEqual(res, "Vec2i(42, 24)",
|
|
|
|
msg="Default argument is not properly handled")
|
|
|
|
res = cv.utils.dumpVec2i((12, 21))
|
|
|
|
self.assertEqual(res, "Vec2i(12, 21)")
|
|
|
|
|
|
|
|
|
|
|
|
class SamplesFindFile(NewOpenCVTests):
|
|
|
|
|
|
|
|
def test_ExistedFile(self):
|
|
|
|
res = cv.samples.findFile('lena.jpg', False)
|
|
|
|
self.assertNotEqual(res, '')
|
|
|
|
|
|
|
|
def test_MissingFile(self):
|
|
|
|
res = cv.samples.findFile('non_existed.file', False)
|
|
|
|
self.assertEqual(res, '')
|
|
|
|
|
|
|
|
def test_MissingFileException(self):
|
|
|
|
try:
|
|
|
|
_res = cv.samples.findFile('non_existed.file', True)
|
|
|
|
self.assertEqual("Dead code", 0)
|
|
|
|
except cv.error as _e:
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
NewOpenCVTests.bootstrap()
|